
AN AREA-EFFICIENT FPGA-BASED ARCHITECTURE FOR FULLY-PARALLEL
STOCHASTIC LDPC DECODING

Saeed Sharifi Tehrani, Shie Mannor and Warren J. Gross

Department of Electrical and Computer Engineering
McGill University

Montreal, Quebec, H3A 2A7 Canada
E-mail: {sshari9,shie,wjgross}@ece.mcgill.ca

ABSTRACT

Stochastic decoding is a new alternative method for low com-
plexity decoding of error-correcting codes. This paper prese-
nts the first hardware architecture for stochastic decoding of
practical Low-Density Parity-Check (LDPC) codes on factor
graphs. The proposed architecture makes fully-parallel de-
coding of (long) state-of-the-art LDPC codes viable on FP-
GAs. Implementation results for a (1024, 512) fully-parallel
LDPC decoder shows an area requirement of about 36% of a
Xilinx Virtex-4 XC4VLX200 device and a throughput of 706
Mbps at a bit-error-rate of about 10−6 with performance loss
of about 0.1 dB, with respect to the nearly ideal floating-point
sum-product algorithm with 32 iterations.

Index Terms— Iterative decoding, Low-Density Parity-
Check (LDPC) codes, stochastic decoding

1. INTRODUCTION

Low-Density Parity-Check (LDPC) codes [1] are a class of
linear block codes that includes some of the most powerful
error-correcting codes with performance close to the Shanon
capacity limit [2, 3]. These codes have been considered for
several standards such as Digital Video Broadcast (DVB) satel-
lite communications [4], IEEE 802.3an (10GBASE-T) [5] and
IEEE 802.16 (WiMAX) [6]. LDPC codes are iteratively de-
coded by means of belief propagation using the Sum-Product
Algorithm (SPA). The SPA involves passing messages over
the edges of a bipartite factor graph [7]. Nodes in a factor
graph are separated into two distinct groups, namely, variable
nodes and parity-check nodes.

The inherent parallelism involved in LDPC decoding has
motivated researchers to exploit the maximum feasible amount
of parallelism in LDPC decoders for the sake of higher through-
put. However, due to the routing congestion and intercon-
nection problem (mainly associated with the interleaver in an
LDPC decoder), the implementation of fully-parallel LDPC
decoders is still challenging for long practical codes. The re-
quired routing for the interleaver of an LDPC code can occupy
a large portion of the decoder area. In this respect, methods

that alleviate the routing problem and/or reduce the complex-
ity of nodes are favorable. The well-known min-sum algo-
rithm is an approximate variation of SPA which offers less-
complex nodes but usually with the cost of about 0.5 to 1
dB decoding loss [8, 9]. Recently, bit-serial methods have
been considered for the min-sum decoding. Examples are the
FPGA and ASIC implementations of LDPC decoders in [10]
and [11]. The FPGA-based implementation in [10], which
implements a regular (480, 355) LDPC decoder is, to the best
of our knowledge, the longest and fastest FPGA-based fully-
parallel LDPC decoder in the literature. This decoder oc-
cupies about 84% of an Altera Stratix EP1S80 device and
achieves a throughput of 650 Mbps with a maximum clock
frequency of 61 MHz and 15 approximate min-sum decoding
iterations [10].

Stochastic decoding is a new approach for decoding error-
correcting codes. This approach results in low complexity
computational nodes in the factor graph and also alleviates
the routing congestion problem. Stochastic decoding is in-
spired by stochastic computation introduced in the 1960s to
design low-precision circuits [12]. In stochastic computa-
tion, probabilities are represented by streams of stochastic
bits. This representation results in low complexity compu-
tational nodes to perform operations such as multiplication
and division on probabilities in a bit-serial fashion. Stochas-
tic computation has been considered for applications such as
neural networks [13] and motor controllers [14]. The applica-
tion of stochastic computation for decoding error-correcting
codes was first considered for decoding (16,8) LDPC and
(7,4) Hamming codes [15, 16]. It was also considered for the
trellis decoding of an acyclic (16,11) Hamming code and a
(256,121) Turbo block (product) code based on the (16,11)
acyclic Hamming decoders [17, 18]. The only hardware im-
plementation of stochastic decoders decodes a specially con-
structed (16,8) tailbiting LDPC code [19].

The above-mentioned early stochastic methods could only
decode special short/acyclic codes and were not applicable
for decoding state-of-the-art LDPC codes on factor graphs.
Stochastic decoders are sensitive to the level of switching ac-

2551-4244-1222-6/07/$25.00 ©2007 IEEE SiPS 2007

tivity within the factor graph and they are also prone to the
latching (lock-up) problem of stochastic nodes [18,20]. These
problems can severely degrade the Bit-Error-Rate (BER) de-
coding performance of the decoder, particulary for practical
(long) LDPC codes [18, 20]. Recently, a new method was
proposed in [20] which is considered as the first successful
stochastic method for decoding practical LDPC codes on fac-
tor graphs. This method is capable of providing near-optimal
performance with respect to SPA with floating-point imple-
mentation.

This paper discusses the implementation issues of stochas-
tic LDPC decoders and presents the first FPGA-based imple-
mentation of a stochastic decoder which considers a practical
code. Implementation results for a fully-parallel (1024,512)
regular LDPC decoder with degree-3 (dv = 3) variable nodes
and degree-6 (dc = 6) parity-check nodes on a Xilinx Virtex-
4 XC4VLX200 device are also provided in the paper. The
rest of the paper is organized as follows. Section 2 provides
an overview of stochastic computation and the stochastic de-
coding method proposed in [20]. Section 3 describes the hard-
ware implementation issues and architecture of stochastic de-
coders. Synthesis and decoding performance results for the
(1024,512) LDPC decoder are given in Section 4. Finally,
Section 5 offers the concluding remarks and summarizes the
implications of the results.

2. STOCHASTIC COMPUTATION AND LDPC
DECODING

In stochastic computation, probabilities are transformed to
streams of stochastic bits using Bernoulli sequences. Each
bit in a stream is equal to 1 with the probability to be trans-
formed. For instance, a frame of 10 bits with 7 bits equal
to 1 represents a probability of 0.7. It should be emphasized
that stochastic sequences are not necessarily frames of bits
and they can be used as stochastic streams in which no fram-
ing/packetizing is required [21]. The transformation from a
probability to a stochastic stream is not unique, hence, differ-
ent streams are possible for the same probability. For exam-
ple, Fig. 1 shows some possible streams for a probability of
7/13 � 0.5385. By using stochastic representation, complex
probability operations such as multiplication and division are
performed using simple circuits [12, 13]. For instance, the
AND gate shown in Fig. 2 can be used for multiplication of
two stochastic streams. Stochastic representation and compu-
tation can be also applied to probability operations in factor
graphs. The simplicity of stochastic structures is appealing
for decoding error-correcting codes such as LDPC codes.

In stochastic decoding, probabilities received from the chan-
nel are converted to stochastic streams and decoding proceeds
by stochastic variable nodes and parity-check nodes exchang-
ing bits. Let Pa = Pr(ai = 1) and Pa = Pr(bi = 1) be the
input probabilities represented by the stochastic streams {ai}

���
�������������

���

���
�������������

���

���
�������������

���

�����	

�����	

�����	

Fig. 1. Some possible stochastic streams for a probability of
7/13.

����������

 ����������

 ����������

�����

�����

�����

Fig. 2. An example of multiplication of two stochastic
streams.

and {bi}. The variable node operation is as follows

Pc =
PaPb

PaPb + (1 − Pa)(1 − Pb)
. (1)

Similarly, the parity-check operation in a dc = 3 parity-check
node for inputs Pa and Pb is

Pc = Pa(1 − Pb) + Pb(1 − Pa). (2)

The stochastic structures for a dv = 3 variable node and a
dc = 3 parity-check node are shown in Fig. 3 [15]. A stochas-
tic variable node structure uses its previous output bit (i.e.,
ci = ci−1) if the input bits ai and bi are not equal. This is
referred to as a hold state for a variable node.

Using the stochastic structures, decoding operation pro-
ceeds by variable nodes and parity-check nodes exchanging
bits along each edge in the factor graph. Each decoding round
is referred to as a Decoding Cycle (DC). A DC does not cor-
respond to one iteration in SPA [20]. At the end of a DC,
the output of a variable node is passed to an up/down counter.
This counter is incremented by receiving a 1 bit and decre-
mented by receiving a 0 bit. After a fixed number of DCs (or
when all the parity-checks are satisfied), a hard-decision is ap-
plied to the contents of the counters to determine the decoded
codeword. This can be done by only using the sign-bit of the
up/down counters, where a 1 sign-bit determines a positive
content (or +1 symbol) and a 0 sign-bit determines a nega-
tive content (or a −1 symbol) in a Binary Phase-Shift Keying
(BPSK) transmission [16,19,20]. In addition to simple struc-
tures for variable and parity-check nodes, stochastic decoding
significantly reduces the routing congestion problem. This is
because only one bit in each direction is required to represent
an edge in the factor graph.

The stochastic structures in Fig. 3 cannot be directly ap-
plied for decoding practical LDPC codes. As mentioned pre-
viously, stochastic decoders are sensitive to the level of switch-

256

� �

���

�

aP

bP
)1()1(abbac PPPPP −−−−++++−−−−====

)1)(1(baba

ba
c PPPP

PP
P

−−−−−−−−++++

====

�

�

}{ ia
}{ ib

}{ ic

aP

bP

}{ ia
}{ ib }{ ic

ia ib ic
	

	

	

	

	

1−ic
1−ic

Fig. 3. The structure of (A) a degree-3 variable node and (B)
a degree-3 parity-check node.

ing activity (bit transition) within the factor graph. This prob-
lem can be worse at high Signal-to-Noise Ratios (SNRs) in
which probability messages are close to 0 (or 1) and hence,
the corresponding stochastic bits are mostly 0 (or 1) [20].
In addition, stochastic decoding is also prone to the latch-
ing (lock-up) problem. The latching problem refers to the
case where existence of cycles in the factor graph correlate
the stochastic streams (messages) in such a way that stochas-
tic nodes are stuck to a fixed state for several DCs [17, 20].
The lack of enough switching activity and the latching prob-
lem severely affects the BER performance of practical LDPC
codes. To circumvent these problems two methods are sug-
gested in [20]: noise-dependant-scaling and edge memories,
which are discussed as follows.

2.1. Noise Dependant Scaling

In Noise-Dependant-Scaling (NDS), the channel Log Likeli-
hood Ratios (LLRs) are scaled by a factor which is propor-
tional to the level of noise that exists in the channel. As-
suming BPSK transmission over an Additive White Gaussian
Noise (AWGN) channel with a power-spectral density of N0,
the scaled LLR for the i-th received symbol in the block, yi,
is [20]

L′
i
= (

αN0

Y
)Li = (

4α

Y
)yi, (3)

where Li = 4yi/N0 is the received channel LLR, α is a factor
whose value can be chosen based on the stochastic decoding
performance of the code and Y is a fixed maximum value for
received bits in the block. For example, in a BPSK transmis-
sion, Y can be chosen equal to 6 [20]. The main purpose of
NDS is to increase the switching activity and to provide a sim-
ilar switching activity over different range of SNRs [20]. As it
was shown in [20], the NDS is usually enough for stochastic
decoding of short error-correcting codes such as short Ham-
ming or LDPC codes. However, for practical long LDPC
codes, edge memories are also essential [20].

2.2. “Regenerative” Bits and Edge Memories

Edge Memories (EMs) are memories assigned to outgoing
edges in the graph. EMs employ a mechanism which reran-
domizes and de-correlates the stochastic messages and signif-
icantly reduces the chance that stochastic variable nodes get
stuck in fixed states [20, 21]. The principles of this mecha-
nism are that (i) an EM is only updated with outgoing bits
which are not produced in the hold state1 (we refer to these
bits as “regenerative” bits), (ii) when the hold state occurs
for an edge, the variable node refers to the corresponding
EM to produce/generate the outgoing bit and, (iii) the gen-
eration of a bit out of EM in the hold state should be done in a
random/stochastic manner to rerandomize stochastic streams
and break the correlation. This mechanism can be realized
in different ways. For example, it is possible to count regen-
erative bits using up/down counters (i.e., transform regenera-
tive bits to probabilities) and then generate a new (rerandom-
ized) stochastic bit based on the measured probabilities. An-
other way to realize EMs is to use shift registers with single-
selectable bits. This realization does not require transfor-
mation of regenerative bits to probabilities and operates on
streams of bits; it is also suitable for an FPGA implemen-
tation (see the next section). Using this realization, an EM is
only updated with regenerative bits and in the case of the hold
state, a bit is randomly picked from the shift-register [20].

3. DECODER ARCHITECTURE

This section describes the necessary components in an LDPC
stochastic decoder and presents the implementation of these
components for a (1024,512) stochastic LDPC decoder.

3.1. Generating Stochastic Streams

Upon receiving a block of symbols from the AWGN channel,
the NDS is applied according to (3). NDS is based on the ratio
of α and Y parameters. A good stochastic BER decoding
performance can be obtained for the (1024,512) code by using
an α = 3 and Y = 6, (i.e., 4α/Y = 2) [20]. Therefore,
probabilities can be easily generated based on 1-bit shifted
received values.

For the implementation of the (1024,512) decoder, we
used 8-bit representation for the received channel probabili-
ties. These probabilities are converted to stochastic streams
by using the structure shown in Fig. 4. This structure consists
of a comparator which compares the channel probability, P ,
with a (pseudo) random number, R, at each DC. P is fixed
during the decoding of a block. However, R is a random num-
ber (with a uniform distribution) that is updated in every DC.
The output bit of the comparator is equal to 1 if P > R and
it is equal to 0, otherwise. The output bit of the comparator

1The variable node in Fig. 3(A) is not in the hold state when ai = bi = 0

or ai = bi = 1.

257

�

�

���
������	

����	���

������ ��
������
������

�

�
����������������������
������

���� ! "�!

#

Fig. 4. Converting channel probabilities to stochastic streams.

is fed to a variable node. Since R has a uniform distribution
and can take a value from 0 to 28 − 1, each bit in the out-
put stochastic stream is equal to 1 with a probability of P/28.
The generation of R is performed by a randomization engine
which is described in the subsection 3.5. The decoder needs
one comparator for each variable node.

3.2. Variable Nodes and Edge Memories

In this implementation, each variable node uses one EM per
edge. EMs operate as M -bit shift registers, however, a (sin-
gle) bit in an EM is selectable by address lines in each DC.
Each EM is initialized to contain zeros. Fig. 5 shows the ar-
chitecture of a dv = 3 variable node (only 2 inputs and the
corresponding output are shown). When the input bits of a
variable node are equal, the signal U in Fig. 5 is 1 and the
variable node applies the equality equation and computes the
outgoing bit for the edge [20]. In this case, the variable node
updates the EM in a first-in-first-out manner. In the case of a
hold state (i.e., when the input bits are not equal), U is 0 and
the corresponding EM is not updated. Instead, we randomly
select a bit from the EM of the edge and use it as the outgoing
bit [20]. In hardware, the random selection of a bit from an
EM is done by generating a (pseudo) random address for each
EM in each DC. This task is also done by the randomization
engine described in subsection 3.5.

For the hardware implementation of the (1024,512) de-
coder, we used EMs with M = 64. The decoder uses one EM
per edge. Many FPGA architectures allow efficient imple-
mentation of EMs. They allow to use small Look-Up Tables
(LUTs) as Shift Register LUTs (SRLs) and accessing a single
bit in the register. It is also possible to cascade any number of
SRLs to form shift registers of arbitrary size. These features
exactly match the operation of EMs. As an example, in our
target FPGA device, Xilinx Virtex-4, a 64-bit EM can be ef-
ficiently implemented by cascading four 4-input LUTs [22].
Each 4-input LUT forms a 16-bit shift register with a sin-
gle output accessed by the LUT’s address line. A 64-bit EM
created this way occupies only 2 slices of a Xilinx Virtex-4
FPGA.

3.3. Saturating Up/Down Counters

As described in [20], the output of a stochastic variable node
is passed to an up/down counter at the end of each DC. There-

$%&'() *+

,-
./
01
2-1
3

401
/01
2-1

56789:
6885;<<

$ =>?@ABCD>=A E
=A>=A

F
G

H

I

JKL
MNO

Fig. 5. The structure of a dv = 3 variable node (only 2 inputs
and the corresponding output are shown).

PQR
STU
VQUW

PX
TUS
TU
VQUW

Fig. 6. The structure of a dc = 6 parity-check node.

fore, one counter is needed for each variable node. In this im-
plementation, we used 6-bit signed saturating counters which
count from -31 to 31. A saturating up/down counter is in-
cremented in case of receiving 1 and decremented in case
of 0. It stops decrementing/incrementing if reaches its mini-
mum/maximum limits. As mentioned previously, the sign of
the counter indicates the the hard-decision at each DC.

3.4. Parity-Check Nodes

The implementation of a parity-check node is straightforward.
Fig. 6 shows the structure of a dc = 6 parity-check used in
the decoder.

3.5. The Randomization Engine

The Randomization Engine (RE) is responsible for generating
random probabilities for comparators as well as generating
random addresses for EMs. Although the required amount of
random numbers might seem high, these random numbers can
be significantly shared at two levels without a significant loss
in BER performance: (i) bits in random (probability) numbers
generated for comparators can also be used for addresses of
EMs and, (ii) different groups of EMs can share the same
random address.

The RE for the (1024,512) decoder consists of ten 16-
bit Linear Feedback Shift Registers (LFSRs) in which each
LFSR is associated with a prime polynomial. Each bit in an
output random number is generated by XORing different bits

258

of these ten LFSRs. The RE generates 32 8-bit random num-
bers in each DC for the entire decoder.

4. IMPLEMENTATION AND PERFORMANCE
RESULTS

Table 1 summarizes the area requirement for each individ-
ual module used in the decoder as well as the whole decoder
(which includes the interleaver). Efficient implementation of
EMs and sharing the random numbers within the decoder al-
low area-efficient implementation of fully-parallel stochastic
LDPC decoders. Note that the area requirement for each mod-
ule reported in this table is for the case where the module is
individually implemented in the device. Since the interleaver
only consists of routing interconnections, its area consump-
tion is not individually reported in the table. However, the re-
ported area for the whole decoder also includes the area con-
sumed by the interleaver. An approximate area consumption
of the interleaver (and other required routing) can be obtained
by subtracting the area of all the reported components from
the area of the whole decoder.

The (1024,512) regular LDPC decoder occupies 32875
out of 89088 (36%) slices available in a Xilinx XC4VLX200
Virtex-4 device. Although due to different code rates and tar-
get FPGA platforms, a precise comparison with results given
in [10] is not possible, however, an approximate comparison
shows that the proposed stochastic architecture offers about
53% area reduction. The approximate min-sum-based regu-
lar (480,355) decoder in [10] occupies 66588 Logic Elements
(LEs) of an Altera Stratix EP1S80 device. Each LE has one
4-input LUT and one Flip-Flop (FF) [23] which results in
the worst-case (FPGA area) consumption of 66588 / 480 �
138.7 LUTs and FFs per bit. The stochastic (1024,512) de-
coder occupies 32875 slices. Each slice in a Xilinx Virtex-
4 architecture contains two 4-input LUTs and two FFs [22].
This results in the worst-case (FPGA area) consumption of
65750 / 1024 � 64.2 LUTs and FFs per bit. The (1024,512)
stochastic decoder implementation achieves a clock frequency
of 212 MHz after place and route step.

Table 1. (1024,512) LDPC Decoder Implementation Results
on a Xilinx Virtex-4 XC4VLX200 Device

Module Slices Number required
Comparator 6 1024
U/D counter 6 1024

dv = 3 var. node 10 (with 3 EMs) 1024
dc = 6 check node 5 512

RE 394 1

Decoder 32875 (36%) -

Fig. 7 shows the bit-true simulation of the BER perfor-

1 2 3 4 5 6 7
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (E
b
/N

0
 in dB)

B
it

E
rr

or
 R

at
e

(B
E

R
)

(1024,512) regular LDPC code with d
v
=3 and d

c
=6, 100 block errors

Bit-True stoc. (M=64, α=3, Y=6, 1K max. DC)
Bit-True stoc. (M=64, α=3, Y=6, 6K max. DC)
SPA (double-precision floating-point, 32 iterations)

Fig. 7. Decoding performance results.

mance of the stochastic decoder for decoding with a maxi-
mum DC of 6K. For the sake of comparison, bit-true simu-
lation for decoding with maximum 1K DCs and, simulation
results for SPA with double-precision implementation are also
depicted. As shown, the stochastic decoder provides decod-
ing performance close to the floating-point SPA with 32 iter-
ations. The decoding loss is about 0.1 dB at a BER of about
10−6 (for decoding with a maximum DC of 6K). The stochas-
tic decoder stops decoding as soon as all the parity-checks
are satisfied or a maximum number of 6K DCs are reached.
The observed average DC, however, was much lower than the
maximum DC, especially for low BERs. In fact, at low BERs,
there are only a few blocks that need a large number of DCs to
decode. For example, the observed average DC at SNR=3 dB
(BER � 10−6) was about 300 DCs which results in a through-
put of about 706 Mbps at this BER.

It is essential to note that the above-mentioned speed (av-
erage and maximum DC) and area requirements are for pro-
viding performance close to floating-point SPA. A stochastic
decoder is able to trade-off area, speed and latency with BER
performance. For example, for performance similar to the
min-sum algorithm (i.e., usually about 0.5 to 1 dB loss, com-
pared to SPA [8, 9]), shorter EMs and/or fewer DCs can be
used. Also, for applications in which the maximum latency
requirement is strict, it is possible to reduce the maximum
DC with a cost of some performance loss. This is also shown
in Fig. 7 where bit-true simulations for stochastic decoding
with a maximum DC of 1K is depicted.

5. CONCLUSIONS

An FPGA-based architecture for a fully-parallel (1024,512)
stochastic LDPC decoder is presented. To the best of our

259

knowledge, this is the first hardware implementation of a stoc-
hastic decoder that considers an LDPC code with a practi-
cal length. Also, the proposed decoder is the longest FPGA-
based fully-parallel LDPC decoder implemented.

The paper discussed the required components and the ar-
chitecture of a stochastic LDPC decoder. It also presented
ways to reduce the required amount of randomness in a stoch-
astic decoder. It is shown that architectural features available
in many FPGAs can be used for area-efficient implementa-
tion of stochastic LDPC decoders. The proposed architecture
offers about 53% FPGA area improvement compared to the
previous fully-parallel approximate min-sum LDPC decoder
architecture.

The synthesis and performance results provided in the pa-
per validate the potential of stochastic decoding methods for
low complexity and high-throughput decoding of state-of-the-
art LDPC codes with performance close to floating-point SPA.

6. REFERENCES

[1] R. G. Gallager, Low Density Parity Check Codes, Cam-
bridge, MA: MIT Press, 1963.

[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit
performance of low density parity check codes,” Elec-
tron. Lett., vol. 32, no. 18, pp. 1645–1646, 1996.

[3] T. J. Richardson and R. Urbanke, “The capacity of low-
density parity-check codes under message-passing de-
coding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599–
618, Feb. 2001.

[4] DVB-S2, http://www.dvb.org.

[5] The IEEE P802.3an 10GBASE-T Task Force,
www.ieee802.org/3/an.

[6] The IEEE 802.11n Working Group,
grouper.ieee.org/groups/802/11, Oct. 2005.

[7] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 498–519, Feb 2001.

[8] A. Anastasopoulos, “A comparison between the sum-
product and the min-sum iterative detection algorithms
based on density evolution,” in Proceedings of the IEEE
Global Telecommunications Conference, Nov. 2001,
vol. 2, pp. 1021–1025.

[9] F. Guilloud, E. Boutillon, and J.-L. Danger, “λ-
min decoding algorithm of regular and irregular LDPC
codes,” in Proceedings of 3rd International Sympo-
sium on Turbo Codes (ISTC 03), Brest, France, 1-5 Sept.
2003, pp. 451–454.

[10] Ahmad Darabiha, Anthony Chan Carusone, and
Frank R. Kschischang, “A bit-serial approximate min-
sum LDPC decoder and FPGA implementation,” in
IEEE Int. Symp. on Circuits and Systems, Greece, May
2006.

[11] T. L. Brandon, R. Hang, G. Block, V. Gaudet et al., “A
250-Mbps min-sum LDPC decoder using bit-serial mes-
sage exchange,” submitted to Integration, the VLSI Jour-
nal, Dec. 2006.

[12] B. Gaines, Advances in Information Systems Science,
chapter 2, pp. 37–172, Plenum, New York, 1969.

[13] B. Brown and H. Card, “Stochastic neural computation
I: Computational elements,” Sept. 2001, vol. 50, pp.
891–905.

[14] A. A. Dinu, M. N. Cirstea, and M. McCormick,
“Stochastic implementation of motor controllers,” in
Proc. of the IEEE Int. Symp. on Industrial Electronics,
July 2002, pp. 639–644.

[15] V. Gaudet and A. Rapley, “Iterative decoding using
stochastic computation,” Electron. Lett., vol. 39, no. 3,
pp. 299–301, Feb. 2003.

[16] A. Rapley, C. Winstead, V. Gaudet, and C. Schlegel,
“Stochastic iterative decoding on factor graphs,” in
Proc. of the 3rd Int. Symp. on Turbo Codes and Related
Topics, Brest, France, Sept. 2003, pp. 507–510.

[17] C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel,
“Stochastic iterative decoders,” in Proc. of the IEEE
Int. Symp. on Information Theory, Sept. 2005, pp. 1116–
1120.

[18] Chris Winstead, “Error-control decoders and proba-
bilistic computation,” in Tohoku Univ. 3rd SOIM-COE
Conf., Sendai, Japan, Oct. 2005.

[19] W. J. Gross, V. Gaudet, and A. Milner, “Stochastic im-
plementation of LDPC decoders,” in the 39th Asilo-
mar Conf. on Signals, Systems, and Computers, Pacific
Grove, CA, Nov. 2005.

[20] S. Sharifi Tehrani, W. J. Gross, and S. Mannor,
“Stochastic decoding of LDPC codes,” IEEE Communi-
cations Letters, vol. 10, no. 10, pp. 716–718, Oct. 2006.

[21] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Sur-
vey of stochastic computation on factor graphs,” to ap-
pear in the Proc. of the 37th International Symposium
on Multiple-Valued Logic, May 2007.

[22] Xilinx Corporation, Virtex-4 User Guide,
www.xilinx.com, April 2005.

[23] Altera Corporation, Stratix Device Handbook,
www.altera.com, July 2005.

260

