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Abstract. The Koetter-Vardy algorithm is an algebraic soft-decision decoder for Reed-Solomon codes which is
based on the Guruswami-Sudan list decoder. There are three main steps: (1) multiplicity calculation, (2) interpo-
lation and (3) root finding. The Koetter-Vardy algorithm seems challenging to implement due to the high cost of
interpolation. Motivated by a VLSI implementation viewpoint we propose an improvement to the interpolation
algorithm that uses a transformation of the received word to reduce the number of iterations. We show how to
reduce the memory requirements and give an efficient VLSI implementation for the Hasse derivative.
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1. Introduction

Reed-Solomon codes are powerful error-correcting
codes that can be found in a wide variety of digital
communications systems, from digital media to wire-
less communications and deep-space probes. The ubiq-

∗Portions of this work were presented at the 2002 IEEE Workshop
on Signal Processing Systems, October 2002.

uitous nature of these codes continues to fuel research
into decoding algorithms some forty years after their
introduction (see e.g. [1]).

Reed-Solomon codes have been employed in a wide
spectrum of digital communications systems because
they provide powerful error correction with only a
small number of overhead symbols. Reed-Solomon
codewords consist of non-binary symbols and there-
fore the correction of a single symbol could result in
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the correction of more than one of the constituent bits.
For this reason, Reed-Solomon codes are well suited
to the correction of burst errors.

Classical decoders for Reed-Solomon codes of
length n and dimension k can correct up to t =
�dmin/2� errors where dmin = (n − k + 1) is the
minimum distance of the code. Recently, a new class
of list decoding algorithms has been introduced that
can sometimes correct an even greater number of er-
rors [2, 3]. The list decoding problem is to find the set
of codewords at a Hamming distance of t ′ from the re-
ceived word. If t ′ > dmin/2 there might not be a unique
codeword so the decoder returns a list of candidate
codewords. The Guruswami-Sudan (GS) list decoding
algorithm has t ′ as large as n − √

nk errors [3].
To improve the error-correction capability of a de-

coder even further, the decoder should take advantage
of the soft reliability information available from the
channel. Soft-decision decoders can provide an asymp-
totic gain of 2–3 dB on Gaussian channels [4] and 10 dB
or more on Rayleigh fading channels. Traditional hard-
decision Reed-Solomon decoding algorithms are effi-
cient because they are algebraic; that is, they exploit
the underlying algebraic structure of the code to gen-
erate a system of equations that is solved using finite
field arithmetic. However, an algebraic decoder based
on finite field arithmetic does not appear to be com-
patible with the real-valued, soft information available
from the channel and therefore it has been a research
challenge to develop an algebraic soft-decision Reed-
Solomon decoder. Koetter and Vardy have recently pro-
posed an algebraic soft-decision decoding algorithm by
extending the list decoder of Guruswami and Sudan to
include a method for converting soft information into
algebraic conditions [5, 6]. The Koetter-Vardy (KV) al-
gorithm can achieve up to about 4 dB of coding gain at
a frame-error-rate (FER) of 10−3 on a Gaussian noise
channel (with a practical range of 1–1.5 dB) and gains
of 2–7 dB on a Rayleigh fading channel [7, 8].

The Koetter-Vardy soft-decision decoding proce-
dure shows a lot of promise from the point of view of
error correcting performance. At a first glance, the algo-
rithm seems to be quite computationally complex and
not straightforward to implement in VLSI. This paper
aims to introduce techniques that reduce the complexity
of interpolation-based decoders to the point where an
efficient VLSI implementation is possible. Section 2
is a review of the GS and KV list-decoding algorithms.
In Section 3 we describe techniques for significantly
reducing the complexity and memory requirements of

interpolation-based decoders. A VLSI architecture is
then developed in Section 4 that reduces the complexity
of evaluating the Hasse derivative, one of the main tasks
in interpolation. We offer conclusions in Section 5.

2. Interpolation-Based List Decoding Algorithms

Say we want to transmit a message f . The bits of
the message can be grouped into log2(q)-bit sym-
bols chosen from the finite field with q elements,
GF (q). An (n, k) Reed-Solomon code over GF (q)
represents the k-symbol message, f = ( f0, f1, f2,

. . . , fk−1), by an n-symbol codeword, c = (c0, c1,

c2, . . . , ck−1, . . . , cn−1), where n > k and usually
n = q − 1. The k symbols of the message f can be
considered to be the coefficients of the up to degree
(k − 1) univariate message polynomial:

f (x) = f0 + f1x + f2x2 + · · · + fk−1xk−1. (1)

In this paper, we use the classical view of Reed-
Solomon codes taken from the original definition in
[9]. With this evaluation map encoding method, a code-
word is formed by evaluating the message polynomial
f (x) at n elements of GF(q). If the set of evalua-
tion elements is X = {x0, x1, . . . , xn−1}, the codeword
c is:

c = ( f (x0), f (x1), . . . , f (xn−1)), xi ∈ X. (2)

In this paper, we will always assume that n = q −1 and
the set of evaluation elements X is the set of nonzero
elements of GF(q):

X
�= {x0, x1, x2, . . . , xn−1}
�= {1, α, α2, . . . , αn−1}, (3)

where α is a primitive element in GF(q). The evalu-
ation map encoding method is useful because it pro-
vides insight leading to interpolation-based decoding
algorithms.

2.1. The Guruswami-Sudan Algorithm

An interpolation-based decoder takes the point of view
that a codeword is a message polynomial evaluated at
points in a finite field and uses polynomial interpolation
to try to reconstruct that polynomial. The Guruswami-
Sudan (GS) algorithm is an interpolation-based list
decoder for Reed-Solomon codes. To describe the
algorithm, we will first need to review some notation



VLSI Architecture for Interpolation-Based Soft-Decision Reed-Solomon Decoders 95

and facts about bivariate polynomials, which are the
basic data structures in the algorithm. Consider the
bivariate polynomial with coefficients chosen from a
finite field:

P(x, y) =
∞∑

a=0

∞∑
b=0

pa,bxa yb ∈ GF(q)[x, y]. (4)

Let wx and wy be non-negative real numbers. The
(wx , wy)-weighted degree of P(x, y), deg(wx ,wy )(P),
is defined as the maximum over all the numbers
awx +bwy such that pa,b �= 0. Most often, the choice of
finite field will be GF(2ω). The (µ,ν)’th formal deriva-
tive of a polynomial P(x, y) over GF(2ω), P (µ,ν)(x, y),
will vanish for µ ≥ 2 or ν ≥ 2. To be able to define
these higher-order derivatives, we can use a related con-
cept, the Hasse derivative [10]. The (µ, ν)’th Hasse
derivative of a bivariate polynomial P(x, y) is defined
for integers µ, ν ≥ 0 as:

P [µ,ν](x, y) =
∑

a≥µ∧b≥ν

(
a

µ

)(
b

ν

)
pa,bxa−µyb−ν . (5)

To perform interpolation-based decoding, we will need
to ensure that bivariate polynomials and their Hasse
derivatives pass through certain points. We say that a
bivariate polynomial P(x, y) passes through a point
(xi , y j ) with multiplicity m if P [µ,ν](xi , y j ) = 0 for all
integers µ, ν, such that µ + ν < m.

Consider the received word y = c + e, where e is an
error vector with components drawn from GF(q). Since
each component of c was generated by evaluating f (x)
at a unique value of x ∈ X , a unique xi can be asso-
ciated with each received yi ∈ GF(q) to form the list
of points, L = {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}. If
there is no noise (e = 0), then yi = f (xi ), 0 ≤ i < n,
and a bivariate polynomial, P(x, y) = y− f (x), passes
through all the points in L with a multiplicity of one.
This suggests that an interpolation-based approach can
be used to decode Reed-Solomon codes. In the pres-
ence of noise (e �= 0), the interpolation polynomial
will pass through some points that are not part of the
codeword. The GS algorithm ensures that under certain
conditions, the codeword polynomial “lives inside” the

Figure 1. The Koetter-Vardy algorithm.

interpolation polynomial [2, 3]. The GS algorithm is an
interpolation-based list decoder with two main steps:

1. Interpolation Step: Given the set of points L

and a positive integer m, compute P(x, y) ∈
GF(q)[x, y]\{0} of minimal (1, k−1)-weighted de-
gree that passes through all the points in L with
multiplicity at least m.

2. Factorization Step: Given the interpolation polyno-
mial P(x, y), identify all the factors of P(x, y) of
the form y − f (x) with deg f (x) < k. The out-
put of the algorithm is a list of the codewords that
correspond to these factors.

A complete factorization of P(x, y) is not necessary
since we are just looking for linear y-roots of degree
< k. An appropriate root-finding algorithm is given in
[11]. The multiplicity, m, functions as a user-selectable
complexity parameter. The error-correcting ability of
the GS algorithm increases as the value of m increases.
Unfortunately, so does the decoding complexity.

2.2. The Koetter-Vardy Algorithm

Guruswami and Sudan hint at a possible soft-decision
extension to their algorithm in [3] by allowing each
point on the interpolated curve to have its own multi-
plicity. Koetter and Vardy proposed a method to per-
form soft-decision decoding by assigning unequal mul-
tiplicities to points according to their relative relia-
bilities. We note that all possible (q × n) transmit-
ted/received symbol pairs are considered and not just
the ones corresponding to the hard decisions. Once
multiplicities have been assigned, the rest of the decod-
ing proceeds according to the Guruswami-Sudan algo-
rithm allowing for unequal multiplicities and hence a
variable number of linear constraints for each point. A
block diagram of the soft-decision algorithm is given
in Fig. 1.

Consider a codeword whose symbols are drawn from
a finite field GF(q) = {α0, α1, . . . , αq−1} and transmit-
ted across a memoryless channel. The optimum value
of the soft information or reliability for a received value
β j ∈ GF(q) given that the symbol αi ∈ GF(q) was sent
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is the a posteriori probability (APP):

πi, j = Pr(αi sent | β j received), (6)

where 0 ≤ i < q and 0 ≤ j < n. The soft information
is therefore a real number that can take on any value
between zero and one. In practice, it can be quantized
to any finite number of levels. Soft information can be
calculated directly from the received channel informa-
tion if we have knowledge of the noise model. If the
noise probability density function (PDF) is η(β j | αi )
then by Bayes’ Rule,

πi, j = Pr(αi | β j )

= η(β j | αi )Pr(αi )∑
αk∈GF(q) η(β j | αk)Pr(αk)

= η(β j | αi )∑
αk∈GF(q) η(β j | αk)

. (7)

A (q × n) reliability matrix � whose columns sum to
unity can be constructed from the πi, j . Each entry πi, j

therefore represents the reliability of a point (x j , yi ).
A hard decision vector r = (r0, r1, . . . , rn−1) can be
extracted from � where

r j = yargmax(πi, j ), 0 ≤ j < n. (8)

Ultimately, the information in the reliability matrix has
to be translated to a set of weighted points in the form
of nonnegative integers in a (q × n) multiplicity ma-
trix M . Algorithm 1, proposed in [6], is an algorithm
for generating a matrix M from � subject to the con-
straint that the sum of the entries of M is an integer s:∑q−1

i=0

∑n−1
j=0 mi, j = s. Algorithm 1 requires s = O(n)

passes through the (q ×n) reliability matrix resulting in
an O(n3) algorithm. A lower complexity O(n2) algo-
rithm for implementing the KV front-end is proposed
in [7, 8].

Algorithm 1. Algorithm for calculating M from �

subject to complexity constraint s (from [6]).

Choose a desired value for s = ∑q−1
i=0

∑n−1
j=0 mi, j

�∗ ← �; M ← 0
While s > 0 do

Find the position (i, j) of the largest entry π∗
i, j in �∗

π∗
i, j ← πi, j

mi, j +2

mi, j ← mi, j + 1
s ← s − 1

end while

2.3. Bivariate Interpolation

The interpolation step consists of solving the linear
system:

P [µ,ν](x j , yi ) = 0, µ + ν < mi, j , (9)

for all triples (x j , yi , mi, j ), 0 ≤ i < q, 0 ≤ j < n.
Gaussian elimination could be used to solve this sys-
tem with complexity O(n3) however if we exploit the
special nature of this problem the complexity can be re-
duced. Fast algorithms for interpolation are described
in [11–16]. We use the algorithm from [16] for the GS
algorithm which is easily modified to handle unequal
multiplicities (Algorithm 2). The cost of interpolation,
C , is the number of linear equations that need to be sat-
isfied for the interpolation. If an entry in M is increased
from mi, j to mi, j + 1, this introduces mi, j + 1 addi-
tional linear constraints on the interpolation problem.
The total cost of decoding with multiplicity matrix M
is therefore:

C = 1

2

q−1∑
i=0

n−1∑
j=0

mi j (mi j + 1). (10)

Algorithm 2 runs for C iterations. At each iteration,
a maximum of (dy + 1) polynomials are updated
where,

dy =
1 +

√
1 + 8C

k−1

2

 − 1. (11)

The maximum (1, k − 1)-weighted degree of the poly-
nomials is

dx =
⌊

C

dy + 1
+ dy(k − 1)

2

⌋
. (12)

The bivariate polynomials will have maximum x-
degree of dx and a maximum y-degree of dy . At the
end of each iteration, each of the (dy + 1) polynomials
in the set G satisfy all of the linear constraints consid-
ered up to that point. If we want to read out an answer,
we choose the polynomial with the smallest (1, k − 1)-
weighted degree. To keep the cost down, we would like
to keep the mij and hence s small, however, in general,
the error-rate performance improves with increasing s.
This gives the algorithm a tunable parameter s to trade-
off performance with decoding complexity.
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Algorithm 2. Interpolation algorithm.

G ← {
g0 = 1, g1 = y, g2 = y2, . . . , gdy = ydy

}
.

for each point (x j , yi ) with multiplicity mi, j > 0 do
for α ← 0 to mi, j − 1 do

for β ← 0 to mi, j − 1 − α do
f ← min

deg(1,k−1)
{g ∈ G such that g[α,β](x j , yi )

�= 0}
for g ∈ G such that g �= f do

g ← g · f [α,β](x j , yi ) − f · g[α,β](x j , yi )
end for
f ← (x − x j ) f

end for
end for

end for

2.4. An Example of Soft-Decision Decoding

We illustrate how the KV algorithm works with an ex-
ample over a small field.

Example 1. Consider a (7,5) Reed-Solomon code
over GF(8) where α is a root of the primitive poly-
nomial x3 + x + 1. A classical hard-decision decoder
for this code can correct a single symbol error. Say we
want to transmit the message:

f = (α, α4, α4, α3, 1).

Then the message polynomial is f (x) = α + α4x +
α4x2 + α3x3 + x4 and the corresponding codeword
using an evaluation map encoding is:

c = ( f (1), f (α), f (α2), f (α3), f (α4), f (α5), f (α6))

= (0, α3, α3, 0, 1, α2, α5).

The codeword is transmitted bit-by-bit using BPSK
modulation over an AWGN channel. The soft-input to
the KV algorithm is a (q ×n) reliability matrix formed
using the information received from the channel:

� =




0.959796 0.214170 0.005453 0.461070 0.001125 0.000505 0.691729

0.001749 0.005760 0.000000 0.525038 0.897551 0.025948 0.000209

0.028559 0.005205 0.000148 0.003293 0.000126 0.018571 0.020798

0.000052 0.000140 0.000000 0.003750 0.100855 0.954880 0.000006

0.009543 0.736533 0.968097 0.003180 0.000000 0.000000 0.278789

0.000017 0.019810 0.000006 0.003621 0.000307 0.000003 0.000084

0.000284 0.017900 0.026295 0.000023 0.000000 0.000002 0.008382

0.000001 0.000481 0.000000 0.000026 0.000035 0.000092 0.000003




.

Let’s examine the hard-decision:

r = (0, α3, α3, 1, 1, α2, 0),

even though it is not explicitly needed for soft-decision
decoding. Since r has errors in two positions (indi-
cated in bold), it is uncorrectable by a classical hard-
decision decoder. However, the soft-decision KV al-
gorithm might be able to tackle the problem. Running
Algorithm 1 on � with s = 12 gives the multiplicity
matrix:

M =




2 0 0 1 0 0 1

0 0 0 1 2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 2 0

0 1 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




.

The interpolation algorithm (Algorithm 2) is run
with dy = 2 and l = 9 on the following input:

x y Multiplicity

1 0 2

α α3 1

α2 α3 2

α3 0 1

α3 1 1

α4 1 2

α5 α2 2

α6 0 1
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This means that there are (dy + 1) = 3 bivariate
polynomials being updated with maximum x-degree
of dx = 9 and maximum y-degree of dy = 2. At the
end of C = 16 iterations, the interpolation polyno-
mial of minimum weighted degree, obtained by using
Algorithm 2 is:

P(x, y) = α2x5 y + α2x9 + α4 y2 + α5x4 y + α4x8

+ α4x3 y + x7 + α3x6 + α3xy + α4x5

+ α4 y + α3x4 + α5x3 + α2x2 + α2x + α.

The Roth-Ruckenstein root-finding algorithm from
[11] finds the linear y-roots of the form y −
f (x), deg( f (x)) < k in the factorization of P(x, y).
The output list contains two candidates for f (x):

f̂ 1(x) = α + α4x + α4x2 + α3x3 + x4,

f̂ 2(x) = α3 + α3x + α4x2 + αx3 + α3x4.

To choose from the list, we encode the candidate mes-
sages to find their corresponding codewords:

ĉ1 = (0, α3, α3, 0, 1, α2, α5),

ĉ2 = (α5, α5, 1, α2, α5, 0, 1).

The probability of each candidate codeword can be
obtained by multiplying the appropriate probabilities
from�. It is found that ĉ1 is more likely and hence f̂ 1 =
(α, α4, α4, α3, 1) is the correctly decoded message.

3. Fast Algorithms for Interpolation-Based
Decoding

The Koetter-Vardy soft-decision decoding procedure
shows a lot of promise from the point of view of error
correcting performance. At first glance, the algorithm
seems to be quite computationally complex and not
straightforward to implement. This section introduces
algorithmic techniques that reduce the complexity of
interpolation-based decoders to the point where effi-
cient software or VLSI implementations are possible.
We will begin by looking at an example of a software
implementation of a KV decoder.

Example 2. We implemented a software KV decoder.
The soft-decision front end uses the reduced complex-
ity algorithm from [7, 8]. Interpolation is performed

using Nielsen’s algorithm (Algorithm 2) and the factor-
ing is carried out by the Roth-Ruckenstein root-finding
algorithm from [11].

The software was implemented in C and the tests
were run on a 2.4 GHz P4. The test case was a
RS(255,239) code where the maximum multiplicity
was set to m = 4. This setting of m is a compromise
between decoding complexity and soft-decision gain.
We ran a decoding trial on a test case which had nine er-
rors in the corresponding hard-decision received word
(this is a case that a classical decoder would not be
guaranteed to correct). The total decoding time for one
codeword was 543.4 ms. The interpolation took 452
ms (83% of the total) and the root finding took 91.4
ms (17% of the total). The other parts of the algorithm
(soft-decision front end, output encoding and selection)
contributed a negligible amount to the total.

An important measure of the complexity of decod-
ing is the number of arithmetic operations required. We
counted the number of Galois field additions and mul-
tiplications and found that there were 9.2 × 107 Galois
field additions and 1.55 × 108 Galois field multiplica-
tions.

The decoder throughput in terms of decoded mes-
sage bits per second is

k log(q)

543.4 × 10−3
= 3.5 kbps.

A naive software implementation clearly is not fast
enough for real-time applications. In this section we
will explore techniques for reducing the complexity
of the interpolation and root-finding algorithms. In
Section 3.1 we describe techniques for significantly
reducing the number of iterations and the memory re-
quirements of the interpolation algorithm. Section 3.2
shows how the complexity reductions can be carried
over into the factoring algorithm. Section 3.3 describes
a software implementation of the Koetter-Vardy algo-
rithm that applies the algorithmic improvements ex-
plored in this section.

3.1. Reduced-Complexity Interpolation

The interpolation algorithm is the most time-
consuming component of KV decoding and it is es-
sential to reduce its complexity if KV decoding is to
be used in real-time applications. It is shown in [8]
that if a multiplicity matrix has a maximum entry m,
then the maximum interpolation cost would be the
cost of hard-decision Guruswami-Sudan decoding with
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multiplicity m:

C =
(

n

2

)
m(m + 1).

For the remainder of this discussion, we will assume
the worst-case where the cost of interpolation is the
maximum possible cost, C . The interpolation algo-
rithm needs to store (dy + 1) bivariate polynomials.
Since a homogeneous linear system must have more
unknowns than equations, the length (number of terms)
of the polynomials must be at least C . The memory
requirements of interpolation are ≈ (dy + 1)C field
elements. Therefore the complexity of interpolation
in terms of the number of Galois field operations is
Nop,interp = O(dyC2).

Example 3. Consider a decoder for a RS(255,239)
code with maximum multiplicity m = {1, 4, 16}. The
interpolation cost, complexity and memory require-
ments are shown in Table 1.

From the example we see that the decoding complex-
ity and memory requirements grow very quickly as the
multiplicity increases. If the maximum multiplicity is
fixed to deliver a desired error-rate, then to lower the
cost and hence the complexity, the number of interpola-
tion points (nonzero entries in the multiplicity matrix)
that we apply the bivariate interpolation algorithm to
must be reduced. We apply the trick of “reencoding”
the received word [17–19] to reduce the interpolation
complexity in the spirit of the Berlekamp-Welch (BW)
algorithm [20–24].

3.1.1. Systematic Encoding. A systematic encoding
is one where all the k input symbols to the encoder ex-
plicitly appear in the encoded codeword. If they appear
in k consecutive positions then the encoding is called
strictly systematic. Strictly systematic encoders, where
the k message symbols appear as the last k symbols
in a codeword, are easily implemented with a linear
feedback shift register [25] and are commonly used.

Table 1. The maximum cost, complexity (Nop,interp) and
memory requirements for the interpolation algorithm applied
to a RS(255,239) code with maximum multiplicity m.

m C Nop,interp Memory

1 255 1 × 105 512 bytes

4 2550 3 × 107 12 Kbytes

16 34680 2 × 1010 576 Kbytes

Interpolation-based decoding algorithms rely on an
evaluation map encoding, however it is more efficient
to implement an encoder as a linear feedback shift reg-
ister. We would also like to apply the decoder to existing
Reed-Solomon transmission systems that use a system-
atic encoder. Therefore we would like to use a system-
atic encoding in place of the evaluation map encoding.

The standard Reed-Solomon codes in wide use can
be considered as non-binary, cyclic, BCH codes. Cyclic
codes are codes where for every codeword c, there ex-
ists another codeword that is a cyclic shift of c. The
cyclic view of RS codes is useful because it leads
to efficient algebraic decoding algorithms such as the
Berlekamp-Massey algorithm or Euclid’s algorithm.
In general, the evaluation map encoding (which is the
original view of RS codes) does not result in a cyclic
code. Therefore, the cyclic RS codes are only a (small)
subset of all possible RS codes. However, under the
appropriate choice of evaluation values, a cyclic code
is obtained by the evaluation map.

Theorem 1. The Reed-Solomon code generated by an
evaluation map with the fixed ordering {1, α, α2, . . . ,

αq−2} over GF(q) is cyclic.

Proof: Consider a message polynomial f (x) =
f0 + f1x + f2x2 + · · · + fk−1xk−1. The codeword
generated by the evaluation map with the ordering
{1, α, α2, . . . , αq−2} over GF(q) is

c = ( f (1), f (α), f (α2), . . . , f (αq−2)). (13)

We have f (x) = ∑k−1
i=0 fi x i and therefore

c =
k−1∑
i=0

fi ui , (14)

where ui = (1, αi , α2i , α3i , . . . , α(q−2)i ). We have to
show that a cyclic shift of c is also a codeword. The
cyclic shift of c is

c′ = ( f (αq−2), f (1), f (α),

f (α2), . . . , f (αq−4), f (αq−3))

=
k−1∑
i=0

fivi , (15)

where vi = (α(q−2)i , 1, αi , α2i , . . . , α(q−3)i ). The vec-
tor vi can be written as

vi = (
α(q−2)i , 1, αi , α2i , . . . , α(q−3)i

)
= α(q−2)i

(
1, α−(q−2)i , α−(q−3)i , . . . , α−2i , α−i

)
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= α(q−2)i
(
1,

(
α−(q−2)

)i
,
(
α−(q−3)

)i
, . . . , (α−2)i ,

(α−1)i
)
. (16)

But from the properties of GF (q), α− j = αq−1− j , and
therefore

vi = α(q−2)i
(
1, αi , α2i , . . . , α(q−3)i , α(q−2)i

)
= α(q−2)i ui . (17)

Therefore,

c′ =
k−1∑
i=0

(
fiα

(q−2)i
)

ui

=
k−1∑
i=0

gi ui , (18)

where gi = α(q−2)i fi . Define g(x) = g0 + g1x +
g2x2 + · · · + gk−1xk−1. Then

c′ = (g(1), g(α), g(α2), . . . , g(αq−2)), (19)

and is therefore a codeword in the same code as c.

Therefore the standard shift register encoder, which
can generate strictly systematic encodings, can be used
in place of the evaluation map encoding with evaluation
values {1, α, α2, . . . , αq−2}. The decoder will decode
to a different codeword in the same code which is sub-
tracted from the received hard-decision word to obtain
an estimate of the error vector. The estimated error vec-
tor can be used to recover an estimate of the original
codeword.

We are also interested in generating systematic en-
codings where the information appears in arbitrary
positions in an encoded codeword. If these posi-
tions can change for every encoder use, then an ef-
ficient way of implementing this systematic encoder
is with an erasures-only Reed-Solomon decoder [25].
Since Reed-Solomon codes are maximum-distance-
separable (MDS), a codeword may be perfectly recov-
ered from any k of its symbols. An erasures-only de-
coder is much simpler than an error-and-erasures de-
coder since the erasure locations are known a-priori.
Therefore, the expensive iterative Berlekamp-Massey
algorithm for solving the key equation and the Chien
search root-finding can be skipped [26]. We will see
in Section 3.2, that an errors-only Berlekamp-Massey

algorithm (BMA) is needed as part of the implementa-
tion and therefore a single implementation of an errors-
and-erasures decoder can be used as both an errors-only
decoder and an erasures-only decoder.

3.1.2. Reencoding. The idea of reencoding is to trans-
form the interpolation problem into one that is eas-
ier to solve. The codeword c is transmitted through
a noisy channel. The hard decision vector, r =
(r0, r1, . . . , rn−1), which can be extracted from the re-
liability matrix �, is r = c + e, where e is an error
vector. The first step is to partition the received sym-
bols in r into two sets, U (“unreliable”) and R (“reli-
able”). The set R consists of the k most reliable sym-
bols, where the reliability information can be derived
from the multiplicity matrix M . The set of positions
of the symbols in R (labeled from 1 to n correspond-
ing to {α1, α2, . . . , αn}) is the set Rk . Now systemat-
ically encode the symbols in R so that they appear in
the reencoded codeword, ψ , in the same positions that
they appeared in r . As discussed in Section 3.1.1, this
can be done efficiently for k arbitrary positions with an
erasures-only decoder. Taking the difference between
r and ψ we get:

r ′ = r − ψ

= (c + e) − ψ

= (c − ψ) + e, (20)

which is a codeword (by the linearity of the code) that
is corrupted by the same error pattern as r . However,
r ′ has a very interesting property; since the reencoding
of r is systematic, k symbols of r ′ are zero. These zero
symbols correspond to k interpolation points with a
zero y-component:

V = {(αi , 0)}, i ∈ Rk . (21)

We assume for the moment that the k “reliable” points
in R all have the same multiplicity, m. In Section 3.1.4
we will consider the case where this is not true. An
interpolation polynomial for the k points in V is v(x)m

where v(x) is found through a simple univariate inter-
polation:

v(x) =
∏
i∈Rk

(x − αi ). (22)

The advantage for high-rate codes is that we have found
an interpolation polynomial for most of the points
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without having to use the expensive bivariate interpola-
tion algorithm. The calculation of v(x) requires a single
polynomial to be updated k times instead of (dy + 1)
polynomials being updated (k/2)(m2 + m) times. Now
that we have v(x), the bivariate interpolation algorithm
(Algorithm 2) is run at decode time starting from the
initial polynomial set:

G = {
v(x)m, v(x)m−1 y, . . . , v(x)m−dy ydy

}
, (23)

and run for at most:

C ′ =
(

n − k

2

)
(m) (m + 1)

=
(

1 − k

n

)
C (24)

iterations, where C is the maximum cost of the bivariate
interpolation without reencoding. The reduced cost, C ′,
gets smaller as the code rate k/n increases.

We note that if reencoding was applied to a received
word where there was no reliability information (hard-
decision decoding), then it is convenient to choose the
last k consecutive positions in r as Rk . Then the system-
atic encoder can be implemented with a linear feedback
shift register. Since Rk is known a-priori, v(x) can be
calculated offline once and stored in memory.

3.1.3. Reducing the Memory Requirements. The
memory requirements for interpolation can be very
large since the maximum length of the bivariate poly-
nomials is at least C terms. The polynomials can be
shortened by factoring out the polynomial v(x). It is
shown in [18, 19] that if reencoding is used then the
interpolation polynomial P(x, y) can be written as:

P(x, y) =
dy∑

j=0

w j (x)
∏
i∈Rk

(X − αi )mi − j Tj (x)y j , (25)

where,

Tj (x) =
∏
i∈Rk

(x − αi )max( j−mi ,0). (26)

This is the most general way to decompose P(x, y) and
it allows any k symbols to be chosen for R. However, it
seems that the most logical choice for R is to choose the
k symbols with the largest multiplicities to achieve the
maximum complexity reduction. To obtain the shortest
possible polynomials (keeping VLSI implementations

in mind), we make the assumption (which will be jus-
tified in Section 3.1.4) that R consists of k points that
have the maximum possible multiplicity m = dy . Then
Tj (x) = 1, j = 0, . . . , dy , and (25) reduces to [17]:

P(x, y) =
dy∑

j=0

w j (x)v(x)m− j y j . (27)

which means that common factors of v(x) are being
carried around needlessly, wasting memory. It would
be nice to factor out the powers of v(x) and only have
to calculate the w j (x) in real-time. The interpolation
polynomial can be written as

P(x, y) =
dy∑

j=0

w j (x)v(x)m− j y j

= v(x)m
dy∑

j=0

w j (x)

(
y

v(x)

) j

. (28)

The decoding algorithm takes the transformed word r ′

as input and tries to estimate the transformed codeword
c′ = c − ψ . Therefore, if the decoding is successful, a
message polynomial f ′(x) corresponding to c′ will be
a linear y-root of P(x, y), i.e.:

P(x, y) = (y − f ′(x))A(x, y), (29)

or,

P(x, f ′(x)) = 0. (30)

From (28),

v(x)m
dy∑

j=0

w j (x)

(
f ′(x)

v(x)

) j

= 0

dy∑
j=0

w j (x)

(
f ′(x)

v(x)

) j

= 0. (31)

Define the reduced interpolation polynomial:

P̃(x, ỹ) =
dy∑

j=0

w j (x)ỹ j , (32)

where ỹ = y/v(x). Then if f ′(x) is a linear y-root of
P(x, y) it follows that f ′(x)/v(x) is a linear ỹ-root of
the reduced interpolation polynomial P̃(x, ỹ). A sim-
plified interpolation can be carried out to find P̃(x, ỹ)
which is much shorter than P(x, y) since the degree
k polynomial v(x) has been factored out in advance.
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Figure 2. The decoding problem can be transformed into an easier one by reencoding.

To implement the simplified interpolation, consider
the original set of polynomials, G1 = {1, y, . . . , ydy }.
After applying the reencoding technique, the starting
polynomial set for decoding is:

G ′ = {v(x)m, v(x)m−1 y, . . . , v(x)m−dy ydy }

= v(x)m

{
1,

y

v(x)
,

(
y

v(x)

)2

, . . . ,

(
y

v(x)

)dy
}
.

(33)

After a change of variables ỹ = y/v(x), we have G̃ =
{1, ỹ, . . . , ỹdy }. Note that the weighted degree of the
new variable ỹ is:

deg(1,k−1)(ỹ) = deg(1,k−1)(y) − deg(1,k−1)(v(x))

= (k − 1) − k

= −1. (34)

The y-coordinates of the interpolation points need to
be rescaled:

ỹi = y′
i

v(xi )
, (35)

where the y′
i are the y-coordinates of points after

the translation in the reencoding step. Starting from
G̃ = {1, ỹ, . . . , ỹdy }, apply Algorithm 2 to the O(n−k)
rescaled points where the min function is with respect
to the (1, −1)-weighted degree of the polynomials in
x and ỹ. A formal proof that simplified interpola-
tion produces a correct result is given in [18]. P(x, y)
can be reconstructed according to (27) and the Roth-
Ruckenstein algorithm can be applied to find the linear
y-roots. However, this means that the memory savings
from using the reduced polynomials are lost in the root-
finding step and there is extra work in multiplying out

the polynomials. If this approach is taken then the can-
didate message polynomial f̂ ′(x) is reencoded to find
a candidate codeword, ĉ′. Then subtract the candidate
codeword from the transformed received word r ′ to get
an estimate of the error vector ê which can be added
to the original received word r to get an estimate ĉ of
c. If a systematic encoder was used in the transmitter,
the message symbols can be read off directly from ĉ.
A block diagram of this scheme is given in Fig. 2.

A better strategy is to directly find f ′(x)/v(x) from
the reduced polynomial P̃(x, ỹ) as described in Section
3.2. Simplified interpolation also decreases the interpo-
lation time since fewer terms need to be updated at each
iteration.

3.1.4. Application to Soft-Decision Decoding. We
have to be careful in the application of the simplified
interpolation technique to soft-decision decoding. We
would like to choose the k reencoding positions as the
ones with the largest multiplicities to realize the great-
est possible complexity reduction. In the best case there
would be k reencoding positions, all with the maxi-
mum multiplicity m. Then we could apply (27). Even
though there is no guarantee, it is quite a reasonable
assumption that most of the time we will find k or
more positions with maximum multiplicity, especially
for higher SNRs (low error rates). For lower SNRs,
we might come short of k. In this case we bump up
the multiplicities of the next most reliable positions
to the maximum multiplicities. Simulations show that
the loss incurred from applying this heuristic is quite
small. As an example, for a RS(63,55) code with m = 4
as shown in Fig. 3, the loss is about 0.1 dB for high
frame-error-rates (FER > 10−2) but is negligible for
frame-error-rates lower than 10−2 which is the region
of interest.
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Figure 3. The loss due to forcing there to be k positions in the received hard decision with the maximum multiplicity, m = 4, for RS(63,55).

The following lemma gives the condition under
which the simplified interpolation technique can be
applied.

Lemma 2. The maximum y-degree, dy, of the bivari-
ate polynomials in the simplified interpolation applied
to a multiplicity matrix where there are at least k points
with fixed multiplicity m > 0, is equal to m.

Proof: Assume that dy < m. Then from (11),

1 +
√

1 + 8Cl
k−1

2

 < m + 1,

where Cl = (l/2)(m)(m + 1) ≤ CM is the cost of
interpolation with l points of fixed multiplicity m > 0.
For a real number a and integer b, if �a� < b then
a < b. Therefore

1 +
√

1 + 8Cl
k−1

2
< m + 1,

which implies that l < k − 1. But, l ≥ k. This is a
contradiction and the assumption that dy < m must be

incorrect and therefore dy ≥ m. But, for the exponent
in (27) to be nonnegative, we have dy ≤ m. Therefore
dy = m.

The restriction that dy = m imposes limits on the
rate and maximum multiplicity, however, the range of
admitted values is quite large. For example, for the
popular RS(255,239) code, m ≤ 27, for RS(255,223),
m ≤ 13, and for RS(255,191), m ≤ 5. The admissible
values of k and m for n = 255 are plotted in Fig. 4.

With this assumption, reencoding is now straight-
forward for soft decoding. It is shown in [8] that the
k columns of M that correspond to the reliable po-
sitions with maximum multiplicity only contain one
entry with multiplicity m and all other entries in that
column are zero. Intuitively this is because if a position
is very reliable then there should only be one nonzero
entry in the corresponding column of the multiplicity
matrix. As the reliability decreases, other competing
symbols with lower multiplicities arise. The (n − k)
unreliable positions may have several nonzero entries
in their corresponding column in M . Therefore, the
nonzero values from r ′ should be subtracted from the
y-coordinates of all the corresponding points. As well,
the division needed for the change of variables should
be done for all the nonzero points in the column.
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Figure 4. The admissible values of k and maximum multiplicity m for a code of length 255. A star is plotted if the point (k, m) results in
dy = m.

3.1.5. Example of Soft-Decision Decoding with Sim-
plified Interpolation.

Example 4. We will use the same code as in Example
1, a (7, 5) Reed-Solomon code over GF(8) and transmit
the same message:

f = (α, α4, α4, α3, 1).

This time however we use a systematic encoder to ob-
tain the codeword:

c = (α6, 1, α, α4, α4, α3, 1).

Note that the message appears as the last five symbols
in the codeword and the first two symbols are the parity
symbols. After transmission through an AWGN chan-
nel with BPSK modulation, let the input to the decoder
be the reliability matrix:

� =




0.000000 0.005232 0.002588 0.009617 0.006731 0.003812 0.187596

0.000305 0.966177 0.000769 0.099860 0.005083 0.000007 0.758324

0.000004 0.000001 0.729645 0.011815 0.001246 0.000031 0.001307

0.003102 0.000272 0.216797 0.122692 0.000941 0.000000 0.005284

0.000102 0.000152 0.000137 0.029798 0.474019 0.986393 0.009353

0.089021 0.028157 0.000041 0.309429 0.357984 0.001834 0.037808

0.001039 0.000000 0.038565 0.036611 0.087737 0.007908 0.000065

0.906428 0.000008 0.011459 0.380177 0.066260 0.000015 0.000263




.

Applying Algorithm 1 with s = 12 gives the multi-
plicity matrix:

M =




0 0 0 0 0 0 0

0 2 0 0 0 0 2

0 0 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2 0 0 1 0 0 0




,

which can be condensed by removing the nonzero
entries into a list of interpolation points and their
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multiplicities:

x y Multiplicity

1 α6 2

α 1 2

α2 α 2

α3 α6 1

α4 α3 1

α5 α3 2

α6 1 2

Examining the list of points we see that the hard
decision contains two errors. Now we will apply the
reencoding technique to reduce the list of interpo-
lation points. Checking the interpolation list we do
find k = 5 distinct x-values that have the maximum
multiplicity m = 2. These “reliable” points will be
eliminated from the interpolation list after reencod-
ing and we will only have to do a bivariate inter-
polation through the remaining (n − k) = 2 “un-
reliable” points. We choose the reencoding points:
{(1, α6), (α, 1), (α2, α), (α5, α3), (α6, 1)}. The system-
atically reencoded codeword is then:

ψ = (α6, 1, α, α4, α4, α3, 1).

Subtracting, we find the reencoded interpolation list:

x y Multiplicity

α3 α3 1

α4 α6 1

When implementing a decoder, clearly we only have
to explicitly do the addition for the (n − k) unreliable
positions since the k systematic “reliable” positions
of r ′ will always be 0. To calculate v(x), perform the
univariate interpolation:

v(x) = (x − 1)(x − α)(x − α2)(x − α5)(x − α6)

= x5 + α6x4 + α4x3 + α4x2 + α6x + 1.

The change of variables is performed by scaling the
points to get:

x y Multiplicity

α3 α3

v(α3)
= α5 1

α4 α6

v(α4)
= α2 1

The interpolation is performed as before with dy = 2
but only C ′ = 2 iterations are required. The interpola-
tion polynomial in ỹ is:

P̃(x, ỹ) = α3x ỹ2 + α6 ỹ + α5 ỹ2.

After the factorization stage, the output list contains the
two candidates:

ĉ1 = (α6, 1, α, α4, α4, α3, 1),

ĉ2 = (α5, 1, α4, α6, α3, α3, 1).

We choose ĉ1 after calculating its probability using the
reliability matrix. The message is read off directly from
ĉ1 and we have:

f̂ = (α, α4, α4, α3, 1).

3.1.6. Memory Savings and Speedup. To calculate
the maximum number of terms in the reduced polyno-
mials in the simplified interpolation consider the inter-
polation polynomial as expressed in (27). The degree
of v(x) is k and therefore a monomial in P(x, y) has the
form xi+(m− j)k y j . Since the (1, k −1)-weighted degree
of P(x, y) is at most dx , we have i ≤ dx − mk + j .
Therefore, there are dx − mk + j + 1 terms with a
y-degree of j . Summing up over all values of j , the
maximum number of terms of the reduced polynomial
is:

Ñmon =
dy∑

j=0

(dx − mk + 1 + j)

= (dy + 1)

(
dx − mk + 1 + dy

2

)
. (36)

From [3], the maximum length of the polynomials in
the original interpolation algorithm is:

Nmon = (
dy + 1

) (
dx − dy(k − 1)

2
+ 1

)
. (37)

The memory compression ratio is therefore 	 =
Nmon/Ñmon. For simplified interpolation, dy = m, and
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from (12) the maximum value of the (1, k−1)-weighted
degree is,

dx =
⌊

C

dy + 1
+ dy(k − 1)

2

⌋

=
⌊

m(n + k − 1)

2

⌋
. (38)

Then the maximum length of the unsimplified polyno-
mials is:

Nmon ≈ C + m + 1, (39)

where the approximation is exact if m is even or (n −k)
is odd. Similarly, the maximum length of the reduced
polynomial is

Ñmon ≈ C ′ + m + 1, (40)

where the approximation is exact if m is even or (n −k)
is odd. Therefore the compression ratio is

	 ≈ C + m + 1

C ′ + m + 1

= O

(
n

n − k

)
. (41)

The complexity of the algorithm in terms of the number
of arithmetic operations is then reduced by the com-
bined effects of fewer iterations and shorter polynomi-
als. The speedup is:


 = O

((
n

n − k

)2)
. (42)

There will be some overhead of calculating v(x) and
checking for and ensuring the k reliable points but this
overhead will be worth it to achieve the overall savings.

3.2. Reduced-Complexity Factorization

The savings realized by simplified interpolation can be
carried over into the factorization procedure by apply-
ing the Roth-Ruckenstein algorithm directly to the re-
duced polynomial P̃(x, ỹ) as proposed in [18, 19, 27].
If the message polynomial corresponding to c′ =
(c −ψ) is a linear y-root of P(x, y) then f ′(x)/v(x) is
a linear ỹ-root of P̃(x, ỹ), or

P̃(x, ỹ) =
(

ỹ − f ′(x)

v(x)

)
B(x, ỹ). (43)

Applying the Roth-Ruckenstein algorithm directly
to the reduced polynomial we obtain a sequence
{s0, s1, . . . , sl−1} which are the coefficients of

s(x) = f ′(x)

v(x)
, (44)

which is a polynomial approximation to the rational
function f ′(x)/v(x). As we will see below, the number
of coefficients, l, does not have to be very large and
is much smaller than the k coefficients required in the
unsimplified Roth-Ruckenstein procedure.

The transformed received hard-decision word is
r ′ = c′ + e, which has zeroes in the k reencoded po-
sitions, Rk . Therefore, in the k reencoded positions,
c′

i = −ei , i ∈ Rk , or,

f ′(αi ) = −ei , i ∈ Rk . (45)

If there is no error in position i ∈ Rk then ei = 0 and
f ′(αi ) = 0. Therefore (x − αi ) is a root of f ′(x), or
f ′(x) = (x − αi )D(x). Considering all the error-free
positions in Rk ,

f ′(x) =
∏

i∈Rk s.t. ei =0

(x − αi )�(x). (46)

Therefore,

s(x) = f ′(x)

v(x)

=
∏

i∈Rk s.t ei =0(x − αi )�(x)∏
i∈Rk

(x − αi )

= �(x)∏
i∈Rk s.t. ei �=0(x − αi )

. (47)

The denominator is an error-locator polynomial for
the k positions in Rk . Given the “syndrome” polyno-
mial s(x), we can use the Berlekamp-Massey algorithm
(BMA) to reconstruct the rational function �(x)/	(x)
where 	(x) is an error-locating polynomial for the k
positions in Rk and �(x) is an error-evaluator polyno-
mial for the k positions in Rk . The roots of 	(x) give the
error locations in Rk . This technique only finds errors
in the set of k reliable positions and not in the (n − k)
unreliable positions. To correct any errors in the (n−k)
unreliable positions, we can do a systematic reencod-
ing in k arbitrary positions using the erasures-only de-
coder that is already implemented for the reencoding
step. In fact, in a VLSI implementation, a single errors
and erasures BMA can be implemented on the chip



VLSI Architecture for Interpolation-Based Soft-Decision Reed-Solomon Decoders 107

and used for three purposes: systematic reencoding,
reconstructing the rational function and as a first pass
hard-decision decoder in the redecoding architectures
proposed in [8, 28].

We are only directly correcting errors in the k re-
liable positions. Fortunately, most errors are likely in
the (n − k) unreliable positions so we only need to
correct a small number of errors and hence only need a
few coefficients in the syndrome sequence. This greatly
speeds up the Roth-Ruckenstein algorithm. As a rule
of thumb we use l = 2�(k/n)t� coefficients where
t = �(n − k)/2� is the classical error-correcting ca-
pability. To get the error values, recall from (45) that
ei = − f ′(αi ), i ∈ Rk . We have,

f ′(x)

v(x)
= �(x)

	(x)
(48)

f ′(x) = �(x)v(x)

	(x)
.

When evaluating f ′(x) at x-values corresponding to
the error locations, v(αi ) = 0 and λ(αi ) = 0 when i
is an error position in Rk . Using L’Hôpital’s rule the
error-evaluation formula becomes:

f ′(αi ) = �(αi )v(1)(αi )

	(1)(αi )
, (49)

for the x-values αi corresponding to error positions in
Rk , where v(1)(x) and 	(1)(x) are the formal derivatives
of v(x) and 	(x). Notice that we have directly found
an estimate of the error vector, ê, without having to
subtract off r ′. The estimated codeword can be found
by adding ê to the received word r and the message
can be read off directly if a systematic encoder was
used. A block diagram describing the fully simplified
algorithm is given in Fig. 5.

The polynomials in the Roth-Ruckenstein algorithm
can grow by dy terms every time the routine is called

Figure 5. Simplified interpolation and factoring.

Table 2. The decoding times of the
component algorithms for a test case
of decoding a RS(255,239) code with
m = 4.

Algorithm Time

Soft front end 18 µs

Reencoding 94 µs

Interpolation 788 µs

Root finding 390 µs

Output 60 µs

Total 1.37 ms

recursively. Since we find l coefficients, the maximum
length polynomial required is

Ñmon,RR = Ñmon + l(dy)(dy + 1)

= Ñmon + l(m2 + m). (50)

3.3. A Fast Software Implementation

We implemented the simplified interpolation and fac-
torization algorithms into our software program. For
the same test case as in Example 2, the total decod-
ing time with the simplified algorithms is 1.37 ms. The
contributions of the various components of the algo-
rithm are summarized in Table 2. Note that “reencod-
ing” in the table refers to all the steps required for the
reencoding including the partition by reliability, sys-
tematic encoding, calculation of v(x) and scaling the
input. The “output” entry in the table refers to the out-
put Berlekamp-Massey algorithm as well as the sys-
tematic encoder. There is some increased overhead re-
quired, but it is worth it to realize the overall savings
brought by the simplified algorithms. From the table,
the speedup of the bivariate interpolation algorithm is
573 times which is on the order of that predicted by
(42). The number of Galois field additions in the entire
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Table 3. The decoding times, throughput, and speedup for
decoding a RS(255,k) code using simplified interpolation
and factoring with various choices of k and m. All test cases
were uncorrectable by hard-decision decoders.

k m Time (ms) Throughput (kbps) Speedup

191 4 15.2 100 33

223 4 6.72 265 86

223 13 413 4.3 251

239 4 1.37 1400 396

239 16 250.7 7.6 953

Figure 6. Circuit for implementing the parity of the binomial co-
efficient C(x, y).

decoder was measured to be 1.7 × 105 and the number
of Galois field multiplications was 2.5 × 105, the total
of which is 0.17% of the Galois field operations in the
unsimplified decoder.

The throughput has been increased to 1.4 Mbps,
which is approaching real-time decoding rates. In par-
ticular, this decoder implementation is a good candi-
date to be used as part of the redecoding architecture
described in [8, 28]. Table 3 gives decoding times for
a range of code rates and values of m.

Figure 7. (a) Circuit for right-to-left binary exponentiation. (b) Circuit for calculating the Hasse derivative using Horner’s rule.

4. VLSI Architecture

Calculating the Hasse derivative (HD) of a bivariate
polynomial is a computationally demanding task that
has the flavor of polynomial evaluation. We make the
observation that in fields of characteristic two, the
product

H =
(

a

α

)(
b

β

)
pa,bxa−α

j yb−β

i

is nonzero only if a ≥ α, b ≥ β, and both C(a, α) = (a
α)

and C(b, β) = (b
β) are odd. The parity of the binomial

coefficients can be calculated easily by Lucas’ theorem
[17, 29]. If we write the integers x and y in their binary
representations, then C(x, y) is odd and x ≥ y if x
AND y is equal to y. A simple circuit for calculating
the parity of the binomial coefficients is shown in Fig. 6.

Horner’s rule [30] for the fast evaluation of poly-
nomials can be used to calculate the HD if the terms
of the polynomial are read out in order of decreas-
ing weight. If a sparse polynomial representation is
used, exponentiation can be implemented efficiently
using the right-to-left binary exponentiation algorithm
(RLBE) [30]. The exponent N can be written in its
binary representation N = (NL−1, NL−2, . . . , N1, N0)
where NL−1 = 1. In Fig. 7(a) we present an implemen-
tation of the RLBE algorithm that executes in NL clock
cycles. Using Horner’s rule, the input to the RLBE cir-
cuit is the exponent difference, which reduces the num-
ber of clock cycles. A circuit for implementing the HD
is shown if Fig. 7(b). If C(a, α) or C(b, β) for a partial
product are odd then that partial product is zero and the
exponentiation can be skipped.
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Figure 8. Pipelined architecture for concurrently updating the poly-
nomials of iteration i and calculating the Hasse derivative for iteration
i + 1.

A pipelined architecture for the interpolation algo-
rithm is shown if Fig. 8. There are two possible updates
for a bivariate polynomial g:

1. g ← λg + δ f , where λ, δ ∈ GF(2ω) and f is a
bivariate polynomial, or

2. g ← xi g + xg, where xi ∈ GF(2ω).

The polynomial updates are calculated term-by-term.
Once a term is updated, it is no longer needed in that it-
eration. Therefore, the part of the next iteration’s Hasse
derivative calculation involving that term can be per-
formed. This architecture calculates the polynomial up-
date for iteration i concurrently with the HD calculation
for iteration i + 1.

5. Conclusions

The Koetter-Vardy (KV) soft-decision decoding algo-
rithm is an extension of the Guruswami-Sudan (GS)
list-decoding algorithm for Reed-Solomon codes. The
KV algorithm seems fairly complex for VLSI im-
plementation because of the large number of itera-
tions in the interpolation step. We explored algorith-
mic techniques for the efficient implementation of
interpolation-based decoders. The basic idea is to reen-
code the received hard-decision to produce a trans-
formed problem that is easier to solve than the orig-
inal problem. The result is that the soft information
only influences the interpolation procedure through the

(n−k) least reliable symbol positions, which for a high-
rate code is much smaller than n. We also showed that
the length of the polynomials can be significantly re-
duced, enabling efficient implementations. These ideas
were demonstrated in a software implementation that
for a moderate complexity level decodes at over 1
Mbps. We have also presented an efficient way to im-
plement the Hasse derivative in a VLSI implementa-
tion. By putting these techniques together, we envision
efficient VLSI implementations of the Koetter-Vardy
algorithm.
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