
An FPGA Interpolation Processor for Soft-Decision Reed-Solomon Decoding

Warren J. Gross
McGill University

Department of Electrical and Computer Engineering
Montreal, Quebec, Canada, H3A 2A7

wjgross@ece.mcgill.ca

Frank R. Kschischang, P. Glenn Gulak
University of Toronto

Edward S. Rogers Sr. Department of
Electrical and Computer Engineering
Toronto, Ontario, Canada, M5S 3G4

{frank@comm, gulak@eecg}.utoronto.ca

Abstract

We propose a parallel architecture for implementing the
interpolation step in the Koetter-Vardy soft-decision Reed-
Solomon decoding algorithm. The key feature is the em-
bedding of both a binary tree and a linear array into a
two-dimensional array processor, enabling fast polynomial
evaluation operations. An FPGA interpolation processor
was implemented and demonstrated at a clock frequency of
23 MHz, corresponding to decoding rates of 10–15 Mbps.

1 Introduction

Recently, there has been an interest in soft-decision de-
coding of Reed-Solomon codes, incorporating reliability in-
formation from the channel into the decoding process. In a
breakthrough result, Koetter and Vardy proposed a front end
which converts soft-information in the form of probabilities
into integer constraints suitable for algebraic list decoding
[1]. The most computationally demanding task in the soft-
decision Koetter-Vardy algorithm is a weighted interpola-
tion of a bivariate polynomial. In this paper we describe
the architecture and implementation of an FPGA interpola-
tion processor aimed at implementing decoders at real-time
decoding rates.

2 Interpolation-Based Soft-Decision Decod-
ing of Reed-Solomon codes

Encoding is performed with an evaluation-map encoder
that evaluates a message polynomial of k message sym-
bols at n evaluation symbols. The Koetter-Vardy algorithm
consists of three steps: 1. Soft-decision front end: using
soft information, derive positive integer weights (multiplic-
ities) for each point (pair of evaluation symbol and possible

transmitted symbol) proportional to the probabilities, 2. In-
terpolation: find a bivariate polynomial P (x, y) with the
smallest (1, k − 1)-weighted degree that passes through all
the points with the prescribed multiplicities, and 3. Factor-
ization: find the list of all the factors of P (x, y) of the form
y−f(x) with deg f(x) < k. Of the three main components
of the algorithm, the most computationally expensive one is
the bivariate interpolation step [2].

3 Parallel Architecture for Interpolation

We propose a parallel architecture that efficiently imple-
ments the inherent parallelism in the required polynomial
operations. Bivariate polynomials are written as univariate
polynomials in y with coefficients that are themselves uni-
variate polynomials in x. This enables an architecture with
separate units for x and y operations. A processing element
(PE) is assigned to each possible monomial in the polyno-
mial. The x-calculations are carried out in independent x-
processors while the y-calculations and top-level control are
carried out in a y-processor).

The proposed monomial-parallel architecture updates
the polynomials one at a time, but does each update in a
parallel manner using L processing elements (PEs), where
L is the maximum length of the polynomials. We take ad-
vantage of the fact that the length of the polynomial, L, is
much larger than the number of polynomials, dy +1, where
dy is the maximum y-degree. Therefore, the degree of par-
allelism is high. Each PE consists of a GFADD and a GF-
MULT and the required storage for dy + 1 monomial co-
efficients. The critical path is the delay of one Galois field
multiplier, one Galois field adder, and one MUX.

3.1 Interconnection Network

The interconnection network embeds two topologies, a
linear array and a binary tree, in a two-dimensional array

Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’04) 
0-7695-2230-0/04 $ 20.00 IEEE 



FPGA LUTS % of FPGA
Virtex XCV2000E-6 27356 (FPGA0) 63%
23 MHz (measured) 26227 (FPGA1) 61%

13175 (FPGA2) 30%
Virtex II XC2V8000-4 69518 74%

35 MHz (estimated)

Table 1. The logic resources and clock fre-
quency for the FPGA implementation.

of processors. Youn and Singh [3] propose a method to
generate a regular two-dimensional VLSI layout that uses
purely local connections, if diagonal connections are in-
cluded. This scheme is more efficient than the classical H-
tree layout in the case of large processing elements with nar-
row bus widths. Using this idea, a binary tree and linearly-
connected array can be embedded into a two dimensional
array of PEs by adding some extra connections. Many of
the tree connections and linear connections are shared.

4 FPGA Implementation

We implemented the interpolation array processor on
three Xilinx Virtex 2000E FPGAs on the TM3 FPGA proto-
typing system [4]. The logic resource requirements for each
FPGA are tabulated in Table 1. The fastest clock frequency
measured was 23 MHz. We also synthesized the design to a
single Xilinx Virtex II 8000. The place-and-route software
reported a maximum clock frequency of 35 MHz.

Table 2 summarizes the hardware requirements and
throughput for a maximum multiplicity of m = 4, 6, 8. The
above analysis is for the worst case, for the maximum possi-
ble number of iterations for a given maximum multiplicity
m. However, in practice, the actual number of iterations
might be lower. We ran simulations to measure the aver-
age number of cycles needed to find an interpolation poly-
nomial for RS(255,239) code with maximum multiplicity
m. The channel was AWGN and the value of Eb/N0 was
varied from 5 to 12 dB. Figure 1 plots the maximum and
average throughput for an FPGA implementation clocked
at 35 MHz. At Eb/N0 = 8 dB, and m = 4, a throughput
of 30 Mbps for an FPGA at 35 MHz can be achieved. For
Eb/N0 = 8 dB, and m = 8, a throughput of 4.5 Mbps is
achieved.

5 Conclusions

We proposed a parallel array architecture for bivariate
interpolation that realizes two different topologies, a linear
array, and a binary tree, to match the communications pat-

m memory GFMULTs GFADDs max. cycles
4 1.8 Kbytes 188 531 3947
6 4.5 Kbytes 386 1125 9694
8 9.1 Kbytes 655 1911 19665

Table 2. The hardware requirements and max-
imum number of cycles for the array proces-
sor for RS(255,239).

4 4.5 5 5.5 6 6.5 7 7.5 8

5

10

15

20

25

30

35

40

Maximum multiplicity (m)

T
hr

ou
gh

pu
t (

M
bp

s)

Worst case
E

b
/N

0
 = 5 dB

E
b
/N

0
 = 8 dB

E
b
/N

0
 = 12 dB

f
clk

 = 35 MHz 

Figure 1. The worst case and average
throughput as a function of the maximum
multiplicity m for an FPGA implementation.
The average case was measured on an AWGN
channel.

terns of the various polynomial operations. An interpola-
tion engine was implemented using an FPGA prototyping
system and was demonstrated at 23 MHz, corresponding to
throughputs of between 10 and 15 Mbps. Using modern FP-
GAs, the processor could be integrated onto a single device
and clocked at 35 MHz.

References

[1] R. Koetter and A. Vardy. Algebraic soft-decision decoding
of Reed-Solomon codes. IEEE Transactions on Information
Theory, 49(11):2809–2825, November 2003.

[2] W. J. Gross, F. R. Kschischang, R. Koetter, and P. Gulak.
Towards a VLSI architecture for interpolation-based soft-
decision Reed-Solomon decoders. Accepted for publication
in the Journal of VLSI Signal Processing, November 2003.

[3] H. Y. Youn and A. D. Singh. On implementing large binary
tree architectures in VLSI and WSI. IEEE Transactions on
Computers, 38(4):526–537, April 1989.

[4] http://www.eecg.utoronto.ca/˜tm3.

Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’04) 
0-7695-2230-0/04 $ 20.00 IEEE 


