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Abstract-- In this paper, we present a versatile area-reduced

scheme for modulo 2n 1 adders and subtractors using a novel 

MUX-based increment/decrement algorithm.  A FPGA-based

comparison of the proposed modulo adder and the conventional

modulo adder designs is carried out. The implementation results

show that the proposed adder reduces the area close to 30%

compared with the modulo adder of Bayoumi et al.. The delay

and the power are also reduced around 10%. In addition, it is

also shown that the proposed design requires less hardware

resources than the parallel-prefix modulo adder of Kalampoukas

et al. while providing a comparable operation speed.

I. INTRODUCTION

Arithmetic modulo 2n 1 (Mersenne numbers) has found

many applications in the residue number systems (RNS) [1],

cryptography [2] and fault-tolerant computer systems [3].

Efficient and fast modulo adders are a prerequisite for the

corresponding high performance circuits in these fields. The 

standard implementation of a modulo 2n 1 adder uses a 

conventional binary adder with the carry-out fed back to the

carry-in to achieve the end-around carry. If ordinary adders 

are used, where the carry-out depends on the carry-in, a 

combinational loop is created that may lead to an unwanted

race condition. Races 50 times longer than the normal addition 

time have been reported in [4]

A variety of researchers have investigated the problem of 

modulo 2n 1 adder design [4]-[8]. In [5], a typical modular

2n 1 adder design that utilizes two level binary adders and a

multiplexer is described. When the modulo adder in [5] is 

implemented as carry look-ahead adders (CLA), it has a 

similar implementation speed with the CLA adder that carries

out modulo 2n 1 addition in two cycles. In [6], an approach 

for fast modulo 2n 1 addition based on a modification of the

traditional CLA is demonstrated. There, the logic formula for

the carry-out is re-substituted as carry-in in the logic formulae

for the sum bits. The savings in area and delay are reported for

small operand lengths (n 8). It can be observed that the

savings decrease fast when the operand length increases from

n=2 to n=8 in [6, Table I]. Even faster designs based on the

parallel-prefix carry computation approach have appeared

recently in [7] [8]. These modulo adders use special

structures rather than conventional adders. Although

improvement in terms of speed has been reported, we have to

note though, that these parallel-prefix designs have complex

interconnection and lead to efficiency problems if 

implemented directly in hardware, such as the large fan-out 

requirements of the Sklansky prefix structures and the

complex wiring problems of the Kogge-Stone prefix

structures. Alternative parallel-prefix structures have been

proposed in the literature to solve the implementation

problems [8], however they are also expensive. 

In this paper, we present a versatile area-reduced scheme of

modulo 2n 1 adders and subtractors using a MUX-based

increment/decrement algorithm. The design and FPGA 

implementation of the proposed modulo adder and the

conventional modulo adder in [5] are carried out. The 

implementation results show that the proposed modulo adder

reduces the area close to 30%. And the delay and the power 

are also reduced around 10%. In addition, it is also shown that 

the proposed design requires less hardware resources than the

parallel-prefix modulo adders in [8] while providing a 

comparable operation speed. 

II. PROPOSED INCREMENTER/DECREMENTER 

In this section, we present a fast MUX-based

incrementer/decrementer avoiding the delay introduced by the

inherent ripple carry of the adder-based design.

A. Proposed MUX-based Decrement Algorithm

Let the input of a decrementer be X = Xn-1….X1 X0. To find

the output, start from the least significant bit (LSB) X0 and

search to the most significant bit (MSB) Xn-1 for the first 

occurrence of bit ‘1’. Let the first bit ‘1’ to be XJ. Then the 

output is obtained as follows:

1) Complement all data bits XI for I = J, J-1,…, 0. 

2) Leave all other bits of XI for I > J as they are. 

3) Complement all bits if X = 0.

Proposition 1 can also describe the proposed algorithm.

Proposition 1 Given any n-bit binary input X, we get its 

decrement result Y = X-1 as follows.
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(Proof is omitted due to lack of space). 

The following example is used to demonstrate the operation

of the proposed algorithm.

Example 1: Find the decrement result of the 8-bit number

(10110100)2.

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05) 

1098-8068/05 $20.00 © 2005 IEEE 



We carry out the operation by searching from the LSB to

the MSB to find the first ‘1’ bit which is the 3rd bit from the

LSB. Thus, the first 3 LSBs 100 will be inverted to 011 in the

output and the rest of the bits will keep their values as 10110 

in the output. Then, the final output will be 10110011, which

is exactly the desired result.

B. Proposed MUX-based decrementer

Based on the proposed algorithm, a new n-bit MUX-based

decrementer is designed as shown in Fig. 1. It is composed of

a data-out MUX array and a selection module (SM) used to

find the first one bit.  The output of SM is D0 D1  Dn-1.

When DJ = 0 (J=0,…,n-1), the input bits from XJ to X0 are 0. 

From Proposition 1, it can be noted that each bit of the

decrement result Y except Y0 can be derived by a MUX

operation. For example, by equation (1), we have

0101011 XXXXXXY that can be implemented by a

MUX whose inputs are  and 1X 1X with a select signal

connected to .0X

C. Proposed MUX-based incrementer

The proposed MUX-based decrementer can be used to

build a binary incrementer. The increment function will

require that all the input bits be inverted in advance and then

be sent to the proposed decrement circuit. Then, the inverted

output of the decrementer will give the desired increment

result. This feature can be summarized as Proposition 2.

Proposition 2 Given any n-bit binary number X, we have 

11 XX

(Proof is omitted due to lack of space). 

In Proposition 3, we show how to design a MUX-based 

incrementer using the proposed decrement algorithm.

Proposition 3 Given any n-bit binary input X, we get its 

binary increment result Y = X+1 as follows. 
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(Proof is omitted due to lack of space). 

Compared to the decrementer in Fig. 1, the only difference

is that the incrementer has the input of its SM inverted.

III. PROPOSED MODULO ADDER/SUBTRACTOR 

In modulo 2n-1 adders and subtractors, the carry-out is fed

back into the carry-in to achieve end-around-carry. To

eliminate the unwanted race condition caused by the end-

around-carry, one solution in the literature is to use an adder

followed by an incrementer or a decrementer [7]. However, 

the carry propagation of the incrementer or decrementer slows 

down the operation of the modulo adders and subtractors

especially for large word width such as 64-bits. In this section,

we use the proposed binary increment and decrement

technique to design fast and size-reduced modulo 2n-1 adders 

and subtractors.

A. Proposed modulo adder 

The residue sum of two n-bit residue digits, (A + B) mod 2n-

1, is the residue of the sum A + B with respect to the modulus

2n-1. The operation may be defined as follows [7].

12,1)12(
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The modulo 2n reduction is automatically performed if a n-

bit adder is used. Note that the value “11 1” never occurs 

and that only one single representation “00 0” of zero exists.

The modulo operation can be rewritten using the condition A

+ B  2n as follows [7].
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Here, zero has a double representation (“00 0” and 

“11 1”). Since the new condition  2n equals to Cout =1, 

where Cout is the carry-out of the addition A + B, we have 

nn outCBABAZ
212

                    (3) 

First, we use equation (4) to simplify the calculation of

12nBA  in equation (3). 

Definition 1: Given any two n-bit binary input A and B, we 

define the addition operation as A+B = 2nCout + S. S,

represented by S0 S1 Sn-1, is the n-bit result of the addition

A+B, and Cout is the carry-out bit.

Using Definition 1, we can transform equation (3) to

equation (4) as follows.

n

n

BAS

BAS
BAZ n
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12

              (4) 

where S is defined in Definition 1. 

Equation (4) justifies the solution in the literature for the

modulo 2n-1 addition by using an adder followed by an 

incrementer. Now we can make use of the proposed MUX-

based incrementer technique to design an efficient modulo 2n-

1 adder. 
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Fig. 1. The proposed MUX-based binary decrementer.
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Proposition 4 Given any two n-bit binary input A and B,

we get its modulo addition result Z = 
12nBA  as follows. 
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(Proof is omitted due to lack of space). 

Proposition 4 provides a novel way to design size-reduced, 

fast and low-power modulo circuits for modulo 2n-1 addition

due to its simplicity and modularity. As shown in Fig. 2(b),

the new modulo adder is composed of a n-bit 2’s complement

adder, a SM and a data-out MUX array.  The n-bit integer

adder, which can be any other kind of 2’s complement adder

structure besides the CLA, is used to get the sum S0, S1, , Sn-1,

and the carry-out Cout. The detail design of the SM is depicted

in Fig. 2(a). The output of the SM, D0 D1 Dn-1, form the 

selecting signals of the data-select MUX array which is used

to select the correct output between the two cases in equation 

(5) respectively.

B. Proposed modulo subtractor

The operation of (A  B) mod 2n-1 may be defined as

follows.
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Here zero has a double representation (“00 0” and 

“11 1”). We use equation (6) to simplify the calculation of 

12nBA .

Definition 2: Given any two n-bit binary input A and B, we 

define the 2’s complement subtraction operation as 1BA

= 2nCout + K. K, represented by K0 K1 Kn-1, is the n-bit result

of the subtraction A B, and Cout is the carry-out bit.

Using Definition 2, given any two n-bit binary input A and 

B, we get its modulo subtraction result Z = 
12nBA  as 

follows.

0,1
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12
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BAZ n                 (6) 

where K is defined in Definition 2. 

Equation (6) provides a solution for the modulo 2n-1

subtraction by using an adder followed by a decrementer.

Thus we can make use of the proposed MUX-based

decrementer technique to design an efficient modulo 2n-1

subtractor.

Proposition 5 Given any two n-bit binary input A and B,

we get the modulo subtraction result Z = 
12nBA  as follows
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(Proof is omitted due to lack of space). 

Based on Proposition 5, we can design a new area-time

efficient modulo 2n-1 subtractor which has a similar structure

to the modulo adder as shown in Fig. 2(b). 

IV. COMPARISON RESULTS 

Detailed comparison of the related modulo 2n 1 adders are

summarized in Table I, where the data for [8] are from [8, 

Table I]. In Table I, we have also included the results of [7, 

Table III] for an integer adder with a Sklansky prefix structure. 

The estimation model used in Table I was originally

presented in [9], which takes a two-input AND gate as one 

elementary gate for both area and delay. A XOR gate counts

for two elementary gates. A MUX counts for one elementary

gate. This model ignores the implementation characteristics

such as fan-in, fan-out and the complexity of wiring. The

validation of these parameters will be carried out below by

FPGA implementation. The modulo adder proposed in [5]

with the two level n-bit CLAs is shown in Fig. 2(c). For the

convenience of comparison in Table I, we replace CLAs with 

two Sklansky parallel-prefix integer adders. For the same

reason, we use the Sklansky prefix structure for the 2’s 

complement adder in the proposed design.

As far as the area is concerned, Table I reveals that the

proposed design requires the least implementation area for a

modulo 2n-1 addition. Although the parallel-prefix design in

[8] is the fastest, it has complex interconnection and requires

almost the same area as the two level adder design in [5]. Both

of them have a double size of a n-bit integer adder. This

makes the parallel-prefix design in [8] very expensive.

In addition to area, it can be noted that the proposed design

is more versatile than the design in [8], since its n-bit 2’s

complement adder can be implemented with many kind of

adder structure. This property makes the proposed design

TABLE I

PERFORMANCE COMPARISON OF MODULO ADDER

Adder Area Delay

Integer [7] nnn 4log
2

3
3log2 n

[5] nnn 9log3 8log4 n

[8] nnn 4log3 3log2 n

Proposed nnn 5log2 4log3 n

TABLE II

IMPLEMENTATION AND COMPARISON

16-bit 64-bit

Power

(mw)

Cell

Area

Time

(ns)

Power

(mw)

Cell

Area

Time

(ns)

1C : in [5] 13.8 762 22.7 56.1 3300 35.1

2C : Proposed 11.8 534 20.2 50.8 2262 32.2

1

21

C

CC
100% 14.5 29.9 11 9.4 31.5 8.3
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suitable for more general purpose. For example, if the target

implementation technology is FPGA, then we can use CLA or 

carry-propagation adder (CPA) since each slice of FPGA

includes dedicated ripple carry logic. If the design is mapped

to CMOS technology, then we may prefer the parallel-prefix

adders since the interconnection of CMOS is more efficient 

than that of FPGA.

To get a practical performance measure of the modulo 2n 1

adders, the proposed adder and the design in [5] based on n-

bit CLAs are implemented using Xilinx FPGA technology for

the 16-bit and 64-bit cases.  The parallel-prefix design has 

complex interconnection and is not suitable for FPGA 

implementation. The comparison results of Table I show that

the proposed design requires less hardware resources than the

parallel-prefix design in [8] while providing a comparable

operation speed. The synthesis and implementation tools are

Xillinx Synthesis Tool (XST) and Xilinx Integrated Software

Environment (ISE) 6.3i.  The power analysis tool is XPower.

The target technology is a Xillinx Virtex 2 xc2v2000ff896-4 

FPGA. The performance evaluation is carried out in terms of 

power, area and delay. To get the power consumption of the

internal core circuit, we use the default VCCInt and Ambient

Temp values of 1.5V and 25 degrees Celsius. All the inputs

are clocked at 20 MHz. The reported area is evaluated using

equivalent gate count. The results of FPGA implementation in

Table II show that the proposed adder consumes almost 30%

less hardware than the design in [5]. And the delay and the

power are also reduced around 10%. 

V. CONCLUSION

In this paper, we have presented a versatile area-reduced

scheme for modulo 2n 1 adders and subtractors using a novel

MUX-based increment/decrement algorithm.  A FPGA based 

comparison of the proposed modulo adder and the

conventional modulo adders has been carried out. The results

show that the proposed adder reduces the area close to 30%

with compared to the previous design in [5]. And the delay

and the power are also reduced around 10%. In addition, it has 

been shown that the proposed design requires less hardware 

resources than the parallel-prefix modulo adders in [8] while

providing a comparable operation speed. 
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