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Abstract 
In this paper, we propose new residue comparison algo-
rithms for general moduli sets and present an efficient 
ROM-free residue comparator for {2n+1,2n,2n−1} using the 
smallest modulo operation without introducing redundant 
modulus. Compared to the residue comparator based on 
the fastest known residue-to-binary (R/B) converter, our 
design is faster and reduces the hardware close to half. 

INTRODUCTION 
The carry-free property of the residue number systems 
(RNS) has made it attractive as a basis for high-speed arith-
metic operation [1]. However, due to the non-position na-
ture of the RNS, magnitude comparison between residue 
numbers is much more complex than that in the weighted 
number system. This difficulty prevents a wide variety of 
general purpose computations from taking advantage of the 
residue arithmetic. 
There are several known techniques for residue comparison. 
One is to use the Chinese remainder theorem (CRT) to 
convert a residue number to a binary number. However the 
CRT is based on large modulo operations which make a 
direct implementation of the CRT inefficient. A different 
technique based on the core function requires an iterative 
process of descent and lifting to find the critical core value. 
An improved version of this technique was presented in [2] 
to avoid the iterative process at the cost of a redundant 
modulus. A solution using parity checking has been pro-
posed in [3] which assumes that all moduli of the moduli 
set are odd and ROM look-up tables are mandatory to de-
termine the operands parity. In [4], a different technique 
uses the diagonal function to compare residue numbers. It 
requires a large modulo operation which is usually imple-
mented using look-up tables. Another technique based on 
the New CRT utilizes 2 1t n= ⎢ ⎥⎣ ⎦ +  level modulo multipliers 
in sequence [5]. All of these algorithms are rather complex 
and there is no feasible VLSI design of residue compara-
tors have been presented for these algorithms. 
In this paper, based on the improved CRT [6], [7], we pre-
sent new residue comparison algorithms for general moduli 
sets and the most popular three-moduli set 
M1={2n+1,2n,2n−1}.  The proposed algorithms use the 
smallest modulo operation, exclude the utilization of ROM 
look-up tables and do not introduce any redundant modulus. 
This is contrasted with all the previous algorithms, wherein 
the moduli must be kept reasonably small to avoid exces-
sive cost of the comparators realized by ROM’s. Based on 

the new algorithms, we propose an area-reduced and high-
speed design of a residue comparator for M1 which is effi-
cient, practical and easy to implement in VLSI. Compared 
to the residue comparator based on the fastest known resi-
due-to-binary (R/B) converter, our design is faster and re-
duces the hardware close to half. 

BACKGROUND MATERIALS 
Let { }1 2, , , nP P P"  be a set of positive numbers all greater 
than 1. The ’s are called moduli and the n-tuple set iP

{ }1 2, , , nP P P" is called the moduli set. In order to avoid re-
dundancy, the moduli of a residue number system must be 
pair-wise relatively prime. For an integer number X, we 
have modi ix X P=  (denoted as 

iP
X ). Thus a number X in 

RNS can be represented as ( )1 2, , , nX x x x= " .  Such a repre-
sentation is unique for any integer X , where 0, 1M∈ −⎡⎣ ⎤⎦

1 2 nM PP P= "  is the dynamic range of the moduli set 
{ }1 2, , , nP P P"  [1]. To convert a residue number 1 2( , ,..., )nx x x  
into its binary representation X, the CRT is widely used. 
Chinese Remainder Theorem  the binary number X is 

computed by 1
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n
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=
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N −  is the multiplicative inverse of 
i

i P
N  . 

The CRT requires a large modulo operation of size M that 
is not efficient.  In [6] and [7], a modulo reduction tech-
nique has been proposed to reduce the modulo base of the 
CRT and results in the improved CRT algorithm as follows.  
Theorem 1 Given { }, the residue number 
(

1 2, , , nP P P…

1 2, , , nx x x… ) is converted to the binary number X by 
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where n>1, ( )
1

1
1 1 1 1

P
w N N P−= − 1 ,

1P
Nw i

i = , 11 xx =′ , 

iPiii xNx 1−=′ , for i = 2,3,…,n.  is the floor function. ⎢ ⎥⎣ ⎦i

The improved CRT can be used to derive efficient R/B 
algorithm for M1 as follows [6]. 
Theorem 2 For the three-moduli set 
M1={ 2 1n + , ,2n 2 1n − }, we have 

( ) ( ) 12 1 2 2 1n n n
X XX A B x= + + + +                  (2) 
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where n>1,
2 12 n

x
X n

KA
−

⎢ ⎥= ⎢ ⎥⎣ ⎦
, 

2nX xB K= ,  and 

( ) ( )22 1 2 1
1 22 1 2 1 2n n

x 3
nK x x− −= − + − + x

0P

. 

NEW RESIDUE COMPARISON ALGORITHMS 
Theorems 1 and 2 considerably reduce the complexity of 
the CRT by decomposing the large modulo M operation to 
several small modulo operations in parallel. In this section, 
we use this parallelism to present new residue comparison 
algorithms which are highly concurrent and suitable for 
VLSI implementation.  
We rewrite (1) as follows. 
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Definition 1 We define αn-1,…,α1,α0 as the kernel set of 
X=(x1,x2,…,xn) and denote it as E(x) = (αn-1,…,α1,α0). 
Similarly, we can define the kernel set E(y) = (βn-1,…,β1,β0) 
for Y=(y1,y2,…,yn). With Definition 1, we introduce a new 
residue comparison algorithm for the general moduli set as 
follows. 
Theorem 3 Given any two positive integers X=(x1,x2,…,xn) 
and Y=(y1,y2,…,yn) with the general moduli set 
{P1,P2,…,Pn}, we can do the comparison using their kernel 
sets E(x) = (αn-1,…,α1,α0) and E(y) = (βn-1,…,β1,β0) . With-
out losing generality, assuming αi and βi are the first occur-
ring pair of non-equal elements in E(x) and E(y) respec-
tively, namely, αi ≠ βi, and αj = βj for n > j > i ≥ 0,  we 
have: if αi > βi, then X > Y, else X < Y. However, if αi = βi 
for n > i ≥ 0,  then we have X = Y. 
(Proof is omitted due to lack of space) 
With Theorem 3, the comparison of two residue numbers is 
simplified to comparing their kernel sets. The calculation 
of each element αi (or βi) only requires a small size modulo 
operation which is based on Pi.  Moreover, the compari-
sons of αi and βi can be done in parallel. Thus, Theorem 3 
results in a parallel and high-speed operation. 
Based on Theorem 3, we can directly derive a new residue 
number comparison algorithm for the most popular three 
moduli set M1 as Theorem 4. 
Theorem 4 Given any two positive integers X=(x1,x2,x3) 
and Y=(y1,y2,y3) with the moduli set M1={2n+1,2n,2n−1}, 
we can do the comparison using their kernel sets E(x) = 
(α2,α1,α0) = (AX,BX,x1) and E(y) = (β2,β1,β0) = (AY,BY,y1), 
where AX, BX, AY and BY are defined in Theorem 2. For the 
first occurring αi ≠ βi, namely αj = βj where 3 > j > i ≥ 0,  
we have: if αi > βi, then X > Y, else X < Y. However, if αi = 
βi for 3 > i ≥ 0, then we have X = Y. 
(Proof is omitted due to lack of space) 

Theorem 2 has given the definitions of AX, BX, AY and BY. 
However, it can be further simplified for efficient VLSI 
implementation. 
Theorem 5 Given the three-moduli set M1={2n+1,2n,2n−1}, 
the residue number (x1,x2,x3) is converted into the binary  
number X by 

( ) ( ) 12 1 2 2 1n n n
X XX A B x= + + + +              (4) 

where n>1 and  
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(Proof is omitted due to lack of space) 
In the following, we use an example to show the improve-
ment of the new residue comparison algorithms over the 
previous algorithms [4], [5] in the literature. 
Example 1 Compare two residue numbers X=58=(4, 2, 2) 
and Y=261=(0, 5, 2) with the moduli set {9, 8, 7}. 
Based on the diagonal function in [4], we have 

1 1 2 2 3 3 191
( ) 106 4 167 2 109 2 21

SQ
D X s x s x s x= + + = × + × + × =

1 1 2 2 3 3 191
( ) 106 0 167 5 109 2 98

SQ
D Y s y s y s y= + + = × + × + × =

( ) ( )D X D Y X Y< ⇒ < . 

Based on the algorithm in [5], we have 

( ) ( ) ( )
2

0 3 0 2 3 3 8
2 1 2 2 7

P
X x k x x P 2= + − = + − × − =

( ) ( ) ( )
2

0 3 0 2 3 3 8
2 1 5 2 7 3

P
Y y k y y P 7= + − = + − × − =

( ) ( )
1

1 1 0 9
5 4 2 1

P
k x X− = − = , ( ) ( )

1
1 1 0 9

5 0 37 4
P

k y Y− = − =  

( ) ( )
1 1

1 1 0 1 1 0P P
k x X k y Y X Y− < − ⇒ <  

Based on Theorem 4 and Theorem 5,  
since 3

1 0,2 1 , 2 1x x x⎡ ⎤∈ − <⎣ ⎦ , we have 

1 2 3 2 1 7
1 010 101 001 1 000nX X X XA T T T

−
= + + − = + + − =  

since 3
1 0,2 1 ,y y⎡ ⎤ 2 1y∈ − >⎣ ⎦ , we have 

1 2 3 2 1 7
000 010 001 011nY Y Y YA T T T

−
= + + = + + =  

Then, we have X YA A X Y< ⇒ < . 

The above residue number comparison requires a modulo-
191 addition if using the diagonal function in [4].  The 
length of the modulo addition is 8-bit. By using the algo-
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rithm in [5] which is based on the New CRT, two levels of 
4-bit modulo multipliers in series are required. Both the 
modulo-191 addition and the two modulo multipliers are 
implemented using ROM look-up tables as suggested by 
the authors [4], [5]. If using the proposed algorithms, the 
same residue comparison requires only one 3-bit modulo-7 
addition which can be implemented very efficiently without 
using any ROM look-up tables.  

PROPOSED RNS COMPARATOR FOR M1 
Based on the formulas of AX in Theorem 5, we have 

1 2X X X 3Z T T T= + +  and ( )1
22 1n

X X 3Z T T−′ = − + + . Since the 

only difference between Z  and Z ′  is the first item, T  for 1X

Z  and for12 1n− − Z ′ , we can integrate the calculation of 
2 1nZ

−
 and 

2 1nZ
−

′  using one MUX array, one stage of n-bit 
carry-save adder (CSA) with end-around-carry (EAC) and 
one n-bit 1’s complement adder.  The calculation of 

2 1
1 nZ

−
−  can be implemented simply using a modulo 

decrementer. The detail structure of the AX and BX generator 
can be found in Figure 1. The second MUX array uses the 
carry-out signal Cout of the subtractor x2−x1′ as its selecting 
signal. Here, x1′ consists of the n-bit least significant bits 
(LSB) of x1. Namely, we have 1 1,2n

n 1x x x ′= + .  If we repre-
sent the subtraction x2−x1′ as x2−x1′ =2nB+D where B is the 
borrow and D is the difference, then the difference D gives 
the value of BX. Based on the definition of BX in Theorem 5, 
this property can be easily verified.   
Based on the proposed generator, we can compare the 
magnitudes of X and Y using Theorem 4. As shown in Fig-
ure 2, we use a n-bit binary comparator to compare AX and 
AY. In the case of     AX = AY, we have E1=1. If AX > AY, then 
C1=1 and E1=0. If AX < AY, then C1=0 and E1=0. There are 
two output signals of the proposed residue comparator. One 
is EXY, which is used to indicate X=Y when EXY=1. Since we 
have E1=E2=E3=1 in the case of X=Y, we can generate EXY  
using a three-input AND gate as shown in Figure 2.  The 
other signal is CXY. Based on Theorem 4, we can see that if 
E1=0 then CXY=C1, else if E1=1 and E2=0 then CXY=C2, else 
if E1=1, E2=1 and E2=0 then CXY=C3. Two MUX’s con-
nected in a cascade way as shown in Figure 2 can imple-

ment the logic for CXY. 

PERFORMANCE EVALUATION
In the literature, some fast designs of R/B converter for M1 
have been presented recently. The CRT-based residue 
comparison algorithms have benefited from this technical 
innovation. For the convenience of comparison, we show a 
residue comparator in Figure 3 which is based on Piestrak’s 
CRT converter [8] (shown in Figure 3 (a)) that is one of the 
fastest known VLSI converters for M1. Based on 

2
*

2 1 2 1
2 2n

n n
2X x A B C x x

−
= + + + − = + X , Piestrak has sug-

gested to use two stages of 2n-bit CSA’s with EAC and one 
2n-bit 1’s complement adder to compute *X . Then, we can 
compare two numbers X and Y as shown in Figure 3 (b). 
Table 1 summarizes the comparison of the proposed resi-
due comparator with the comparator in Figure 3. It can be 
seen that the proposed comparator is faster and reduces the 
area close to half compared to the design in Figure 3. The 
reason for such improvement is that modulo 2n−1 is the 
only required modulo operation for the new residue com-
parator. On the other hand, Piestrak’s converter and its 

Figure 1. The AX and BX generator. 

Cout

x1,n-1…x1,0

x2 −x1′ 

x2

n n

n
BX

n

MUXx1,n

01…1

n-1

TX1

n
TX3TX2

MUX

n n

n
AX

n-bit CSA with EAC 

n-bit 1’s complement adder 

nn

n n n

2 1
1 nZ

−
−

n

AX C1n-bit binary 
comparator 

Figure 2. The proposed residue comparator. 
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Figure 3. The residue comparator based on [8]. 
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(a) Converter [8] (b) Comparator 
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modifications are based on the formula 21 2 1nA B C x
−

+ + − , 
where the final modulo summation requires to use 2n-bit 
1’s complement adders.  Thus the proposed comparator 
reduces the modulo size by half. Since the modulo part is 
the critical path of the residue comparator, a more efficient 
design is obtained compared to all residue comparators 
based on CRT converters. 

Table 1.    Performance comparison of CRT-based residue comparators. 

Comparator 
OR/ 

AND 

XOR/ 

XNOR 
FA INV MUX n-bit 1’s com-

plement adder

2n-bit 1’s 
complement 

adder 

n/n+1-bit   
binary com-

parator 

2n-bit      
binary com-

parator 
Delay 

[8]-based 4n-2 4n 8n 4n 1 − 2 1 1 tINV+2tFA+tMUX +t1CA(2n)+tBC (2n)

Proposed logn n⎢⎣ ⎥⎦  − 4n 2n 6n+2 2 − 3 − log n⎡ ⎤⎢ ⎥ tOR+tFA+5tMUX+t1CA(n)+tBC(n+1) 

Table 2 is the performance summary of the previous resi-
due comparison algorithms for M1. The “complexity” re-
fers to the largest modulo operations or the largest integers 
involved in the residue comparison operation, which indi-
cates the delay and the complexity of the residue compara-
tors. It can be noted that modulo 2  is the only required 
modulo operation in the proposed residue comparison algo-
rithm and all of the previous algorithms are more complex 
than our new algorithm. Moreover, they all assume the use 
of ROM look-up tables that are expensive and not suitable 
for low power designs. Besides, due to the complexity and 
the ROM-based property of the previous residue compari-
son algorithms, there is no feasible VLSI design of residue 
comparators having been presented for these algorithms.  
In summary, our new algorithm is the best residue com-
parison algorithm based on the criteria listed in Table 2, 
which uses the smallest modulo operation, excludes the 
utilization of ROM look-up tables and does not introduce 
any redundant modulus. 

1n −

CONCLUSION 
The proposed residue comparison algorithm and its appli-
cation to M1 provide a novel way to design size-reduced, 
fast and ROM-free residue comparators using the smallest 
modulo operation without introducing any redundant 
modulus. Other residue algorithms such as sign test, over-
flow detection and division might benefit too. It is expected 
that the proposed technique will have many other applica-
tions in RNS study. 
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Table 2.   Comparison of different algorithms. 

 Complexity ROM
based 

Only 
for odd 
moduli 

Redundant
moduli

Feasible  
VLSI 
design

[2] 
3

2
3 1

1

2 2 ( )n n
i

i

w w w
=

+ − −∑ 2w yes yes yes no 

[3] 3log(2 2 )n n n−  yes yes yes no 

[4] Modulo ( 3 2 ) 2 1n⋅ − yes no no no 

[5] Modulo ( ) 22 1n − yes no no no 

Proposed 
Algorithm Modulo ( ) 2 1n − no no no yes 
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