
Efficient Residue Comparison Algorithm for General Moduli Sets
Shaoqiang Bi, Warren J. Gross

Dept. Electrical and Computer Engineering, McGill University.
Montreal, Quebec, Canada

email: shaoqiang.bi@mail.mcgill.ca, wjgross@ece.mcgill.ca

Abstract
In this paper, we propose new residue comparison algo-
rithms for general moduli sets and present an efficient
ROM-free residue comparator for {2n+1,2n,2n−1} using the
smallest modulo operation without introducing redundant
modulus. Compared to the residue comparator based on
the fastest known residue-to-binary (R/B) converter, our
design is faster and reduces the hardware close to half.

INTRODUCTION
The carry-free property of the residue number systems
(RNS) has made it attractive as a basis for high-speed arith-
metic operation [1]. However, due to the non-position na-
ture of the RNS, magnitude comparison between residue
numbers is much more complex than that in the weighted
number system. This difficulty prevents a wide variety of
general purpose computations from taking advantage of the
residue arithmetic.
There are several known techniques for residue comparison.
One is to use the Chinese remainder theorem (CRT) to
convert a residue number to a binary number. However the
CRT is based on large modulo operations which make a
direct implementation of the CRT inefficient. A different
technique based on the core function requires an iterative
process of descent and lifting to find the critical core value.
An improved version of this technique was presented in [2]
to avoid the iterative process at the cost of a redundant
modulus. A solution using parity checking has been pro-
posed in [3] which assumes that all moduli of the moduli
set are odd and ROM look-up tables are mandatory to de-
termine the operands parity. In [4], a different technique
uses the diagonal function to compare residue numbers. It
requires a large modulo operation which is usually imple-
mented using look-up tables. Another technique based on
the New CRT utilizes 2 1t n= ⎢ ⎥⎣ ⎦ + level modulo multipliers
in sequence [5]. All of these algorithms are rather complex
and there is no feasible VLSI design of residue compara-
tors have been presented for these algorithms.
In this paper, based on the improved CRT [6], [7], we pre-
sent new residue comparison algorithms for general moduli
sets and the most popular three-moduli set
M1={2n+1,2n,2n−1}. The proposed algorithms use the
smallest modulo operation, exclude the utilization of ROM
look-up tables and do not introduce any redundant modulus.
This is contrasted with all the previous algorithms, wherein
the moduli must be kept reasonably small to avoid exces-
sive cost of the comparators realized by ROM’s. Based on

the new algorithms, we propose an area-reduced and high-
speed design of a residue comparator for M1 which is effi-
cient, practical and easy to implement in VLSI. Compared
to the residue comparator based on the fastest known resi-
due-to-binary (R/B) converter, our design is faster and re-
duces the hardware close to half.

BACKGROUND MATERIALS
Let { }1 2, , , nP P P" be a set of positive numbers all greater
than 1. The ’s are called moduli and the n-tuple set iP

{ }1 2, , , nP P P" is called the moduli set. In order to avoid re-
dundancy, the moduli of a residue number system must be
pair-wise relatively prime. For an integer number X, we
have modi ix X P= (denoted as

iP
X). Thus a number X in

RNS can be represented as ()1 2, , , nX x x x= " . Such a repre-
sentation is unique for any integer X , where 0, 1M∈ −⎡⎣ ⎤⎦

1 2 nM PP P= " is the dynamic range of the moduli set
{ }1 2, , , nP P P" [1]. To convert a residue number 1 2(, ,...,)nx x x
into its binary representation X, the CRT is widely used.
Chinese Remainder Theorem the binary number X is

computed by 1

1 i

n

i i i
i P M

X N N x−

=

= ∑ where i iN M P= , and

1

i
i P

N − is the multiplicative inverse of
i

i P
N .

The CRT requires a large modulo operation of size M that
is not efficient. In [6] and [7], a modulo reduction tech-
nique has been proposed to reduce the modulo base of the
CRT and results in the improved CRT algorithm as follows.
Theorem 1 Given { }, the residue number
(

1 2, , , nP P P…

1 2, , , nx x x…) is converted to the binary number X by

22

1 12

1 1
1 1 12 1

m

m mn n n

i i i i i i
m i ii i PP

X w x P P P w x
+

+ +−

= = == =

⎛ ⎞⎢ ⎥⎜ ⎟′ ′ x= + +⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑ ∑∏ ∏ (1)

where n>1, ()
1

1
1 1 1 1

P
w N N P−= − 1 ,

1P
Nw i

i = , 11 xx =′ ,

iPiii xNx 1−=′ , for i = 2,3,…,n. is the floor function. ⎢ ⎥⎣ ⎦i

The improved CRT can be used to derive efficient R/B
algorithm for M1 as follows [6].
Theorem 2 For the three-moduli set
M1={ 2 1n + , ,2n 2 1n − }, we have

() () 12 1 2 2 1n n n
X XX A B x= + + + + (2)

16010-7803-9197-7/05/$20.00 © 2005 IEEE.

where n>1,
2 12 n

x
X n

KA
−

⎢ ⎥= ⎢ ⎥⎣ ⎦
,

2nX xB K= , and

() ()22 1 2 1
1 22 1 2 1 2n n

x 3
nK x x− −= − + − + x

0P

.

NEW RESIDUE COMPARISON ALGORITHMS
Theorems 1 and 2 considerably reduce the complexity of
the CRT by decomposing the large modulo M operation to
several small modulo operations in parallel. In this section,
we use this parallelism to present new residue comparison
algorithms which are highly concurrent and suitable for
VLSI implementation.
We rewrite (1) as follows.

12

1 1 1
1 1

mn

m i
m i

X Pα α α
+−

+
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∏ + (3)

where
2

1

1
1 2

m

mn

m i i i
i i P

w x Pα
+

+

+
= =

⎢ ⎥′= ⎢ ⎥
⎣ ⎦
∑ ∏ ,

2

1
1

n

i i
i P

w xα
=

′= ∑ , 0 1xα = .

Definition 1 We define αn-1,…,α1,α0 as the kernel set of
X=(x1,x2,…,xn) and denote it as E(x) = (αn-1,…,α1,α0).
Similarly, we can define the kernel set E(y) = (βn-1,…,β1,β0)
for Y=(y1,y2,…,yn). With Definition 1, we introduce a new
residue comparison algorithm for the general moduli set as
follows.
Theorem 3 Given any two positive integers X=(x1,x2,…,xn)
and Y=(y1,y2,…,yn) with the general moduli set
{P1,P2,…,Pn}, we can do the comparison using their kernel
sets E(x) = (αn-1,…,α1,α0) and E(y) = (βn-1,…,β1,β0) . With-
out losing generality, assuming αi and βi are the first occur-
ring pair of non-equal elements in E(x) and E(y) respec-
tively, namely, αi ≠ βi, and αj = βj for n > j > i ≥ 0, we
have: if αi > βi, then X > Y, else X < Y. However, if αi = βi
for n > i ≥ 0, then we have X = Y.
(Proof is omitted due to lack of space)
With Theorem 3, the comparison of two residue numbers is
simplified to comparing their kernel sets. The calculation
of each element αi (or βi) only requires a small size modulo
operation which is based on Pi. Moreover, the compari-
sons of αi and βi can be done in parallel. Thus, Theorem 3
results in a parallel and high-speed operation.
Based on Theorem 3, we can directly derive a new residue
number comparison algorithm for the most popular three
moduli set M1 as Theorem 4.
Theorem 4 Given any two positive integers X=(x1,x2,x3)
and Y=(y1,y2,y3) with the moduli set M1={2n+1,2n,2n−1},
we can do the comparison using their kernel sets E(x) =
(α2,α1,α0) = (AX,BX,x1) and E(y) = (β2,β1,β0) = (AY,BY,y1),
where AX, BX, AY and BY are defined in Theorem 2. For the
first occurring αi ≠ βi, namely αj = βj where 3 > j > i ≥ 0,
we have: if αi > βi, then X > Y, else X < Y. However, if αi =
βi for 3 > i ≥ 0, then we have X = Y.
(Proof is omitted due to lack of space)

Theorem 2 has given the definitions of AX, BX, AY and BY.
However, it can be further simplified for efficient VLSI
implementation.
Theorem 5 Given the three-moduli set M1={2n+1,2n,2n−1},
the residue number (x1,x2,x3) is converted into the binary
number X by

() () 12 1 2 2 1n n n
X XX A B x= + + + + (4)

where n>1 and

()

1 2 3 1 22 1

1 2 3 1 22 1

1
2 3 1

2 1

, 0,2 1 ,

1 1 , 0,2 1 ,

2 1 , 2

n

n

n

n
X X X

n
X X X X

n n
X X

T T T Z x x x1

1A T T T Z x x x

T T Z x

−

−

−

−

⎧ ⎡ ⎤+ + = ∈ − ≥⎣ ⎦⎪
⎪ ⎡ ⎤= + + − = − ∈ − <⎨ ⎣ ⎦
⎪
⎪ ′− + + = =
⎩

2 1 12

2 1

, 0,2

, 2
n

n

X n

x x for x
B

x for x

⎧ 1⎡ ⎤− ∈ −⎪ ⎣ ⎦= ⎨
=⎪⎩

where
1

1 1 1,0 1, 1 1,1x
2 1

2
n

n
X nT x x x−

−−
= = " , and

1
3 3 3,0 3, 12 1

2
n

n
X nT x x x−

−−
= = " 3,1x .

2 2 2, 1 2,02 1nX nT x x x−−
= − = "

(Proof is omitted due to lack of space)
In the following, we use an example to show the improve-
ment of the new residue comparison algorithms over the
previous algorithms [4], [5] in the literature.
Example 1 Compare two residue numbers X=58=(4, 2, 2)
and Y=261=(0, 5, 2) with the moduli set {9, 8, 7}.
Based on the diagonal function in [4], we have

1 1 2 2 3 3 191
() 106 4 167 2 109 2 21

SQ
D X s x s x s x= + + = × + × + × =

1 1 2 2 3 3 191
() 106 0 167 5 109 2 98

SQ
D Y s y s y s y= + + = × + × + × =

() ()D X D Y X Y< ⇒ < .

Based on the algorithm in [5], we have

() () ()
2

0 3 0 2 3 3 8
2 1 2 2 7

P
X x k x x P 2= + − = + − × − =

() () ()
2

0 3 0 2 3 3 8
2 1 5 2 7 3

P
Y y k y y P 7= + − = + − × − =

() ()
1

1 1 0 9
5 4 2 1

P
k x X− = − = , () ()

1
1 1 0 9

5 0 37 4
P

k y Y− = − =

() ()
1 1

1 1 0 1 1 0P P
k x X k y Y X Y− < − ⇒ <

Based on Theorem 4 and Theorem 5,
since 3

1 0,2 1 , 2 1x x x⎡ ⎤∈ − <⎣ ⎦ , we have

1 2 3 2 1 7
1 010 101 001 1 000nX X X XA T T T

−
= + + − = + + − =

since 3
1 0,2 1 ,y y⎡ ⎤ 2 1y∈ − >⎣ ⎦ , we have

1 2 3 2 1 7
000 010 001 011nY Y Y YA T T T

−
= + + = + + =

Then, we have X YA A X Y< ⇒ < .

The above residue number comparison requires a modulo-
191 addition if using the diagonal function in [4]. The
length of the modulo addition is 8-bit. By using the algo-

1602

rithm in [5] which is based on the New CRT, two levels of
4-bit modulo multipliers in series are required. Both the
modulo-191 addition and the two modulo multipliers are
implemented using ROM look-up tables as suggested by
the authors [4], [5]. If using the proposed algorithms, the
same residue comparison requires only one 3-bit modulo-7
addition which can be implemented very efficiently without
using any ROM look-up tables.

PROPOSED RNS COMPARATOR FOR M1
Based on the formulas of AX in Theorem 5, we have

1 2X X X 3Z T T T= + + and ()1
22 1n

X X 3Z T T−′ = − + + . Since the

only difference between Z and Z ′ is the first item, T for 1X

Z and for12 1n− − Z ′ , we can integrate the calculation of
2 1nZ

−
 and

2 1nZ
−

′ using one MUX array, one stage of n-bit
carry-save adder (CSA) with end-around-carry (EAC) and
one n-bit 1’s complement adder. The calculation of

2 1
1 nZ

−
− can be implemented simply using a modulo

decrementer. The detail structure of the AX and BX generator
can be found in Figure 1. The second MUX array uses the
carry-out signal Cout of the subtractor x2−x1′ as its selecting
signal. Here, x1′ consists of the n-bit least significant bits
(LSB) of x1. Namely, we have 1 1,2n

n 1x x x ′= + . If we repre-
sent the subtraction x2−x1′ as x2−x1′ =2nB+D where B is the
borrow and D is the difference, then the difference D gives
the value of BX. Based on the definition of BX in Theorem 5,
this property can be easily verified.
Based on the proposed generator, we can compare the
magnitudes of X and Y using Theorem 4. As shown in Fig-
ure 2, we use a n-bit binary comparator to compare AX and
AY. In the case of AX = AY, we have E1=1. If AX > AY, then
C1=1 and E1=0. If AX < AY, then C1=0 and E1=0. There are
two output signals of the proposed residue comparator. One
is EXY, which is used to indicate X=Y when EXY=1. Since we
have E1=E2=E3=1 in the case of X=Y, we can generate EXY
using a three-input AND gate as shown in Figure 2. The
other signal is CXY. Based on Theorem 4, we can see that if
E1=0 then CXY=C1, else if E1=1 and E2=0 then CXY=C2, else
if E1=1, E2=1 and E2=0 then CXY=C3. Two MUX’s con-
nected in a cascade way as shown in Figure 2 can imple-

ment the logic for CXY.

PERFORMANCE EVALUATION
In the literature, some fast designs of R/B converter for M1
have been presented recently. The CRT-based residue
comparison algorithms have benefited from this technical
innovation. For the convenience of comparison, we show a
residue comparator in Figure 3 which is based on Piestrak’s
CRT converter [8] (shown in Figure 3 (a)) that is one of the
fastest known VLSI converters for M1. Based on

2
*

2 1 2 1
2 2n

n n
2X x A B C x x

−
= + + + − = + X , Piestrak has sug-

gested to use two stages of 2n-bit CSA’s with EAC and one
2n-bit 1’s complement adder to compute *X . Then, we can
compare two numbers X and Y as shown in Figure 3 (b).
Table 1 summarizes the comparison of the proposed resi-
due comparator with the comparator in Figure 3. It can be
seen that the proposed comparator is faster and reduces the
area close to half compared to the design in Figure 3. The
reason for such improvement is that modulo 2n−1 is the
only required modulo operation for the new residue com-
parator. On the other hand, Piestrak’s converter and its

Figure 1. The AX and BX generator.

Cout

x1,n-1…x1,0

x2 −x1′

x2

n n

n
BX

n

MUXx1,n

01…1

n-1

TX1

n
TX3TX2

MUX

n n

n
AX

n-bit CSA with EAC

n-bit 1’s complement adder

nn

n n n

2 1
1 nZ

−
−

n

AX C1n-bit binary
comparator

Figure 2. The proposed residue comparator.

CXY

EXY

n+1-bit binary
comparator

x1

y1

n-bit binary
comparator

BX

BY

AY

C2

C3

E1

E2

E3

0
1 0

1

E2

E1

E2

E3

E1

Figure 3. The residue comparator based on [8].

2n-bit CSA with EAC

2n-bit CSA with EAC

2n-bit 1’s complement

X*

C2

n-bit binary
comparator

x2

y2

C1

E1

E2

EXY

CXY0

1

E1

Y*

2n-bit binary
comparator

X*

E2

E1

(a) Converter [8] (b) Comparator

1603

modifications are based on the formula 21 2 1nA B C x
−

+ + − ,
where the final modulo summation requires to use 2n-bit
1’s complement adders. Thus the proposed comparator
reduces the modulo size by half. Since the modulo part is
the critical path of the residue comparator, a more efficient
design is obtained compared to all residue comparators
based on CRT converters.

Table 1. Performance comparison of CRT-based residue comparators.

Comparator
OR/

AND

XOR/

XNOR
FA INV MUX n-bit 1’s com-

plement adder

2n-bit 1’s
complement

adder

n/n+1-bit
binary com-

parator

2n-bit
binary com-

parator
Delay

[8]-based 4n-2 4n 8n 4n 1 − 2 1 1 tINV+2tFA+tMUX +t1CA(2n)+tBC (2n)

Proposed logn n⎢⎣ ⎥⎦ − 4n 2n 6n+2 2 − 3 − log n⎡ ⎤⎢ ⎥ tOR+tFA+5tMUX+t1CA(n)+tBC(n+1)

Table 2 is the performance summary of the previous resi-
due comparison algorithms for M1. The “complexity” re-
fers to the largest modulo operations or the largest integers
involved in the residue comparison operation, which indi-
cates the delay and the complexity of the residue compara-
tors. It can be noted that modulo 2 is the only required
modulo operation in the proposed residue comparison algo-
rithm and all of the previous algorithms are more complex
than our new algorithm. Moreover, they all assume the use
of ROM look-up tables that are expensive and not suitable
for low power designs. Besides, due to the complexity and
the ROM-based property of the previous residue compari-
son algorithms, there is no feasible VLSI design of residue
comparators having been presented for these algorithms.
In summary, our new algorithm is the best residue com-
parison algorithm based on the criteria listed in Table 2,
which uses the smallest modulo operation, excludes the
utilization of ROM look-up tables and does not introduce
any redundant modulus.

1n −

CONCLUSION
The proposed residue comparison algorithm and its appli-
cation to M1 provide a novel way to design size-reduced,
fast and ROM-free residue comparators using the smallest
modulo operation without introducing any redundant
modulus. Other residue algorithms such as sign test, over-
flow detection and division might benefit too. It is expected
that the proposed technique will have many other applica-
tions in RNS study.

REFERENCES
[1] N. Szabo and R. Tanaka, Residue Arithmetic and its
Applications to Computer Technology. New York:
McGraw-Hill, 1967.
[2] D. D. Miller, R. E. Altschul, J. R. King and J. N. Polky,
“Analysis of the residue class core function of Akushskii,
Burcev and Pak,” in Residue Number System Arithmetic,
Modern Applications in Digital Signal Processing, M. A.
Soderstrand, W. C. Jenkins, G. A. Jullien, and F. J. Taylor,
eds. New York, IEEE Press, paper 7-2, 1985, pp. 390-401.
[3] M. Lu and J. Chiang, “A novel division algorithm for
the residue number system,” IEEE Trans. Computers, vol.
41, No. 8, pp. 1026-1032, August 1992.
[4] G. Dimauro, S. Impedovo and G. Pirlo, “A new tech-
nique for fast number comparison in residue number sys-
tem,” IEEE Trans. Computers, vol. 42, No. 5, pp. 608-612,
May 1993.
[5] Y. Wang, X.Song and M. Aboulhamid, “A new algo-
rithm for RNS magnitude comparison based on new Chi-
nese remainder theorem II,” IEEE Ninth Great Lakes sym-
posium on VLSI, pp. 362-365, 1999.
[6] Shaoqiang Bi, Wei Wang and Asim Al-Khalili,
“Modulo deflation in (2n +1, 2n, 2n –1) converters”, Proc.
IEEE International Symposium on Circuits and Systems,
vol. 2, pp. 429-432, 2004.
[7] Shaoqiang Bi, Wei Wang and Asim Al-Khalili, “New
modulo decomposed residue-to-binary algorithm for gen-
eral moduli sets”, Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 5, pp. 141-
144, 2004.
[8] S. J. Piestrak, “A high-speed realization of a residue to
binary number system converter,” IEEE Trans. CAS-II,
vol.42, pp. 661-663, Oct. 1995.

Table 2. Comparison of different algorithms.

 Complexity ROM
based

Only
for odd
moduli

Redundant
moduli

Feasible
VLSI
design

[2]
3

2
3 1

1

2 2 ()n n
i

i

w w w
=

+ − −∑ 2w yes yes yes no

[3] 3log(2 2)n n n− yes yes yes no

[4] Modulo (3 2) 2 1n⋅ − yes no no no

[5] Modulo () 22 1n − yes no no no

Proposed
Algorithm Modulo () 2 1n − no no no yes

1604

