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Abstract—The Chinese remainder theorem (CRT) and the mixed-radix conversion (MRC) are two classic theorems used to convert a
residue number to its binary correspondence for a given moduli set fPn; . . . ; P2; P1g. The MRC is a weighted number system, and it
requires operations modulo Pi only, and hence, magnitude comparison is easily performed. However, the calculation of the
mixed-radix coefficients in the MRC is a strictly sequential process and involves complex divisions. Thus, the residue-to-binary (R/B)
conversions and residue comparisons based on the MRC require a large delay. In contrast, the R/B conversion and residue
comparison based on the CRT are fully parallel processes. However, the CRT requires large operations modulo M ¼ Pn; . . . ; P2P1. In
this paper, a new mixed-radix CRT is proposed that possesses both the advantages of the CRT and the MRC, which are parallel
processing, small operations modulo Pi only, and the efficiency of making modulo comparison. Based on the proposed CRT, new
residue comparators are developed for the three-moduli set f2n � 1; 2n; 2n þ 1g. The FPGA implementation results show that the
proposed modulo comparators are about 20 percent faster and smaller than one of the previous best designs.

Index Terms—Chinese remainder theorem, mixed-radix conversion, residue comparator, FPGA.

Ç

1 INTRODUCTION

INTEREST in the residue number system (RNS) in the face of
standard number systems can be explained by the

emergence of application-specific integrated circuits (ASICs)
that benefit from the speed, area, and power advantage of the
RNS. Specifically, the RNS has been receiving significant
attention for high-speed digital signal processing (DSP)
computation with high precision for the intrinsic properties
of the RNS such as carry-free operations, parallelism, and
modularity. The RNS is defined in terms of a set of mutually
prime moduli that are independent of each other. Since there
is no carry propagation among arithmetic operations based
on each modulus, it is easy to implement RNS computations
in parallel, thus resulting in very high-speed and low-power
VLSI implementations [1].

However, due to the nonposition nature of the RNS, the
magnitude comparison between residue numbers is much
more complex than that in the weighed number system.
Other residue arithmetic functions such as sign test, over-
flow detection, and division suffer from the same difficulty.
This difficulty prevents a wide variety of general-purpose
computations from taking advantage of the residue arith-
metic. To do the residue number comparison, the traditional
techniques use the Chinese remainder theorem (CRT) or the
mixed-radix conversion (MRC) [1]. A direct implementation
of the CRT is inefficient since it is based on a large moduloM
operation, where M is the dynamic range of the RNS. The
MRC is a strictly sequential process and requires a long
delay. Some techniques based on the core function [2], parity

checking [3], or the diagonal function [4] have been
proposed to compare the magnitudes of residue numbers.
The core functions require an iterative process of descent
and lifting to find the critical core value. An improved
version of this technique was presented in [2] to avoid the
iterative process at the cost of a redundant modulus. A
different solution [3] to do the residue number comparison
assumes that all moduli of the moduli set are odd and ROM
lookup tables (LUTs) are mandatory to resolve the difficulty
in the determination of the operand parity. The diagonal
function [4] requires a large modulo SQ operation, which is
usually implemented using large ROM LUTs.

Another interesting technique is to do the residue
comparison based on the New CRT [5], which combines
the CRT and the MRC to reduce the residue computation
delay. Other similar techniques [6], [7] can also be used to
compare residue numbers. These techniques depend on
ROMs that are addressed by the residue to get the mixed-
radix (MR) representation for the ith orthogonal projection
ofX. Then, a log2n-level modulo adder tree is used to get the
MR digits x0i. However, Mohan has pointed out in [8] that the
last stage has carry propagation from the modulo adder
network of one residue to another and introduces a relatively
large delay. There is a large body of research on these
methods in the literature [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27].

Despite the theoretical validity of these algorithms, the
VLSI design of residue comparators faces challenges due to
the complexity and the ROM-based property of these
algorithms. It is important to develop new residue compar-
ison algorithms and propose VLSI comparators that are
moduli parity independent, minimizing the utilization of
ROM LUTs, and do not introduce any redundant modulus.

In this paper, a new MR CRT is proposed that possesses
both the advantages of the CRT and the MRC, which are
parallel processing, small operations modulo Pi only, and
the efficiency of making residue comparison. Based on
the proposed CRT, new residue comparators are developed
for the three-moduli set f2n � 1; 2n; 2n þ 1g. The FPGA
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implementation results show that the proposed modulo
comparators are about 20 percent faster and smaller than
one of the previous best designs.

The remaining sections of this paper are organized as
follows: In Section 2, a background overview of the RNS
and different CRT algorithms is provided. In Section 3, the
MR CRT is proposed. The proof of its correctness is
established based on the modified CRT. Then, a new
residue comparison theorem is proposed based on the MR
CRT in Section 4. The VLSI implementations of new residue
comparators for f2n � 1; 2n; 2n þ 1g are presented, and the
area cost and performance of the proposed comparator are
evaluated and compared with previous designs in Section 5
followed by the conclusion.

2 BACKGROUND MATERIALS

Let fPn; . . . ; P2; P1g be a set of positive numbers all greater
than one. The Pi’s are called moduli, and the
n-tuple set fPn; . . . ; P2; P1g is called the moduli set. In order
to avoid redundancy, the moduli of an RNS must be
pairwise relatively prime. For an integer number X, we
have xi ¼ X mod Pi (denoted as jXjPi ). Thus, a number X in
RNS can be represented as X ¼ ðxn; . . . ; x2; x1Þ. Such a
representation is unique for any integer X 2 ½0;M � 1�,
where M ¼ Pn; . . . ; P2P1 is the dynamic range of the moduli
set fPn; . . . ; P2; P1g [1]. To convert a residue number
ðxn; . . . ; x2; x1Þ to its binary representation X, the MRC
and the CRT are widely used.

Theorem 1 (MRC [1]). A number X can be computed by the
formula

X ¼
Xn
i¼1

viai; ð1Þ

where n > 1, vi ¼
Qi�1

j¼1 Pj for 2 � i � n, v1 ¼ 1, and ai,
which are called the MR digits, are computed by the formulas
Y1 ¼ X, Yi ¼ ðYi�1 � ai�1ÞjP�1

i�1jPi , and ai ¼ jYijPi .

We list a1, a2, and a3 as follows:

a1 ¼ x1;

a2 ¼ ðx2 � a1Þ P�1
1

�� ��
P2

��� ���
P2

;

a3 ¼ ððx3 � a1Þ P�1
1

�� ��
P3
� a2Þ P�1

2

�� ��
P3

��� ���
P3

:

MR representation is of great importance in residue
computation for the following two related reasons [1]: 1) the
MR system is a weighted number system, and hence,
magnitude comparison is easily performed, and 2) the MRC
procedure requires operations modulo Pi only. However,
the computation of the MR digits is a strictly sequential
process and is not as “parallel” as the CRT method. The
residue-to-binary (R/B) conversion and the residue com-
parison based on the MRC has a long delay and is not
suitable for high-speed design. In contrast, the CRT is a
fully parallel process.

Theorem 2 (CRT). The binary number X is computed by

X ¼
Xn
i¼1

Ni N
�1
i

�� ��
Pi
xi

�����
�����
M

; ð2Þ

where n > 1, Ni ¼M=Pi, and jN�1
i jPi is the multiplicative

inverse of jNijPi defined by kN�1
i jPiNijPi ¼ 1.

It can be noted that the CRT requires a binary inner
product operation followed by a large modulo M operation
that is not efficient. This inefficiency makes the CRT-based
RNS algorithms such as residue comparison and R/B
conversion slow and complex. This real drawback makes
VLSI design very difficult, especially for general moduli sets.
In the literature, there exist extensive studies of the CRT, and
some good CRT theorems have been proposed [28], [7].

Theorem 3 (New CRT II [28]). The following algorithm,
translate, finds the correct decimal representation of the RNS
number X ¼ ðx1; x2; . . . ; xnÞ.

Algorithm: translateððx1; x2; . . . ; xnÞ; XÞ
if n ¼ 2t > 2 (n is an even number greater than 2)

then

translateððx1; . . . ; xtÞ; L1Þ, M1 ¼
Qt

i¼1 Pi
translateððxtþ1; . . . ; xnÞ; L2Þ, M2 ¼

Qn
i¼tþ1 Pi

findnoðL1; L2;M1;M2; XÞ
end if

if n ¼ 2tþ 1 > 2 (n is an odd number greater than 2)

then

translateððx1; . . . ; xtÞ; L1Þ, M1 ¼
Qt

i¼1 Pi
translateððxtþ1; . . . ; xnÞ; L2Þ, M2 ¼

Qn
i¼tþ1 Pi

findnoðL1; L2;M1;M2; XÞ
end if

if n ¼ 2 then

findnoðx1; x2; P1; P2; XÞ
end if

if n ¼ 1 then

X ¼ jx1jP1

end if

Procedure findno is defined as follows:

Algorithm: findnoðx1; x2; P1; P2; XÞ
find a k0 such that jk0P2jP1

¼ 1

X ¼ x2 þ jk0ðx1 � x2ÞjP1
P2

It can be noted that the New CRT II is designed using a
divide-and-conquer approach. Each modulo multiplier in
the New CRT II is bounded by size

ffiffiffiffiffi
M
p

. Thus, efficient
designs can be obtained based on the New CRT II for general
moduli sets. However, the New CRT II utilizes logn-level
modulo multipliers in sequence, which means that the total
delay caused by the modulo operations increases with the
number of the moduli that is OðlognÞ times.

Theorem 4 (modified CRT [7]). Given the moduli set
fPn; . . . ; P2; P1g, the residue number xn; . . . ; x2; x1 is con-
verted into the binary number X by

X ¼ x1 þ P1

Xn
i¼1

wix
0
i

�����
�����
Pn...P2

; ð3Þ

w h e r e n > 1, w1 ¼ ðN1jN�1
1 jP1

� 1Þ=P1, wi ¼ Ni=P1,
x01 ¼ x1, and x0i ¼ jN�1

i jPixi, for i ¼ 2; 3; . . . ; n.

Comparing the CRT and the modified CRT, it can be noted
that the modified CRT reduces the modulo base byP1. Thus, it
leads to an efficient converter design. However, for the
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moduli sets with a large size, the modified CRT is still slow. If

the modulo base can be further reduced and the delay

becomes independent of the size of the moduli sets, then a

more efficient converter design can be obtained. Bi et al. in

[29] have proposed a modulo reduction theorem that can be

used to develop the new MR CRT in the next section.

Theorem 5 (modulo reduction theorem [29]). Given the

integers K;Pn; . . . ; P2; P1 and n > 1, we have

jKjPn ...P2P1
¼ jKjP1

þ
Xn�1

m¼1

Ym
i¼1

Pi
KQm
i¼1 Pi

� �����
����
Pmþ1

" #
: ð4Þ

In the next section, we will propose the new MR CRT.

We need to use the following properties:

Lemma 1. j2n0Xj2n�1 ¼ xn�n0�1 . . .x0xn�1 . . .xn�n0
for an n-bit

binary number X.

Lemma 2. j �Xj2n�1 ¼ xn�1 . . .x0 for any nonzero n-bit binary

number X.

3 THE NEW MIXED-RADIX CRT

In this section, we propose a novel MR CRT.

Theorem 6. Given fPn; . . . ; P2; P1g, the magnitude of a residue

number X ¼ ðxn; . . . ; x2; x1Þ is calculated as follows:

X ¼
Xn�2

m¼1

�mþ1

Ymþ1

i¼1

Pi

" #
þ �1P1 þ �0; ð5Þ

where �mþ1 ¼
Pmþ2

i¼1 �ixi
�Qmþ1

i¼2 Pi

j k��� ���
Pmþ2

, �1 ¼ j�1x1 þ
�2x2jP2

, �0 ¼ x1, n > 1, �1 ¼ ðN1jN�1
1 jP1

� 1Þ=P1, �i ¼
MjN�1

i jPi=P1Pi, and M ¼ Pn; . . . ; P2P1 for i ¼ 2; 3; . . . ; n.

The floor function is indicated by b�c.
Proof. The modulo operation of Theorem 4 can be

decomposed using Theorem 5 as follows:

X ¼x1 þ P1

Xn
i¼1

wix
0
i

�����
�����
Pn...P2

¼x1 þ P1

Xn
i¼1

wix
0
i

�����
�����
P2

þ
Xn�2

m¼1

Pn
i¼1 wix

0
iQmþ1

i¼2 Pi

$ %�����
�����
Pmþ2

Ymþ1

i¼2

Pi

2
4

3
5

8<
:

9=
;

¼x1 þ P1

Xn
i¼1

wix
0
i

�����
�����
P2

þP2P1

Pn
i¼1 wix

0
i

P2

� �����
����
P3

þ � � � þ Pn�1 . . .P2P1

Pn
i¼1 wix

0
i

Pn�1 . . .P3P2

� �����
����
Pn

:

Notice that

Xn
i¼1

wix
0
i ¼w1x

0
1 þ

N2

P1
x02 þ

N3

P1
x03 þ � � � þ

Nn

P1
x0n

¼
N1 N

�1
1

�� ��
P1
�1

P1
x1 þ P3P4 . . .Pn N

�1
2

�� ��
P2
x2 þ P2P4

. . .Pn N
�1
3

�� ��
P3
x3 þ � � � þ P2P3 � � �Pn�1 N

�1
n

�� ��
Pn
xn

¼ �1x1 þ �2x2 þ � � � þ �nxn;

where �1 ¼ ðN1jN�1
1 jP1

� 1Þ=P1, �i ¼MjN�1
i jPi=P1Pi, and

M ¼ Pn; . . . ; P2P1 for i ¼ 2; 3; . . . ; n. Thus, we have

X ¼x1 þ P1j�1x1 þ �2x2jP2
þ P2P1

�1x1 þ �2x2 þ �3x3

P2

� �����
����
P3

þ P3P2P1
�1x1 þ �2x2 þ �3x3 þ �4x4

P2P3

� �����
����
P4

þ � � � þ Pn�1 . . .P2P1
�1x1 þ �2x2 þ � � � þ �nxn

P2P3 . . .Pn�1

� �����
����
Pn

¼�0 þ �1P1 þ
Xn�2

m¼1

�mþ1

Ymþ1

i¼1

Pi

" #
:

tu
Theorem 6 decomposes the large modulo M ¼

Pn; . . . ; P2P1 operation of the CRT to a number of small
operations modulo Pi only. Theorem 6 provides an MR form
of the CRT that converts residue numbers to weighted
numbers, and hence, magnitude comparison is easily
performed. This New CRT is different from the MRC
process. The calculation of the MR coefficients in the MRC
is a strictly sequential process, whereas all �i’s of Theorem 6
can be computed in a fully parallel way. Hence, Theorem 6
possesses both the advantages of the CRT and the MRC,
which are parallel processing, small operations modulo Pi
only, and the efficiency of making residue comparison, and
thus leads to efficient VLSI designs of residue comparators.

4 RESIDUE NUMBER COMPARISON

The MR CRT considerably reduces the complexity of the
CRT by decomposing the large modulo M operation to
several small modulo operations in parallel. In this section,
we use this parallelism to present new residue comparison
algorithms for f2n � 1; 2n; 2n þ 1g that are highly concurrent
and suitable for VLSI implementation.

Definition 1. We define �n�1; . . . ; �1; �0 in Theorem 6 as the
kernel set of X ¼ ðxn; . . . ; x2; x1Þ and denote it as
EðxÞ ¼ ð�n�1; . . . ; �1; �0Þ.
Similarly, we can define the kernel set EðyÞ ¼

ð�n�1; . . . ; �1; �0Þ for Y ¼ ðyn; . . . ; y2; y1Þ. With Definition 1,
the comparison of two residue numbers is simplified to
comparing their kernel sets [30], [9]. Given any two residue
numbers X ¼ ðxn; . . . ; x2; x1Þ and Y ¼ ðyn; . . . ; y2; y1Þ with
the general moduli set fPn; . . . ; P2; P1g, we can do the
comparison using their kernel sets EðxÞ ¼ ð�n�1; . . . ; �1; �0Þ
and EðyÞ ¼ ð�n�1; . . . ; �1; �0Þ. Without losing generality,
assuming �h and �h are the first occurring pair of nonequal
elements in EðxÞ and EðyÞ respectively, namely, �h 6¼ �h
and �j ¼ �j for n > j > h � 0, we have that if �h > �h, then
X > Y ; else, X < Y . However, if �h ¼ �h for n > h � 0, then
we have X ¼ Y .

Based on Theorem 6 and Definition 1, we can directly
derive a new residue number comparison algorithm for the
most popular three-moduli set f2n; 2n þ 1; 2n � 1g as the
following.

Theorem 7. Given any two positive integers X ¼ ðx3; x2; x1Þ
and Y ¼ ðy3; y2; y1Þ with the moduli set f2n � 1; 2n; 2n þ 1g,
we can do the comparison using their kernel sets EðxÞ ¼
ð�2; �1; �0Þ ¼ ðAX;BX; x1Þ a n d EðyÞ ¼ ð�2; �1; �0Þ ¼
ðAY ;BY ; y1Þ. For the first occurring �h 6¼ �h, namely,
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�j ¼ �j, where 3 > j > h � 0, we have that if �h > �h, then

X > Y ; else, X < Y . However, if �h ¼ �h for 3 > h � 0,

then we have X ¼ Y . Here, AX and BX are defined as follows

(AY and BY can be calculated in the same way):

X ¼ ð2n þ 1Þ2nAX þ ð2n þ 1ÞBX þ x1; ð6Þ

where n > 1, and

AX ¼

TX1
þ TX2

þ TX3
j j2n�1;

for x1 2 ½0; 2n � 1�; x2 � x1;

TX1
þ TX2

þ TX3
� 1j j2n�1;

for x1 2 ½0; 2n � 1�; x2 < x1;

ð2n�1 � 1Þ þ TX2
þ TX3

�� ��
2n�1

;

for x1 ¼ 2n;

8>>>>>>>><
>>>>>>>>:

BX ¼
jx2 � x1j2n ; for x1 2 ½0; 2n � 1�;
x2; for x1 ¼ 2n;

�

where

TX1
¼ j2n�1x1j2n�1 ¼ x1;0x1;n�1 . . .x1;1;

TX2
¼ j � x2j2n�1 ¼ x2;n�1 . . .x2;0;

TX3
¼ j2n�1x3j2n�1 ¼ x3;0x3;n�1 . . .x3;1:

Proof. For f2n; 2n þ 1; 2n � 1g, referred to Theorem 6, we

have X ¼ ð2n þ 1Þ2nAX þ ð2n þ 1ÞBX þ x1, where n > 1,

and

AX ¼
ð22n�1 � 1Þx1 þ ð2n � 1Þ2x2 þ 22n�1x3

2n

$ %�����
�����
2n�1

¼ 2n�1x1 þ 2nx2 � 2x2 þ 2n�1x3 þ
x2 � x1

2n

j k��� ���
2n�1

;

BX ¼ ð22n�1 � 1Þx1 þ ð2n � 1Þ2x2

�� ��
2n

¼ x2 � x1j j2n :

1. I f x1 2 ½0; 2n � 1�, n a m e l y , x1;n ¼ 0, s i n c e
x22½0; 2n�1�, we have x2�x12½�ð2n�1Þ; 2n�1�:

I. For x2 � x1, x2 � x1 2 ½0; 2n � 1�; then,
ðx2�x1Þ=2n2½0; 1Þ. Thus, ðx2�x1Þ=2nb c¼0.
We have

AX ¼ 2n�1x1 þ 2nx2 � 2x2 þ 2n�1x3

�� ��
2n�1

¼ 2n�1x1 � x2 þ 2n�1x3

�� ��
2n�1

¼ TX1
þ TX2

þ TX3
j j2n�1;

BX ¼ jx2 � x1j2n ;

where

TX1
¼ j2n�1x1j2n�1 ¼ x1;0x1;n�1 . . .x1;1 by Lemma 1;

TX2
¼ j � x2j2n�1 ¼ x2;n�1 . . .x2;0 by Lemma 2;

TX3
¼ j2n�1x3j2n�1 ¼ x3;0x3;n�1 . . .x3;1 by Lemma 1:

II. For x2 < x1, x2 � x1 2 ½�ð2n � 1Þ; 0Þ; then,
ðx2 � x1Þ=2n 2 ð�1; 0Þ. We have

AX ¼ 2n�1x1 þ 2nx2 � 2x2 þ 2n�1x3 � 1
�� ��

2n�1

¼ TX1
þ TX2

þ TX3j j2n�1;

BX ¼ jx2 � x1j2n :

2. If x1 ¼ 2n, namely, x1;n ¼ 1, since x2 2 ½0; 2n � 1�,
we have x2 � x1 2 ½�2n;�1�; thus, bðx2 � x1Þ=
2nc 2 ½�1; 0Þ. We have

AX ¼ 2n�1x1 þ 2nx2 � 2x2 þ 2n�1x3 � 1
�� ��

2n�1

¼ 2n�12n � 1� x2 þ 2n�1x3

�� ��
2n�1

¼ ð2n�1 � 1Þ þ TX2
þ TX3

�� ��
2n�1

;

BX ¼ jx2 � x1j2n
¼ jx2 � 2nj2n
¼ x2:

In conclusion, Theorem 7 holds for any residue number
ðx3; x2; x1Þ. tu
The example shown in Fig. 1 demonstrates the improve-

ment of the new residue comparison algorithms over the
previous algorithms [4], [5] in the literature.
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When using the diagonal function in [4], the above
residue number comparison needs a modulo-191 addition,
which is not the low cost modulus of 2n � 1. The length of
the modulo addition is 8 bits. By using the algorithm in [5],
which is based on the New CRT, two levels of 4-bit modulo
multipliers in series are required. Both the modulo-191
addition and the two modulo multipliers are implemented
using ROM LUTs as suggested by the authors [4], [5]. If
using the proposed algorithms, the same residue compar-
ison requires only one 3-bit modulo-7 addition, which is a
low cost modulus and can be implemented very efficiently
without using any ROM LUTs.

With Theorem 7, we can implement a high-speed design
of the residue number comparator for the three-moduli set
f2n � 1; 2n; 2n þ 1g. There are different ways to do the
implementations. The approaches using a parallel structure
(high-speed design) and using a cascade structure (cost-
effective design) are evaluated in the following section.

5 NEW RNS COMPARATORS FOR f2n�1; 2n; 2nþ1g
In this section, based on Theorem 7, we present two high-
speed and cost-effective residue comparators for the three-
moduli set f2n � 1; 2n; 2n þ 1g.

Based on Theorem 7, to compare two residue numbers
ðx3; x2; x1Þ and ðy3; y2; y1Þ, we need to calculate four values:
AX , BX, AY , and BY . Here, we only present how to derive
the values of AX and BX since we can get AY and BY by
the same way. It is easy to see that AX is on the critical
path that determines the delay of the comparator. Based on
Theorem 7, the formulas of AX can be rewritten as follows:

AX ¼
jZj2n�1; for x1 2 ½0; 2n � 1�; x2 � x1;
jZ � 1j2n�1; for x1 2 ½0; 2n � 1�; x2 < x1;
jZ0j2n�1; for x1 ¼ 2n;

8<
: ð7Þ

where Z ¼ TX1
þTX2

þTX3
, and Z0 ¼ ð2n�1�1ÞþTX2

þTX3
.

It is noted that there is a modulo decrement operation
jZ � 1j2n�1 in (7) that serves as a building block in the
proposed residue comparators. There are different ways to
implement the proposed comparators. One way is to do the
calculations of jZ � 1j2n�1 and jZj2n�1 in parallel and leads
to a high-speed concurrent design. The other way is to
compute jZj2n�1 at first and then use a modulo decrementer
to calculate jZ � 1j2n�1, which reduces the hardware
resources and results in a cost-effective design.

In the following sections, we first present two design
schemes of the AX and BX generator in Figs. 2 and 3,

respectively. Fig. 5 is the structure of a new modulo
decrementer. Then, we introduce the residue comparators,
as shown in Fig. 6.

5.1 Generator with Parallel Structure—Generator 1

We use the following three steps to present the parallel
structure of Generator 1, which is used to calculate the AX

and BX.

5.1.1 Calculation of jZj2n�1 and jZ0j2n�1

Based on (7), we can see that the only difference between Z
and Z0 is the first item, TX1

for Z and 2n�1 � 1 for Z0. We can
integrate the calculation of jZj2n�1 and jZ0j2n�1 using one
mux (multiplexer) array, one stage of n-bit carry-save adder
(CSA) with end-around-carry (EAC) and one n-bit 1’s
complement adder, as shown in Fig. 2. The detail structure
of CSA with EAC can be found in [31]. The selecting signal
of the mux array is x1;n. When x1;n ¼ 1, namely, x1 ¼ 2n, we
have the output of the mux array as 2n�1 � 1; otherwise,
we have the output as TX1

. And the n-bit 1’s complement
adder can be efficiently implemented as an n-bit carry-
propagation adder (CPA) with EAC, as suggested in [31], or
using the parallel-prefix adder architecture, as presented
in [32]. The former is a cost-effective design, but the delay is
large, whereas the latter provides a high-speed design built
at extra cost of complexity. Besides the above two design
schemes, there exist many other choices in the literature for
the 1’s complement adder whose area and delay strongly
depends on its implementation.

5.1.2 Calculation of jZ � 1j2n�1

According to (7), if we compute the value of jZ � 1j2n�1

simply as jTX1
þ TX2

þ TX3
� 1j2n�1, then we have to manage

four operands. We can simplify the computation as the
following. Based on Lemma 2, we have

jTX1
þ TX2

þ TX3
� 1j2n�1

¼ jTX1
þ TX2

þ TX3
þ ð11 . . . 10Þ2j2n�1:

It may be noted that the full adder (FA) cells having logic
one as one input can be simplified to an exclusive-NOR

(XNOR) gate and an OR gate, while the FAs having logic zero

1628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Fig. 2. AX and BX Generator 1.

Fig. 3. AX and BX Generator 2.
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as one input can be reduced to an exclusive-OR (XOR) gate
and an AND gate. Then, instead of arranging four operands
in two stages of CSAs and one n-bit 1’s complement adder
to compute jTX1

þ TX2
þ TX3

� 1j2n�1, we can perform the
summation of jTX1

þ TX2
þ TX3

þ ð11 � � � 10Þ2j2n�1, as shown
in Fig. 2. The n FA cells of the first stage of CSA can be
reduced to n XOR/XNOR gates and n AND/OR gates, thus
saving hardware.

5.1.3 Decision of Ax and Bx

Knowing the value of jZj2n�1, jZ0j2n�1, and jZ � 1j2n�1, we
can determine AX using a mux array. Based on (7), we can
see that AX equals to jZ � 1j2n�1 when x1 2 ½0; 2n � 1� and
x2 < x1. Otherwise, AX takes the value of jZj2n�1 or jZ0j2n�1.
Accordingly, the mux array uses the borrow out signal B of
the subtractor x2 � x01 as its selecting signal. Here, x01
consists of the n-bit least significant bits (LSBs) of x1. Then,
we have x1 ¼ 2nx1;n þ x01. If x1 2 ½0; 2n � 1� and x2 < x1,
namely, x1;n ¼ 0 and x2 < x01, then there is a borrow output
from the subtractor. Accordingly, AX has the value of
jZ � 1j2n�1, which is the output of 1’s complement adder 2.
If x1 2 ½0; 2n � 1� and x2 � x1, namely, x1;n ¼ 0 and x2 > x01,
there is no borrow, and AX takes the output of
1’s complement adder 1 as its value. Then, we have
AX ¼ jZj2n�1. When x1 ¼ 2n ) x1;n ¼ 1, x01 ¼ 0, there is no
borrow either. Thus, AX still takes the output of
1’s complement adder 1 as its value, namely, AX ¼ jZ0j2n�1.

If we represent the subtraction x2 � x01 as x2 � x01 ¼
2nBþD, where B is the borrow and D is the difference,
thenBX is the differenceD of the subtractor x2 � x01, namely,
BX ¼ D ¼ jx2 � x01j2n . For example, given x01 ¼ 6 ¼ ð110Þ2
and x2 ¼ 1 ¼ ð001Þ2, we have x2 � x01 ¼ �5 ¼ �23 þ ð011Þ2,
where BX ¼ D ¼ ð011Þ2. Based on Theorem 7, this property
can be easily verified as follows:

G i v e n X ¼ ðx3; x2; x1Þ ¼ ðjXj2n�1; jXj2n ; jXj2nþ1Þ, w e
know that x1 ¼ jXj2nþ1 ¼ 2nx1;n þ x01 and x2 ¼ jXj2n . If
x1 2 ½0; 2n � 1�, namely, x1;n ¼ 0, we have

BX ¼ jx2 � x1j2n ¼ x2 � 2nx1;n þ x01
� 	�� ��

2n
¼ x2 � x01
�� ��

2n
¼ D:

If x1 ¼ 2n, namely, x01 ¼ 0, we have

BX ¼ x2 ¼ jx2j2n ¼ x2 � x01
�� ��

2n
¼ D:

The whole design scheme of AX and BX Generator 1 can
be found in Fig. 2. It consists of n OR/AND gates, n XOR/
XNOR gates, n inverters, 2n muxes, 3n FAs, and two n-bit 1’s

complement adders. The delay of Generator 1 is the sum of
the delay of an XOR tXOR, the delay of an FA tFA, the delay of
an n-bit 1’s complement adder t1CAðnÞ, and the delay of a
mux tmux, i.e., tGenerator1 ¼ tXOR þ tFA þ t1CAðnÞ þ tmux.

5.2 Generator with Cascade Structure—Generator 2

Another way of computing AX and BX is to arrange the
calculations of jZj2n�1, jZ0j2n�1 and jZ � 1j2n�1 in a cascade
structure, as shown in Fig. 3. There are also three steps in
Generator 2. The first step is the calculation of jZj2n�1 and
jZ0j2n�1 which has the same implementation scheme as the
step 1 in Generator 2. The second step is the calculation of
jZ � 1j2n�1. Knowing that jZ � 1j2n�1 ¼ kZj2n�1 � 1j2n�1, we
can build in a modulo 2n � 1 decrementer following the first
step. Depending on x1;n ¼ 0 or 1, the input of the modulo
decrementer is jZj2n�1 or jZ0j2n�1, and the corresponding
output is jZ � 1j2n�1 or jZ0 � 1j2n�1. Based on (7), we decide
the correct values of AX and BX using a mux array in the
third step. The selecting signal is the borrow out signal B of
the subtractor x2 � x01. If x1;n ¼ 0 and x2 < x01, then there is a
borrow out from the subtractor. Accordingly, AX has the
value of jZ � 1j2n�1, which is the output of the modulo
decrementer. If x1;n ¼ 0 and x2 � x01, there is no borrow, and
AX takes the output of the 1’s complement adder as its
value, namely, AX ¼ jZj2n�1. When x1 ¼ 2n ) x1;n ¼ 1 and
x01 ¼ 0, there is no borrow out. Thus, AX still takes the
output of the 1’s complement adder as its value, namely,
AX ¼ jZ0j2n�1. As to the computation of BX , we have
discussed it in the third step of Generator 1. Namely, the
difference of the subtractor x2 � x01 gives the value of BX .

There are different ways to design the modulo 2n � 1
decrementer of jZ � 1j2n�1 [10]. An efficient design has been
given in [33].

Proposition 1. Given any n-bit unsigned binary input
Z ¼ Zn�1 . . .Z1Z0, we get its modulo decrement result Y ¼
jZ � 1j2n�1 as follows:

Y ¼ jZ � 1j2n�1 ð8Þ

¼ Zj 	 ðZj�1 þ � � � þ Z1 þ Z0Þ; 1 � j � n� 1;
Z0 	 ðZn�1 þ � � � þ Z1 þ Z0Þ; j ¼ 0:

�
ð9Þ

The decrement operation is illustrated by the example in
Fig. 4.
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Fig. 4. Example 2. Fig. 5. The mux-based modulo decrementer.
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Based on Proposition 1, we can implement a mux-based
modulo 2n � 1 decrementer, as shown in Fig. 5. In (9), the
XNOR and the XOR operations can be implemented using a
mux array. The series of OR operations Zn�1 þ � � � þ Z1 þ Z0

can be implemented using logn stages of OR gates, which is
called as the decision module in Fig. 5. Then, the delay
introduced by this mux-based modulo decrementer is only
the delay of dlogne OR gates plus the delay of a mux, where
d�e is the ceiling function. The required hardware consists
of n

2 logn

 �

OR gates, n inverters, and n muxes. For
implementation in an FPGA, the data flow in each
configurable logic block (CLB) is from left to right. The
LUT for combinational logic implementation is on the left,
and the muxes are on the right. The design in Fig. 5 pairs up
OR gates and muxes. This structure has the advantage that
it can be easily placed into the CLB and achieve the best
case performance.

The Generator 2 with cascade structure in Fig. 3 consists
of n

2 logn

 �

OR gates, 3n muxes, n inverters, 2n FAs, and one
n-bit 1’s complement adder. The delay of Generator 2 is the
sum of the delay of dlogne OR gates tOR, the delay of an FA
tFA, the delay of an n-bit 1’s complement adder t1CAðnÞ, and
the delay of three muxes tmux, i.e., tGenerator2 ¼ dlognetOR þ
tFA þ t1CAðnÞ þ 3tmux.

Knowing the values of AX , BX, AY , and BY based on
either Generator 1 or Generator 2, we can compare the
magnitudes of X and Y using Theorem 7. As shown in
Fig. 6, we use an n-bit binary comparator to compare AX

and AY . In the case of AX ¼ AY , we have E1 ¼ 1. If
AX > AY , then C1 ¼ 1, and E1 ¼ 0. If AX < AY , then
C1 ¼ 0, and E1 ¼ 0. Similarly, the other two binary
comparators are used to compare BX and BY and x1 and
y1. There are two output signals of the proposed residue
comparator. One is EXY , which is used to indicate X ¼ Y

when EXY ¼ 1. Since we have E1 ¼ E2 ¼ E3 ¼ 1 in the case
of X ¼ Y , we can generate EXY using a three-input AND

gate, as shown in Fig. 6. The other signal is CXY . If X > Y ,
then CXY ¼ 1. If X < Y , then CXY ¼ 0. Based on Theorem 7,
we can see that CXY ¼ C1 if E1 ¼ 0, CXY ¼ C2 if E1 ¼ 1 and
E2 ¼ 0, or CXY ¼ C3 if E1 ¼ 1 and E2 ¼ 1. Two muxes
connected in a cascade way as shown in Fig. 6 can
implement the logic for CXY . The proposed residue
comparator consists of two AX and BX generators, three
binary comparators, one three-input AND gate, and two
muxes. The delay of the proposed residue comparator is the
sum of the delay of an AX and BX generator, the delay of an
ðnþ 1Þ-bit binary comparator tBCðnþ1Þ, and the delay of two
muxes, i.e., tComparator ¼ tGenerator1or2 þ tBCðnþ1Þ þ 2tmux.

5.3 Performance Evaluation

In this section, we present the performance evaluation of
our new residue comparators and compare it with previous
related algorithms.

Based on Theorem 7, modulo 2n � 1 is the only required
modulo operation in the proposed residue comparison
algorithm for f2n � 1; 2n; 2n þ 1g. Table 1 is the summary of
the performances of the previous residue comparison
algorithms. The “complexity” refers to the largest modulo
operations or the largest integers involved in the residue
comparison operation, which indicates the delay and the
complexity of the residue comparators. It can be noted that
the previous algorithms are more complex than our new
algorithm. On the contrary, the proposed algorithm uses the
smallest modulo operation and does not introduce any
redundant modulus. In summary, our new algorithm is the
best residue comparison algorithm based on the criteria
listed in Table 1.

Recently, many fast R/B converter designs have been
presented for f2n � 1; 2n; 2n þ 1g in the literature. The CRT-
based residue comparison algorithms have benefited from
this technical innovation. For the convenience of compar-
ison, we show a residue comparator in Fig. 7 that is one of
the fastest existing VLSI converters for f2n � 1; 2n; 2n þ 1g.
Based on X¼x2þ2njðA1þA2þCnþnÞþ2nðB1þB2Þj22n�1¼
x2 þ 2nðBX þ 2nAXÞ, it has been proposed in [34] as
Converter III, which uses two n-bit adders to compute AX

and BX , as shown in Fig. 7a. Then, we can compare two
numbers X and Y , as shown in Fig. 7b.

To get a practical performance measure, the proposed
comparators and the comparator based on Converter III in
[34] are implemented using the most advanced Xilinx FPGA
technology. The synthesis and implementation tools are
Xilinx Synthesis Tool (XST) and Xilinx Integrated Software
(ISE) flow 9.2i. The target technology is a Xilinx Virtex-5
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Fig. 6. The proposed residue comparator.

TABLE 1
Performance Evaluation of Different Residue Comparison Algorithms
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xc5vlx50t-ff665-1 FPGA. The performance evaluation is
carried out in terms of area and delay at the layout level.
The reported area is evaluated using the number of
occupied slices. The results are presented in Table 2. It can
be seen that C2, which is based on Generator 1, is the fastest
design. C2 is faster than C1, which is based on Converter III
in [34], by around 20 percent for small and middle
wordwidth. For a large wordwidth such as 64 bits, the
percentage drops to around 12 percent. The reason is that
the FPGA routing becomes more difficult when the
wordwidth is large. When the design becomes more
complex, the available FPGA routing resource is compara-
tively decreased. As a consequence, more signals cannot be
routed locally and large interconnection delay is introduced.
For the applications where area is of prime importance, C3,
which is based on Generator 2, is the best choice since it
consumes around 20 percent less hardware resource than
the comparator in Fig. 7. The reason for such improvement
is that the final modulo summation of the converter in [34]

based on 22n � 1. The new residue comparator is derived

from Theorem 7, where modulo 2n � 1 is the only required

modulo operation. Thus, the proposed residue comparator

reduces the modulo size by half. Since the modulo part is the

critical path of the residue comparator, a high-speed

implementation is obtained compared to the previous

works.

6 CONCLUSION

In this paper, a new MR CRT has been proposed that

possesses both the advantages of the CRT and the MRC,

which are parallel processing, small operations modulo Pi
only, and the efficiency of making comparison. Based on the

proposed CRT, new residue comparators have been

developed for the three-moduli set f2n � 1; 2n; 2n þ 1g. The

FPGA implementation results show that the proposed

modulo comparators are about 20 percent faster and

smaller than one of the previous best designs.
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