
FPGA Particle Graphics Hardware

John Sachs Beeckler and Warren J. Gross

McGill University
Department of Electrical and Computer Engineering

Montreal, Québec Canada
{johnbeeckler, wjgross}@macs.ece.mcgill.ca

Abstract

Particle graphics simulations are well suited for model-
ing phenomena such as water, cloth, explosions, fire, smoke,
and clouds. They are normal realized in software, as part of
an interactive graphics application, such as a video game.
Their use in such applications is limited by the computa-
tional burden and resource competition they create for a
host application. We present the design of a Hardware Par-
ticle Machine, for implementation in an FPGA, intended
for accelerating real-time particle graphics in applications
such as video games. The Particle Machine is a system that
completely contains, manages, and executes particle graph-
ics simulations and rendering. The Particle Machine is a
system comprised of particle memory, a controller, and the
Particle Pipe, a pipelined Particle Update Processor. The
Particle Pipe has been synthesized to 130 MHz, on an Al-
tera Stratix FPGA, resulting in a potential throughput of
2.1 million PPF (particles per frame). This throughput is
achieved with minimal load on application and main sys-
tem performance.

1 Introduction

Particle graphics simulations are well suited for mod-
eling phenomena such as water, cloth, explosions, fire,
smoke, and clouds [1]. Dynamic, physical simulations
of large groups of individually simple particles can create
graphical models of objects and phenomena that are other-
wise difficult to render and model realistically. In these sim-
ulations, systems of simple elements such as point masses,
with minimal physical properties, structure, and rendered
detail, evolve together, interacting with an environment, in-
fluenced by forces, and subject to a set of rules designed to
produce desired effects. The general properties and evolu-
tion of the system are also determined by randomly varying

Figure 1. Particle Graphics Simulation

initial conditions, or more precisely, the stochastic prop-
erties of those initial conditions. The visual ensemble of
such a great group of particles, its behavior and evolution,
appearance, interaction with an environment, and inherent
random variation, exhibit a great degree of complexity and
detail, properly resembling the detail and randomness in na-
ture.

These graphical particle simulations are generally imple-
mented in software, embedded in applications. The embed-
ding of particle graphics in real-time, interactive applica-
tions, namely video games, presents a difficult challenge.
The size, complexity, and overall use of particle graphics in
video games are severely limited by the computational bur-
den that they impose on a host application, competing for
valuable resources.

This paper presents an new approach to creating real-
time particle graphics: a Hardware Particle Machine. The
Hardware Particle Machine is a coprocessor system which

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

features a particle update processor, the Particle Pipe, im-
plemented in reconfigurable logic.

Section 2 of this paper discusses the implementation,
challenges, and existing techniques of particle graphics, as
well as proposes particle graphics as a candidate for special
hardware. Section 3 introduces and discusses the Hardware
Particle Machine. The Particle Pipe design and its systems
are studied in more detail in Section 4. Finally results and
analysis of currently completed work are presented in Sec-
tion 5, and a conclusion is offered in Section 6.

2 Particle Graphics

2.1 General Implementation

A typical implementation of a particle system involves
all the particles of the system being loaded sequentially
from memory, updated, rendered, and then finally written
back to memory. At each frame, a new particle can be cre-
ated with randomly varying initial conditions. Dead par-
ticles, particles which have been alive for some time or
reached some state, can be deactivated and replaced by
newly initiated particles. For each particle processed, a
set of forces is calculated for a particle using its current
data as well as some environmental data. These forces
might included gravitational and electrical forces, vortex
forces, wind and current forces, viscosity, friction, explo-
sive forces, spring forces, and anything the designer invents
to create the desired system behavior and effects [2]. From
these forces a particle acceleration is calculated. Next, the
particle’s motion is integrated using a Euler integration step.
This gives a new velocity and position to the particle. Sub-
sequently, collision detection and collision resolution is per-
formed allowing particles to collide and interact with their
environment. Finally, the particle is rendered. A particle
could be rendered very simply as a single colored pixel,
a streak, or anything else. Since the visual detail of the
particle system comes from the massive collection of dis-
tinct and simple particles, even the most simple rendering
scheme, such as a colored pixed for each particle, can be
sufficient.

It is worth noting that particle graphics effects, at least
the type of large particle systems used for graphics are al-
most always first order. Even those described in [3] can
be considered as first order in the sense that the number of
inter-particle interactions is not proportional to n2. There
are some projects involving reconfigurable hardware for
2nd order particle calculations for off-line scientific simu-
lation [4], such as the Grape Project [5]. We, on the other
hand, are interested in particle simulations intended for real-
time graphics effects. Those which we are considering here
are limited to 1st order systems. In other words the parti-
cles do not interact with each other. They only interact with

the system and environment, allowing the entire system of
particles to be updated and processed in one single pass.

2.2 Problems and Challenges that Limit the Use
of Software Particle Systems

The embedding of particle graphics effects in live, in-
teractive graphical applications, such as video games, is
where the true challenge lies. As opposed to off-line ap-
plications, a particle system in a video game must be calcu-
lated and rendered with real-time constraints. In addition,
the management of a particle system in an live, interactive
application can only be allocated a very limited portion of
a computers system resources. These interactive graphical
applications, are demanding and typically make full use of
available computer resources. Therefore, due to the require-
ments of managing a large particle system and the inabil-
ity of a demanding application to devote the majority of its
computer system resources to a particle system, large soft-
ware implemented particle systems in real-time applications
are severely limited in size, number and complexity of ef-
fects, rendering complexity, and interaction with an envi-
ronment [6]. Software based particle systems in games are
currently limited to about 10,000 particles per frame [6].

2.3 Software Based Implementation

Particle systems in computer graphics are for the most
part a software task. The great strength of software is it’s
flexibility. A software particle engine can be built into a
graphics toolkit, and made to be completely flexible and
customizable, able to create a wide variety of systems and
effects. This flexibility is critical, and makes software im-
plementations desirable whenever possible. Unfortunately,
using current single processor computers, it is not possible
to embedded a large software particle system into a real-
time application without competing for resources with the
application.

One could argue that microprocessors are getting faster
every day and that what is not possible with software today
will be possible tomorrow. However, the problem at hand
is not a stand-alone task. We are talking about embedding
particle graphics into a fully demanding software applica-
tion. We have to assume that if tomorrow’s microproces-
sors are more powerful, then tomorrow’s applications will
take full advantage of that power and leave us again facing
the same problem: How to add a massive particle system to
an application, without competing with or burdening that
application.

2.4 Programmable GPU Based Implementation

Recently, powerful techniques have been developed
which make use of programmable floating point graphics

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

hardware to accelerate particle systems. This technique was
described in [6]. These techniques make use of the graphics
processor to support and accelerate particle graphics. The
approach is to create a set of double-buffered streams of
data, using the CPU and main memory, containing particle
position data, particle velocity data, and even a depth map
for collision detection. These steams are fed from the CPU
to the graphics processor, one pass for each “transforma-
tion” that needs to be applied to the particle data. For each
pass, an output data stream is created from an input stream
by software executing on the graphics processor in the form
of a “pixel shader” program. The CPU creates a particle
data stream in main memory, feeds it to the graphics pro-
cessor which has been programmed to performs some cal-
culation on the particles in that stream, and then obtains a
stream containing data with updated values. The GPU sup-
ported systems [6] are reported to enable the implementa-
tion of systems as large as 512x512 particles, while sharing
the graphics processor with other tasks. Currently this ap-
proach is not capable of implementing collisions with ob-
jects of arbitrary geometry, forces being associated with
particles themselves, or any kind of 2nd order effect. This
technique alone without an application is able to create par-
ticle systems with as many as one million particles, but the
number and complexity of effects are limited.

This work has succeeded in moving parts of the work
involved in managing a particle system to graphics hard-
ware, when it can be conveniently rendered without being
constrained by CPU to graphics hardware communication
limits. However, the particle system is not isolated from the
CPU and main memory. It continues to require CPU prepa-
ration and work at each stage of the process, thus creating
a burden limiting the size and extent of particle graphics
in full featured applications. Additionally, the technique re-
quires multiple passes or streams of data for each update cy-
cle of a particle system, and could potentially conflict with
other GPU uses. Finally, it appears that a particle system
implemented in this way is not as flexible as a pure soft-
ware implementation.

2.5 Bigger and Better Particle Systems

What would happen if it were possible to embed a huge
particle graphics system into graphics applications without
any significant burden or cost to system performance? The
use of particle based simulations for modeling all kinds
of objects and phenomena would change drastically. The
scope of use of particle graphics would expand. In gen-
eral, dynamic physical simulations on a fine grained particle
level could become an essential part of modeling. All par-
ticle systems could be made larger, more detailed, and have
more complex and flexible behavior. Most importantly,
live rendered scenes could contain not one or two, but

numerous simultaneous particle system effects. One sin-
gle scene could model a number of objects using particles
without a significant decrease in quality. What is currently
only possible with pre-calculated and pre-rendered off-line
applications, could become a reality for live interactive ap-
plications.

2.6 An Ideal Solution for Particle Graphics

What characteristics must an ideal solution for particle
graphics have to realize these goals? Most critically, the
implementation must be able to completely isolate all
of the work and resources required to simulate, render,
and manage particle graphics from the main computer
resources which are needed for other tasks. The parti-
cle graphics implementation cannot burden or create unac-
ceptable competition for CPU time, memory accesses, or
graphics hardware usage. Secondly, although isolated from
the main system, a good implementation must allow for an
efficient, flexible, well defined, and adequate method of in-
teraction between application and particles. A good particle
system needs to be an interacting and colliding member of
its environment. Finally, it must be flexible and customiz-
able.

2.7 Particle Graphics as a Candidate for Hard-
ware Acceleration

Could particle graphics, more specifically the embedding
of particle graphics into real-time applications, benefit from
custom hardware acceleration? Can reconfigurable logic be
used as a platform to realize a particle graphics hardware
acceleration system? How suitable is the problem of parti-
cle graphics for hardware acceleration via a reconfigurable
co-system?

The problem is completely parallel in nature. For 1st

order particle effects, every particle can be processed com-
pletely independently of every other particle in one single
pass (with a few exceptions such as depth sorting for render-
ing). Although all particles could theoretically be processed
simultaneously, software or GPU accelerated implementa-
tions still process particles sequentially. For this reason,
custom particle hardware has a great potential for dramatic
acceleration via a parallel hardware design

Secondly, upon investigating the sequence of tasks
which must be performed for each particle processed, one
finds that it is ideal for a pipeline structure. There is a sin-
gle, unidirectional and constant flow of data, which is easily
divided into separate, independent stages.

Particle graphics would benefit from a separate daughter
system with isolated particle memory and processing hard-
ware, completely containing the particle simulation. In this

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

Main System /
Graphic System

Particle Pipe

Integration

R
endering

C
ollision

particle i+2

particle i+1

Particle Memory

Force

particle i

Figure 2. Particle Data Flow

way, a large particle simulation can be managed without
competing for system resources.

3 Hardware Particle Machine

3.1 Particle Machine Overview

The Particle Machine, shown in Figure 2, is a self con-
tained system that completely contains, manages, and ex-
ecutes particle graphics simulations. This system could be
implemented in reconfigurable logic, on an FPGA card with
RAM in a general purpose PC, providing accelerated parti-
cle graphics support to application software. The Particle
Machine is a system comprised of particle memory, con-
trol logic, and the Particle Pipe, a pipelined Particle Update
Processor.

The Particle Machine is a system that will fully contain
a large pool of particles, with which any number of sim-
ulations can be simultaneously created. It carries out all
relative execution and tasks under the control of application
software. At each frame or simulation step, the Machine
will either provide software all or a select portion of simu-
lation results and current data. This data will be sent directly
to graphics hardware for rendering, or back to software for
integration into application graphics. These results may in-
clude contents such as: rendered graphical data for visible
particles including z-buffer depth values, all of the current
particle data, or selected collision information.

The basic operation of a particle simulation within the
Particle Machine is as follows. First, application software
sets up and controls properties and parameters for the de-
sired simulations by communicating with the Particle Ma-
chine controller. The controller will continuously initialize
new particles in particle memory when necessary, and will
set and control parameter registers in the Particle Pipe, thus
controlling its functionality. This occurs in response to soft-
ware requests specifying the parameters and properties of
simulations. At each frame, all of the particle data is loaded
sequentially from particle memory, and fed one particle per
clock cycle, into the Particle Pipe. Since the Pipe is fully
pipelined, one particle will complete processing on every
clock cycle. As each particle in the system is completed, it

is output from the other side of the Pipe with new updated
data, which is sent back to particle memory, and graphical
data.

3.2 Particle Memory

The Particle Machine needs high bandwidth and exclu-
sive access to a large memory, dedicated to containing the
entire pool of available particles. This memory, the par-
ticle memory shown in Figure 2, is part of the Particle
Machine and is separate and isolated from main system
memory. The Pipe accepts one particle data set as input
and provides another set as output on each clock cycle.
Therefore particle memory mush at least be able to pro-
vide (bparticle × 2 × fpipe) bits

sec of read and write access,
where bparticle is the bit width of one particle’s data set,
and fpipe is the frequency of the Particle Pipe clock. All ac-
cesses to particle memory, with the exception accesses for
particle initializations, are made in a regular, sequential pat-
tern. This means that bursting modes of RAM devices can
be fully exploited to help achieve the required access rate.

Particle data is stored in particle memory as one large
packed array. A particle’s data set, or it’s entry in particle
memory must include all the data fields needed to create
any of the simulations. These fields at least must include
a position vector, velocity vector, color, life count, and a
type field. The position and velocity vectors are 3 dimen-
sional vectors represented in the Pipe’s fixed point format.
The color field can be whatever the targeted system uses to
represent colors, but should correspond to the format used
by any color related effects or functional units included in
the Particle Pipe. In our case we use 16 bits for color. The
life count is an integer which is set to some value when a
new particle is initialized by the Machine controller. It can
be, depending on the simulation parameters, decremented
on every pass through the Pipe. When a particle’s life count
reaches zero, it is considered “dead” or inactive, and will not
contribute to the simulation. The particle memory entries
occupied by inactive particles are available for new parti-
cle initialization. Finally, there is a very special field in the
particle data, the type field. The Particle Machine contains
one giant array of particles in memory which will be re-
peatedly passed through the Particle Pipe. Although there
is one array, or pool, of particles, this will be use to create
any number of distinct simulations, running concurrently.
The type field will identify a particle’s data set as belong-
ing to one simulation, and will determine the functionality
of the Particle Pipe, on that particle’s data set at every latch
stage of the Pipe, as it moves though the Pipe.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

3.3 Particle Pipe

The Particle Pipe, shown in Figure 2, is a fully pipelined
particle update processor. Every clock cycle a new parti-
cle’s data set is accepted as input. Particle data sets travel
together synchronously, down the pipeline, from one latch
stage to the next. At any moment, all of the registers in one
latch stage, are filled with data for one particle. As each
particle’s data moves down the Pipe, it passes in and out
of many functional units, which perform all the operations
and tasks needed for a simulations. The Pipe includes four
major systems:

1. The Force System,

2. Integration and Updates,

3. Collision (Detection and Response),

4. Rendering.

3.3.1 Fixed Point Data Format

The VHDL hardware design for the Particle Pipe, is struc-
tured in such as way that many parameters and options
concerning the structure and functionality of the Particle
Pipe, can be configured at FPGA compile time by changing
a corresponding set of configuration constants in a pack-
age which is globally visible throughout the design. The
Pipe design will then be self-configured to implement these
changes. One important aspect of the Pipe design which
is configurable via these constants is the fixed point format
used within the Pipe.

There are several factors influencing the choice of an op-
timum fixed point representation. Primarily, the fixed point
format used in the Pipe will limit the precision and range
possible for particle simulations. A factor influencing the
decision is the width of particle memory. It is best for the
data set of each particle to fit exactly in an integer number of
words, for the memory device used. If the Pipe frequency is
relatively slow when compared to the the particle memory
access time, then particle data sets can be stored in multi-
ple words of memory. However, if the Pipe frequency and
memory access time are comparable, then each particle data
entry will need to fit in as few words as possible.

The Particle Pipe contains numerous fixed point ad-
ditions, subtractions, multiplications and divisions, all of
which are pipelined. These circuits, become more and more
complex with larger bit widths. Also, FPGAs contain ded-
icated hardware multiplier circuits, which the Particle Pipe
design needs use to implement many high speed multipli-
cations without using reconfigurable fabric. Altera Stratix
FPGAs and Xilinx Virtex FPGAs both have hardwired re-
sources for implementing 18x18 bit multiplications. For
these reasons, an 18 bit (4:14) fixed point format is currently

params (type c)

params (type b)

params (type a) param
s

particle data (i+2)

particle data (i)
param

s

particle data (i+1)
param

s

Parameter
Table

particle data (i+3)

Function Unit

type (i+3)

Figure 3. Pipe Parameter Selection

used in our Pipe. This format, most importantly, makes the
best use of dedicated multiplier circuits in FPGAs, while
still allowing particle data sets to fit perfectly into 64 bits,
making optimal use of particle memory.

3.3.2 Modularity and Extensibility

The Particle Pipe is organized in a sequence of sections and
function units. There is a section for each major operation
or class of tasks that need to be done for a general particle
graphics simulation. These sections, do not refer to to one
latch stage of the pipeline, containing one particle’s data set.
Rather, they are macroscopic operations, or related groups
of operations, such as the “Force System”. The interfaces
between blocks or sections are consistent and well defined.
The building block modules which make up sections, the
function units have consistent interfaces making them re-
placeable. By choosing and designing new sections which
provide desired operations while satisfying the interface, a
Particle Pipe can be customized for one particular use. This
FPGA-compile-time reconfigurability of the Pipe is an im-
portant feature, since a good particle graphics system must
be flexible and customizable.

3.3.3 Pipe Functionality Control

How is the functionality of the Pipe controlled? Recall that
the Particle Machine contains a giant pool of particles for
making a number of concurrent simulations. What’s more,
within one simulation, there may be several distinct kinds of
particles with different properties, subject to different forces
and rules. At any moment, the hundreds of latch stages
within the Particle Pipe each contain the data of different
particles. The Pipe needs to perform different operations on
each particle’s data set, at each latch stage, depending on
the type field of particle which is there.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

Each functional unit or block in the pipeline is enabled,
disabled, and customized by its own set of parameter reg-
isters. Before a particle enters the unit, a set of contents
for the unit’s parameter registers is selected from a table of
values, using the particle data’s type field as a selection in-
dex. This is depicted in Figure 3. These selected parameters
then pass through the function unit from latch stage to latch
stage, together with the particle data. At any instant, one
single function unit or block hardware, contains the particle
data of numerous different particles, each at a different latch
stage, and each at a different stage of execution. Each data
set is accompanied by its own parameter set, corresponding
to its type field, determines the functionality of the Pipe on
that particle data.

On the application side, to create simulations, applica-
tion software defines a number of groups of particles, or
“particle types”. These are sets of settings and parameters,
along with the groups of particles associated with them.
Software fills in the values of the parameter tables for each
function unit, specifying its configuration for each particle
type. For example, if there is a uniform force block in the
pipeline, its job is to add a vector to each particle’s sum
of forces. Such a block might have 2 configuration regis-
ters. One is an enable bit, which will determine if this block
should be enabled for a particle, and another will determine
what that force vector is. Now, imagine a simulation in
which there are 3 types of particles. Particles of type 1 will
not experience this force at all. Particles of type 2, will ex-
perience the force (1.0, 0.0, 0.0). Particles of type 3, will
experience the force (0.0,−2.2, 0.0). To accomplish this,
software will set values in the parameter selection tables for
this function unit, such that the enable bits for particle types
1, 2, and 3 are ′0′, ′1′, and ′1′ respectively, and the force
vector values for particle types 1 and 2, are (1.0, 0.0, 0.0)
and (0.0,−2.2, 0.0).

4 Particle Pipe Systems

4.1 Forces

The force system, shown in Figure 4, contains a set of
force units in parallel. The interface to each force unit, its
inputs and outputs are identical, and the total latch stage la-
tency each unit is declared in a package of constants. Due
to this well defined structure, the force system can easily by
modified to include any custom set of force units. New force
units can be made without knowledge of the Pipe design, as
long as they provide the required interface. Simple VHDL
generation scripts can be used to to include new force units
and select existing ones to customize a custom Pipe design
before FPGA compilation. Each force unit received as input
all current particle data, together with a set of type-selected
force parameters. Each force unit output is a 3–D force vec-

Force Unit

Force Unit

delay

delay

delay

Force Unit

Force Unit delay

Vector
Sum

particle data &
force params

total force
vector

force vectors

Figure 4. Force System

Vector
Subtract

delay
delay

zero
vector

visc.
force

visc.
unit
params

input
particle
data

(Vector Scale)

select

Vref
K

velocity

enable

3 Multipliers

Figure 5. Viscosity Force Unit

tor, in the Pipe fixed point format. The force vectors output
from each unit are each delayed and summed to one total
force vector.

Force units which can be included in the force stage in-
clude uniform forces, viscosity forces, vortex forces, attrac-
tive and repulsive forces, spring forces, “random nudge”
forces, and many more. In Figure 5 we take a look at the
implementation of a viscosity force unit. The unit calcu-
lates a general viscous force using:

�fvisc = �kvisc(�vref − �vparticle) , (1)

where �fvisc is the viscous force result, �kvisc is the scalar
viscosity constant, �vref is the reference velocity, analogous
to the velocity vector of the fluid in which the particle is
immersed, and �vparticle is the velocity vector of the particle.

4.2 Force-to-Acceleration

An acceleration vector must be obtained from the total
force vector. This is done in the Force-to-Acceleration stage
using the following relationship:

�a =
1
m

�ftotal . (2)

First, one hardware division obtains the 1
m term, which is

then multiplied with each component of the force vector.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

Coll. Detect Unit

Coll. Detect Unit

Coll. Detect Unit delay

delay

delay

Coll. Detect Unit delay

collision
info

particle pos.

geom
etry param

s

prioritizer

Figure 6. Collision Detection System

4.3 Integrate Motion

Each particle’s path of motion, or position over time,
needs to be integrated from the following differential equa-
tion which is equivalent to Equation 2:

d2�r

dt2
=

�f

m
. (3)

A particle system should use the simplest integration
method possible. This is the Euler step method. Verlet in-
tegration is also a possibility for particle graphics [6], but
a Euler step integration by far the best choice for hardware
due to its simplicity and explicit use of particle velocity,
needed in other parts of the Pipe. The position and velocity
vectors are updated in parallel as follows:

�vnew = �v + �a
�rnew = �r + �v .

(4)

4.4 Update Properties

Particle systems have many properties that can be
changed and updated using a simple rule to implement an
important feature. These include such optional and type-
configurable update rules as:

• Decrementing the life count,

• Fading particle colors by a color fade step,

• Killing particles which satisfy some condition such as
energy or position being beyond a certain value,

• Interpolating between particle colors based on some
value such as time or energy.

4.5 Collision Detection

Particles needs a well defined, flexible, and manageable
way of colliding and interacting with the geometry of the

virtual word in which the simulation resides. The following
solution, while having the obvious problem of being unable
to implement collision with arbitrary or complex geome-
tries, detects and resolves collisions with environments of
simple geometry efficiently and conveniently. As shown in
Figure 6, the collision detection system is comprised of a
parallel collection of collision detection units. Each col-
lision detection unit detects and reports collision informa-
tion with one type of geometry. For example, the plane
collision detection unit detects collisions of particles with
a plane, and reports information about that collision if de-
tected. The collision detection system shares the same mod-
ular approach that the force system does, making the inclu-
sion of new units for custom geometries easy. Inputs to the
collision detection units include the particle position and a
set of type-selected parameters, defining the collision ge-
ometry. Each collision detection unit output contains a col-
lision flag indicating whether or not a collision was in fact
detected, an estimate for the point of intersection, a surface
normal vector at the intersection point, and surface friction
and bounce factors. In our example of the plane detection
unit, parameter registers would define exactly what plane,
and on what side of that plane should the particles collide.
They also provide the surface properties, bounce and fric-
tion factors which will be used to respond to a detected
collision. Each collision detection unit detects for a basic
geometry. Collision detection for slightly more complex
shapes can be achieved by approximating the shape with
several of the basic detection units available.

Similar to the force system, collision detection units are
in parallel, and their outputs, collision information, are de-
layed long enough to be properly lined up. Finally, one set
of collision information is selected from the set of outputs
and passed on to the collision response stage.

4.6 Collision Response

Figure 7 shows a simplified version of the collision re-
sponse system. If in fact there was a collision detected, and
the collision flag received as part of the input collision in-
formation was set, the collision response system will need
to perform the following tasks:

• Replace the particle position by the intersection point
estimate.

• Scale the tangential particle velocity by the surface
friction factor.

• If the projection of the particle velocity on the surface
normal is negative, the particle must be “bounced”, by
multiplying the normal particle velocity by the bounce
factor.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

vector
scale

vector
add

select

select
select

vector
scale isect

point

vector
split

v
n

bounce flag

bounce
vel

pos
friction

coll. flag
p

tang

norm

Figure 7. Simplified Collision Response Sys-
tem

• Combine the new normal and tangential particle veloc-
ities to form a new total velocity vector.

The first operation in the collision response system,
brakes the particle velocity into a normal velocity vector
and tangential velocity vector (relative to the surface) using
the following relationships:

�vnorm = (�v · n̂surface)n̂surface

�vtang = �v − �vnorm .
(5)

First the dot-product of the particle velocity and surface nor-
mal is computed. The result of the dot-product is then used
to scale a delayed surface normal vector, which produces
the normal velocity component in vector form. Then, the
result of the scale, the normal velocity vector, is subtracted
from a delayed version of the original particle velocity, pro-
ducing the tangential velocity vector.

During the second section of collision response, the tan-
gential velocity vector is scaled by the friction factor, and in
parallel, the normal velocity vector is scaled by the bounce
factor:

�vtang ← kfriction�vtang

�vnorm ← kbounce�vnorm .
(6)

Recall that the dot product of the original particle velocity
vector and the surface normal has already been computed
during the first section of collision response. The sign bit of
that result is delayed so that it can be used here to determine
whether or not the particle should be bounced. If the sign
bit is set, the bounced normal velocity just found is used,
otherwise, a delayed version of the original normal velocity
is used.

Next the selected normal velocity, either bounced or not
bounced, is combined with the scaled tangential velocity,
to create a new total velocity vector which is the proper
response to a potential collision. Finally, if the collision
flag had been set, the particle velocity is replaced with this
new collided velocity, and the particle position is replaced

Dot

Dot

Dot

Add

Add

Add

kx

Mult

1/z

Mult

Mult

Add

Sub

delay

pixel x,y
vis. flag

dir

pos

up

pos

right

pos

rendering parameter registers

dx

dy

dz

ky

Mult

center x,y

visibility checks

z−value

Figure 8. Simplified Rendering System

with the intersection position estimate, otherwise, the orig-
inal position and velocity is used.

4.7 Rendering

A simplified version of the Pipe’s rendering system is
shown in Figure 8. Rendering is the last part of the Parti-
cle Pipe. At this stage we have all updated particle data.
Graphical information is calculated using the new particle
data together with rendering parameters set-up and updated
continuously by software. The graphical information calcu-
lated and output for each particle includes:

• a visibility flag,

• screen pixel coordinates,

• a color value,

• a z-buffer depth value.

As shown in Figure 2 at the end of the rendering stage, the
rendering results together with the updated particles are out-
put from the Pipe. Particle data will be set back to particle
memory, and rendering results will be used by the system.

The first task in rendering is to finding a set of view
coordinates for the particle. Simulations exists in world-
space and the particle’s position vector contains values in
world-space coordinates. To convert the particle’s coordi-
nates from world space to view space we apply the follow-
ing transform:

xview = �rworld · �right + dx

yview = �rworld · �up + dy

zview = �rworld · �dir + dz .

(7)

where �right , �up, and �dir are three vectors defining the
“camera’s” orientation in world space coordinates. The vec-
tor �d represents the location of the world origin in view
space coordinates. These values are held in parameter reg-
isters which software uses to control the view throughout a
simulation.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

After we have obtained view-space coordinates for the
particle position, the view-space position vector needs to be
projected onto a 2-D surface, the viewing screen.

xscreen = kx−scale xview
1

zview

yscreen = ky−scale yview
1

zview

(8)

The previous formulas provide coordinates relative to the
center of the screen. Generally pixel coordinates are most
conveniently specified relative to the top left corner of the
screen with positive values going down. Therefore the fol-
lowing formula is used to transform the screen coordinates
into more useful pixel coordinates.

xpixel = xscreen + xcenter

ypixel = ycenter − yscreen
(9)

Finally, the visibility of the particle is determined by
comparing the view-space z-value to a minimum value, and
checking that xpixel and ypixel are within the valid range.

5 Results

5.1 Functionally Equivalent Software Model for
Testing

We have a C software model that was created in parallel
with the VHDL hardware design. It is a bit accurate, func-
tionally equivalent model of the Particle Pipe that can be as
a numerical test bench for testing and verifying the Particle
Pipe HDL design, and testing and experimenting with new
function units and Pipe modules. It can be also used for
interactive testing and verification of the Pipe hardware de-
sign, graphically displaying interactive particle simulations
such as the one shown in Figure 1.

5.2 FPGA Resource Utilization and Synthesis Re-
sults

We have completed the design and verification of the
Particle Pipe VHDL hardware design, with a minimum
set of function units and features, sufficient for basic test-
ing and proof of concept. It was synthesized and placed-
and-routed for an Altera EP1S40 Stratix FPGA. A com-
plete demonstration system, supporting a working Particle
Pipe, integrated with an on–chip Nios microcontroller and
video system for graphical display of particle simulations
has been developed. The Particle Pipe alone was synthe-
sized to operate at 130 MHz, and the complete system–
on–chip demostration system, including the Nios microcon-
troller system, was synthesized for operation at 80 MHz in
the EP1S40 FPGA. Table 1 shows statistics for FPGA re-
source utilization after synthesis and FPGA fitting.

Logic cells Registers 18x18 Mult.
Avail. in FPGA 41,250 44,860 56

Entire Pipe 30,283 27,853 28
Force System 5,157 4,962 3

Coll. Detection 2,472 2,301 0
Coll. Response 12,699 12,031 12

Rendering 8,382 7,034 13
Nios µController 6,397 2424 1

Table 1. FPGA Synthesis Results

5.3 Analysis of Potential and Performance

What is the potential performance that can be expected
from a full implementation of the described Particle Graph-
ics Machine with all its components? How useful and ap-
plicable is this approach to particle graphics acceleration?
How does it compare to all software, and the GPU sup-
ported methods?

The Particle Pipe is the heart and engine of the design.
It has a potential throughput of 1 particle per clock cycle,
and requires a single pass through particle data for one up-
date cycle. Software implementations cannot come close
to processing 1 particle per clock cycle with 1 pass per
update. Software methods require the execution of large
amounts of code for each particle, each assembly instruc-
tion of which takes at least a clock cycle. GPU supported
particle systems [6] are not an exception, since they actually
are software methods, relying on software executed by both
the CPU and GPU. Pure software and GPU supported im-
plementations compete for main memory access, and in the
later case, GPU access. GPU supported implementations
are multi-pass, meaning that they require multiple cycles of
preparing data steams and processing those streams for a
single particle system update.

On the other hand, standard computer hardware operates
at frequencies from five to ten times faster than those which
we can expect from reconfigurable logic. The application
scope of particle system hardware is narrow, leading us to
believe that its implementation would be most appropriate
as a soft-core hardware accelerator, for use on general pur-
pose, user programmable reconfigurable hardware in a PC,
available for the acceleration user applications.

Software methods are flexible and easily customizable,
which is critical to graphics effects. If the Particle Ma-
chine is implemented as an application programmed, re-
configurable accelerator, it can be designed and customized
specifically to accelerate one application, providing a cus-
tom set of effects. Therefore, we believe it does offer the
necessary flexibility and ability to be extended, with the
downside of requiring hardware design for application cus-
tomization. GPU supported methods seem to be customiz-

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

able and extensible, but within some limitations. However
they have the desirable feature of requiring only software
changes for application customization. The strongest ad-
vantage to the Hardware Particle Machine implementation
is that the system cost and burden created by managing a
particle system does not increase with the number of par-
ticles as other methods do. This is in theory of course. In
practice, the Particle Pipe can probably not be used at its
potential due to practical implementation problems. These
include problems such as the processing of the graphical
data created by the Particle Machine, memory bandwidth
and access limitations, and bus communication limits.

The current design is a 130 MHz Particle Pipe with two
64 bit particle memory interfaces. However, the demon-
stration system implementation runs at 75 MHz, providing
the Particle Pipe with one dedicated, 32 bit particle mem-
ory, and a a seperate control & parameter bus system. The
demonstration system also includes an on–chip Nios micro-
controller with its own memory, bus system, and video sys-
tem for displaying interactive particle graphics simulations
created by the Pipe.

For an estimate of the theoretical, potential throughput
and performance of the current Pipe design, assume that the
Particle Pipe has access to a dedicated particle memory ca-
pable of reading and writing one particle data package for
every Pipe clock cycle, a is supported by a system capable
of receiving and displaying all of its graphical output data
with no delays. The total throughput of the Particle Pipe
itself is then 130

60frames/sec ≈ 2, 166, 666 PPF(particles per
frame). The particle simulation is totally contained in the
Particle Pipe, and thus does not effect main system perfor-
mance. As reported in [6], GPU supported particle systems
can achieve 250,000 PPF in a full featured application, and
pure software only 10,000 PPF.

6 Conclusion

In this paper we presented the design of a Hardware Par-
ticle Machine, for implementation in an FPGA, intended for
accelerating real-time particle graphics in applications such
as video games. The Particle Pipe has been synthesized to
130 MHz, on an Altera Stratix FPGA, resulting in a po-
tential throughput of 2.1 million PPF (particles per frame).
This throughput is achieved with minimal load on appli-
cation and main system performance. We have also im-
plemented a working demonstration system, to create and
display interactive particle graphics using the Particle Pipe
design.

References

[1] William T. Reeves. Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects. Computer Graph-

ics, 17(3):359-376, 1983.

[2] John van der Burg. Building an Advanced Particle
System. Game Developer Magazine, 2000.

[3] Tommi Ilmonen, Janne Kontkanen. The Second Order
Particle System. WSCG Proceedings, 2003.

[4] Navid Azizi, Ian Kuon, Aaron Egier, Ahmad Arabiha,
and Paul Chow. Reconfigurable Molecular Dynamics
Simulator. IEEE Symposium on Field-Programmable
Custom Computing Machines, 197-206, April 2004.

[5] Toshiyuki Fukushige, Makoto Taiji, Junichiro
Makino, Toshikazu Ebisuzaki, and Daiichiro Sugi-
moto. A highly parallelized special-purpose computer
for many-body simulations with an arbitrary cen-
tral force: Md-grape. The Astrophysical Journal,
468:51-61, 1996.

[6] Lutz Latta. Building a Million Particle System. Game
Developers Conference, 2004.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

