
5692 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

Fully Parallel Stochastic LDPC Decoders
Saeed Sharifi Tehrani, Student Member, IEEE, Shie Mannor, Member, IEEE, and Warren J. Gross, Member, IEEE

Abstract—Stochastic decoding is a new approach to iterative
decoding on graphs. This paper presents a hardware architecture
for fully parallel stochastic low-density parity-check (LDPC) de-
coders. To obtain the characteristics of the proposed architecture,
we apply this architecture to decode an irregular state-of-the-art
(1056,528) LDPC code on a Xilinx Virtex-4 LX200 field-pro-
grammable gate-array (FPGA) device. The implemented decoder
achieves a clock frequency of 222 MHz and a throughput of about
1.66 Gb/s at � � 4.25 dB (a bit error rate of �� �). It
provides decoding performance within 0.5 and 0.25 dB of the
floating-point sum-product algorithm with 32 and 16 iterations,
respectively, and similar error-floor behavior. The decoder uses
less than 40% of the lookup tables, flip-flops, and IO ports avail-
able on the FPGA device. The results provided in this paper
validate the potential of stochastic LDPC decoding as a practical
and competitive fully parallel decoding approach.

Index Terms—Field programmable gate arrays (FPGAs), itera-
tive decoding, low-density parity-check (LDPC) codes , stochastic
decoding.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) block codes [1]
are powerful linear error-correcting codes with decoding

performance close to the Shannon capacity limit [2]. These
codes have been considered for several recent digital commu-
nication standards such as the DVB-S2 [3], the IEEE 802.3an
(10GBASE-T) [4], the IEEE 802.16e (WiMAX) [5], and the
IEEE 802.11n (WiFi) [6] standards. LDPC codes are usually
iteratively decoded by means of belief propagation [7] using
message passing algorithms such as the Sum–Product Algo-
rithm (SPA) or its less-complex approximation, the Min-Sum
Algorithm (MSA) [8], with the expense of some decoding
loss. LDPC codes and their iterative decoding process can be
graphically represented using bipartite factor graphs [9]. Factor
graphs consist of two distinctive groups of nodes, variable
nodes (VNs) and parity-check nodes (PNs). Each edge in a
factor graph connects a VN to a PN. LDPC decoding involves
message passing between VNs and PNs over the edges of the
factor graph. This message passing scheme can be done concur-
rently, which inherently introduces a high level of parallelism
in LDPC decoding. This attractive feature together with the
excellent decoding performance of LDPC codes have made the

Manuscript received April 7, 2007; revised June 6, 2008. First published Au-
gust 19, 2008; current version published Ocrober 15, 2008. The associate editor
coordinating the review of this paper and approving it for publication was Prof.
Jarmo Takala. The authors acknowledge the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Canada Research Chairs (CRC),
and the Fonds Québécois de la Recherche sur la Nature et les Technologies
(FQRNT) for their financial support.

The authors are with the Department of Electrical and Computer Engineering,
McGill University, Montreal, Quebec, H3A 2A7, Canada (e-mail: sshari9@ece.
mcgill.ca; shie@ece.mcgill.ca; wjgross@ece.mcgill.ca).

Digital Object Identifier 10.1109/TSP.2008.929671

efficient high-speed implementation of LDPC decoders a focal
point of research in recent years.

In general, fully parallel and partially parallel architectures
are two main strategies for the implementation of LDPC de-
coders. In the fully parallel strategy, the entire factor graph is
implemented in hardware and all VNs and PNs in the graph
are updated concurrently. Fully parallel decoders are usually
implemented to achieve high-throughput decoding of a certain
LDPC code at the cost of high area consumption. This approach
is particularly considered for applications with high-speed re-
quirements such as the IEEE 802.3an (10GBASE-T) standard
[4]. The partially parallel approach instantiates a portion of the
factor graph. Partially parallel decoders employ memory and
hardware resource sharing to manage message passing between
different portions of the factor graph. The main benefits of this
approach are to minimize the area and/or to offer the flexibility
to support different block lengths and code rates in applications
such as IEEE 802.16e (WiMAX) [5] and IEEE 802.11n (WiFi)
[6]. However, the partially parallel approach has a much lower
throughput compared to the fully parallel approach. The par-
tially parallel approach is also used for the implementation of
LDPC decoders with very long block lengths where the fully
parallel approach is not feasible today, such as the LDPC code
for the DVB-S2 standard with a block length of 64 800 bits [10].

A major challenge in the implementation of LDPC decoders
is the complexity of the interconnections between VNs and PNs.
The complexity of the interleaver is due to the random-like lo-
cations of ones in the code’s parity-check matrix. This problem
is acute for practical fully parallel decoders (where the code
block length is usually large) and results in routing congestion
and interconnection problems [11]–[13]. The routing conges-
tion causes high area consumption and low logic utilization in
the decoder. For instance, with 4-bit precision of probability
messages, the 52.5 mm die size of the (1024,512) decoder in
[11] has a logic utilization of 50% in its core; the rest of the core
area is occupied by wires. In addition to high area consumption,
the presence of long physical wires in the interleaver increases
the power consumption and limits the maximum achievable
clock frequency and thus the throughput of a fully parallel
LDPC decoder (see [11]–[14]). To alleviate these problems,
different approaches are investigated in the literature at both
code design and hardware implementation levels. One approach
is to design “implementation-aware” codes. In this approach,
instead of randomly choosing the locations of ones in the
parity-check matrix (at the code design stage), the parity-check
matrix of an LDPC code is designed with constraints allowing
a suitable structure for decoder implementation and providing
acceptable decoding performance [15]–[20]. Another approach
used to alleviate the routing congestion problem is to use
bit-serial or digit-serial architectures to implement LDPC
decoders. Examples of this approach are the recent FPGA

1053-587X/$25.00 © 2008 IEEE

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

SHARIFI TEHRANI et al.: FULLY PARALLEL STOCHASTIC LDPC DECODERS 5693

implementation of a bit-serial (480,355) LDPC decoder in [21],
the ASIC implementation of a (660,480) LDPC decoder in
[12] based on bit-serial approximate MSA, and the MSA-based
bit-serial (256,128) LDPC decoder in [22]. Also, a message
broadcasting technique was recently suggested to alleviate the
routing congestion by reducing node-to-node communication
complexity in LDPC decoders [13]. Bit-flipping (BF) decoding
[1] is another approach for low-complexity LDPC decoding
with the cost of some performance loss. Bit-flipping methods
do not exploit message passing, they use the knowledge of
unsatisfied parity-checks to iteratively correct bit errors. Re-
cently, there has been research interest in various bit-flipping
methods such as weighted BF methods (see [23] and [24]) and
a newly proposed differential binary BF-based method [25].
Among conventional BF methods, the weighted BF method
in [24] performs well on many LDPC codes and has a per-
formance loss of about 0.5 to 1 dB, compared to SPA [24].
LDPC decoders can be implemented with a programmable
architecture or processor, which lend themselves to Software
Defined Radio (SDR). SDR is a programmable hardware plat-
form that consists of multiple processing and memory units.
SDR supports software implementations of wireless communi-
cation protocols for physical layers. SDR offers flexibility to
support codes with different block lengths and rates, however,
the throughput of SDR-based LDPC decoders is usually low
(e.g., see [26]). In addition to digital decoders, continuous-time
analog implementations have been considered for LDPC codes
[27] and other error-correcting codes [28]–[33]. Compared to
their digital counterparts, analog decoders offer improvements
in speed and/or power. However, because of the complex and
technology-dependent design process, the analog approach has
been only considered for short error-correcting codes. The only
reported analog LDPC decoder decodes a (32,8) code [27].

Stochastic decoding is a new alternative approach for
decoding LDPC codes. Stochastic decoding is inspired by
stochastic computation [34] where probabilities are converted
to streams of stochastic bits and complex probability operations
such as division and multiplication are performed on stochastic
bits using simple bit-serial structures. Early stochastic decoding
methods could only decode acyclic/simple codes such as very
short LDPC codes or Hamming codes [35]–[37]. Stochastic
decoding was also used for decoding a (256,121) Turbo product
code based on acyclic (16,11) Hamming component trellis
decoders [38], [39]. The earliest hardware implementation of
a stochastic LDPC decoder belongs to a specially-constructed
tail-biting (16,8) LDPC decoder [37]. The first practical sto-
chastic method for decoding LDPC codes was proposed in [40].
It was shown that with respect to the floating-point SPA, sto-
chastic decoding is potentially able to achieve almost identical
decoding performance for short LDPC codes and near-optimal
performance for practical (long) LDPC codes. The potential of
this method for low-complexity and fast decoding was recently
validated by an FPGA implementation of a (1024,512) regular
LDPC decoder with degree-3 VNs and degree-6 PNs [41]. This
decoder occupies about 36% of a Xilinx Virtex-4 LX200 FPGA
device. It also achieves a throughput of 706 Mb/s at a bit error
rate (BER) of [41].

Fig. 1. Typical factor graph and the interleaver for an ��� �� LDPC code. A
length-4 cycle is dashed. In a conventional implementation with � -bit repre-
sentation of messages, each edge requires �� wires (for two directions).

This paper presents an architecture for fully parallel sto-
chastic LDPC decoding. Compared to our previous work in
[41], this paper proposes several novel architectural techniques
that improve both the hardware and decoding performance
of stochastic decoders. The proposed architecture is applied
to a fully parallel stochastic LDPC decoder that decodes a
state-of-the-art irregular (1056,528) LDPC code on a FPGA.
To show the good decoding performance and the error-floor
behavior of the proposed architecture, the decoding perfor-
mance of (1056,528) and (1056,704) stochastic decoders are
compared to the floating-point SPA. It should be noted that
the floating-point SPA is considered as a nearly-ideal case for
LDPC decoding and has very high hardware complexity, hence,
the BER decoding performance of hardware architectures are
usually not compared to the floating-point SPA. This paper
also discusses the hardware performance and various attractive
features and tradeoffs offered by the proposed architecture. The
rest of the paper is organized as follows. Section II provides a
brief overview of LDPC codes, SPA, and stochastic decoding.
Section III describes stochastic LDPC decoding. Section IV
proposes the architecture for the fully parallel LDPC sto-
chastic decoder along with various novel architectural features.
Sections V and VI discuss the performance and tradeoffs, and
provide comparison with the state-of-the-art work. Finally,
Section VII gives the conclusions.

II. BACKGROUND

A. Review of LDPC Codes and the Sum–Product Algorithm

A binary LDPC code is defined as the null space of
a sparse parity-check matrix , , where

is the transmitted block containing information and
parity bits. This LDPC code can be represented by a factor graph
with VNs and PNs. The th VN, , is connected to th
PN if and only if in (see Fig. 1). The number of
edges connected to a node (in the interleaver) is referred to as
the degree of the node and represented as for the VNs and

for the PNs. In regular codes, and are fixed for all VNs
and PNs, respectively. In irregular LDPC codes, and vary
for different nodes.

The SPA is an iterative algorithm for decoding LDPC
codes. SPA uses soft information (probabilities) received
from the channel and iteratively processes them. The SPA

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

5694 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

makes decisions by comparing final probabilities to a threshold
value (hard-decision) at the end of the decoding process. Let

and respectively denote the th sample in the
transmitted and received block, in a binary phase-shift keying
(BPSK) transmission over an additive white Gaussian noise
(AWGN) channel. Also, let be the probability
message from the VN with to the PN with
and be the probability message from to .
Let represent the set of VNs connected to and,

represent the set of PNs connected to .1 The SPA
steps in the probability-domain can be described as follows
(see [9] and [42] for details).

1) Initialize the received probability for as
.

2) The sends to all connected PNs.
3) The PN sends to the VN :

(1)

4) The VN sends to the PN :

(2)

5) Stop decoding once a fixed number of iterations has been
exceeded or the estimated vector, , satisfies .
Otherwise, return to Step 3.

Due to the high (hardware) complexity of the SPA operations
in the probability-domain, the SPA is usually implemented in
the log-domain where channel probabilities are considered as
log-likelihood ratios (LLRs):

(3)

where and are the th transmitted and received symbols,
respectively, and is the LLR of . Using the log-domain
conversion, VNs calculate the summation of LLR messages and
PNs employ processing to compute their outgoing mes-
sages [42]. In MSA, the processing in PNs is approxi-
mated to reduce the complexity at the expense of about 0.5 to
1 dB performance loss, compared to the SPA [43], [44]. To com-
pensate for some of the loss, different improved methods are
suggested in the literature (e.g., see [45]).

B. Stochastic Computation and Decoding

In stochastic computation, probabilities received from the
channel are converted to streams of bits called Bernoulli se-
quences [34]. In this transformation, each bit in a stochastic
stream is equal to 1 with the probability to be represented.
Therefore, the observation of 1’s in a stream of bits, ,
determines the probability, i.e., . The trans-
formation of a probability to a stochastic stream is not unique,
therefore, different stochastic streams are possible for a given
probability. This also implies that the order/sequence of 1’s in
a stochastic stream is not important. For example, Fig. 2 shows

1This is without loss of generality since a higher degree nodes can be con-
verted to subgraphs containing only degree three nodes [9].

Fig. 2. Some possible streams for a probability of 0.8125.

Fig. 3. Early structure for a stochastic (a) VN and (b) PN [35], [40].

some possible streams for a probability of .
In each stream, 13 bits out of 16 bits are 1. Using stochastic
transformation, operations such as multiplication and division
on probabilities can be performed using simple structures. For
example, multiplication of two probabilities represented by
two stochastic streams can be performed by an AND gate and
a division of two probabilities can be approximated by a JK
flip-flop (see [34] and [46]).

Fig. 3(a) shows the early structure for a stochastic VN [35],
[40] and Fig. 3(b) illustrates the structure for a stochastic PN
[35] (see Appendix I for the proof of these operations). A sto-
chastic VN uses its previous output bit (i.e.,) when its
input bits are not equal. This is referred to as the hold state of the
VN for the corresponding edge. The decoding process proceeds
by VNs and PNs exchanging bits over the edges of the graph.
Each decoding round is called a decoding cycle (DC). A DC in-
cludes the exchange of one bit between VNs and PNs and thus
does not directly correspond to one iteration in the SPA [40].
The simplicity of the stochastic approach as well as its bit-se-
rial nature is appealing for LDPC decoding. However, these sto-
chastic structures are not sufficient for decoding practical codes.
Stochastic decoders are prone to the latching (lock-up) problem
when the code graph has cycles. The latching problem refers
to the situation where the existence of cycles in the code graph
correlates the stochastic streams and makes groups of stochastic
nodes stick into fixed states for several DCs [38], [40]. This sit-
uation is particularly more likely to happen when the PNs con-
nected to a VN in the cycle are in disagreement about the cor-
rectness of the received bit at the VN. In this case, the input of
the stochastic VN are not equal, therefore, the VN remains in
the hold state for several DCs and repeatedly outputs the same
bit. Also, as shown in [40], the latching problem is more pro-
nounced at high SNRs where the probabilities received from the
channel are very close to 1 (or 0) and hence bits in the equiva-
lent stochastic streams are mostly 1s (or 0s) and rarely change.
In this situation, the lack of random bit transitions (from 0 to

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

SHARIFI TEHRANI et al.: FULLY PARALLEL STOCHASTIC LDPC DECODERS 5695

1 and vice versa) within cycles prevents nodes from exiting the
fixed states they have locked in. The latching problem prevents
the affected nodes from converging to right decisions and hence
disrupt the convergence of the decoder to the right codeword and
severely degrades the BER decoding performance. The latching
problem is particularly acute for long LDPC codes because the
code graph has many cycles, particularly, short cycles such as
length-6 cycles (namely, 6-cycles) or length-4 cycles (4-cycles).
Due to these problems, early stochastic decoders could only de-
code simple/short or acyclic error-correcting codes.

III. STOCHASTIC LDPC DECODING

In order to circumvent the switching activity problem and re-
duce the latching problem, the noise-dependent-scaling method
and edge memories (EMs) are suggested in [40]. Scaling and
EMs are essential for decoding practical LDPC codes. In this
paper, we also propose internal memories (IMs) to improve
the BER performance of stochastic LDPC decoders, especially
when high-degree VNs are used.

A. Scaling Channel Reliabilities

Scaling methods have been previously suggested in the
literature for the performance improvement of SPA (e.g., see
[47] for details). In [40], A new and essential scaling method
for stochastic decoders (called noise-dependent-scaling) was
suggested. This method was used to provide a similar level of
switching activity over different ranges of SNRs, which results
in improved BER performance for stochastic decoders. In this
scaling method the received channel reliabilities are scaled by
a factor which is proportional to the noise level in the channel.
The scaled LLRs are, however, independent of channel noise
and thus the decoder does not need to estimate the noise in
the channel. Assuming a BPSK transmission over an AWGN
channel, the scaled LLR for the th received symbol in the
block is [40]

(4)

where is the th transmitted symbol in the block, is the
zero-mean AWGN sample with a power-spectral-density of
and, is the soft output of the channel (in the form
of a LLR). is a fixed parameter which is used as a maximum
magnitude for the received symbols. For example, for a BPSK
modulation can be set to 6. Also, is a fixed factor whose
value is chosen based on the best BER performance of the sto-
chastic decoder [40].

B. Edge Memories and Regenerative Bits

EMs are memories assigned to edges in the factor graph. EMs
are used to break the correlation between stochastic streams
using re-randomization to circumvent the latching problem. In
this respect, stochastic bits generated by a VN are categorized
into two groups: regenerative bits [41] and conservative bits.
Conservative bits are output bits which are produced in the hold
state and regenerative bits are output bits which are produced in

nonhold states [see Fig. 3(a)]. The essentials of the operation of
EMs are as follows.

1) EM are only updated with the regenerative bits. Therefore,
when a VN is not in the hold state, the newly produced re-
generative bit is used as the outgoing bit of the edge and
the EM is updated with this new bit. When the VN is in
the hold state for an edge, a bit is randomly chosen from
the corresponding EM and is used as the outgoing bit. This
mechanism breaks the correlation of stochastic streams by
rerandomizing stochastic bits and also reducing the corre-
lation caused by the hold state in a stochastic stream. The
reason is that every time the hold state happens, a bit is ran-
domly chosen from previous regenerative bits (which are
not generated in the hold state).

2) In order to facilitate the convergence of the decoder, EMs
need to have a time-decaying reliance (forgetting mecha-
nism) on previous regenerative bits and only rely on most
recent regenerative bits.

Different embodiments can be used to implement EMs. One
implementation which is used in this paper is to use an -bit
shift-register with a single selectable bit. In this implementation,
the shift register is updated with regenerative bits and in the case
of hold state a bit is (pseudo) randomly chosen from the shift
register using a (pseudo) randomly generated address. Clearly,
the length of the shift-register, , guarantees the time-decaying
reliance mechanism needed for an EM. Another possible im-
plementation for EMs is to transform regenerative bits to the
probability domain using up/down counters and then regenerate
the new stochastic bits based on the measured probability by
the counter. This implementation also needs to exploit time-de-
caying mechanisms such as saturating limits and feedback to
rely on recent (regenerative) bits.

C. Internal Memories

Regenerative bits are important for the proper operation of a
stochastic decoder. The lack of enough regenerative bits prop-
agating in the decoder results in less switching activity and a
higher possibility of latching. For this reason, the structure used
for constructing VNs is crucial for BER performance of sto-
chastic decoders. It is known that in general a VN can be con-
structed based on subgraphs of lower degree nodes [9], [35].
In this paper, the construction of stochastic VNs is also based
on subgraphs of low-degree subnodes (with). We also
propose to use internal memories (IMs) for each subnode in
high-degree VNs to significantly decrease the chance of the hold
state in a high-degree VN. This structure is shown in Fig. 4
where each IM is assigned to one subnode. The operation of
IMs is similar to EMs but the IM length is much shorter than

(it is only a few bits). An IM is updated with regenerative
bits produced by the subnode and in the case of the hold state
for a sub-node a bit is randomly chosen as the outgoing bit of
the subnode.

D. Summary of Stochastic LDPC Decoding

Upon receiving a block from an AWGN channel, channel re-
liabilities are scaled as in (4) and then transformed to stochastic
streams. Each VN receives one bit per DC and propagates its
outgoing 1-bit messages to the connected PNs. PNs check the

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

5696 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

Fig. 4. Construction of a VN based on IMs used for low-degree sub-VNs. An
EM is only used for the exit edge.

TABLE I
IRREGULAR LDPC CODES CHOSEN FROM THE IEEE 802.16e STANDARD

parities and send their 1-bit messages to VNs. The output of
each VN at the end of a DC is passed to an up/down counter in
which its sign-bit determines the hard-decision. This exchange
of bits between VNs and PNs will be stopped as soon as all
the parity-checks are satisfied or a maximum number of DCs is
exceeded.

IV. DECODER ARCHITECTURE

Table I summarizes the characteristics of two LDPC codes
considered in this paper. Both codes are irregular and belong
to the IEEE 802.16e (WiMAX) standard [5]. The code used for
implementation is the (1056,512) code. The (1056,704) code
is only used to study performance behavior. The reader should
note that this paper does not propose an LDPC decoder for the
WiMAX standard and the main reason to choose these codes
was to show the applicability of the stochastic approach to de-
code state-of-the-art irregular LDPC codes with high-degree
nodes designed for recent applications (using the fully parallel
design approach).

A. Scaling

We used lookup tables to apply scaling to the symbols re-
ceived from the AWGN channel. The input of each lookup table
is a 6-bit received symbol and the output is the corresponding
probability, represented in 7 bits. Probabilities in each lookup
table are calculated as

(5)

where is the scaled LLR according to (4). Note that due to the
symmetry in (5), a lookup table can store only half of the prob-
abilities. For example, it is possible to only store probabilities
for positive ’s (i.e., probabilities). When a is nega-
tive, an additional NOT operation can be performed on the sto-
chastic stream (during probability to stochastic stream conver-
sion). Using this scheme the size of each lookup table is
bits or 28 bytes. The implemented stochastic decoder employs

Fig. 5. Conversion of channel probabilities to stochastic streams.

44 lookup tables to apply scaling, and each lookup table seri-
ally generates probabilities for VNs. This uses

DCs,2 where is the number of DCs the decoder
spends to input channel reliabilities, apply scaling and output
the decoded bits.

B. Probability to Stochastic Stream Conversion

The conversion of each to the corresponding stochastic
stream is done by employing a 7-bit comparator as shown in
Fig. 5. In this structure, is fixed during the decoding opera-
tion and is compared to a (pseudo) random number, , which
changes at every DC. The output bit of the comparator is 1 when

and 0 otherwise. Therefore, the density of 1’s in the
output stochastic stream is . The random number in the
figure is generated by a distributed randomization engine (DRE)
which is described in Section IV-G. The output of each com-
parator is fed to one VN in each DC. The decoder, hence, needs
one comparator per VN.

An attractive advantage of using lookup tables to apply
scaling in stochastic decoders is that the precision of the lookup
tables’ output probabilities can be increased without a signif-
icant change in the decoder complexity. This is so because
the precision of probabilities does not affect the interleaver,
VNs or PNs. It only affects the size of lookup tables used for
scaling, the comparators and the DRE. This, however, is not
the case for SPA or MSA-based decoders where changing the
precision means significantly increasing the number of wires
in the interleaver. For the case of bit-serial SPA or MSA-based
decoders, increasing the precision increases the latency of each
iteration and hence reduces the throughput, because more clock
cycles are needed to bit-serially send messages between nodes.

C. Stochastic Variable Nodes

Fig. 6 depicts the architecture of VNs in the (1056,528) sto-
chastic decoder (only one output and its corresponding inputs
are shown). EM lengths of , , and
bits are used for , , and VNs, respectively.
EMs are implemented as shift-registers with a single selectable
bit using shift register lookup tables available in Xilinx Virtex
architectures. The architecture of VNs are based on two

subnodes. The architecture of VNs are based on
two and one subnodes. IM lengths of and

are used for and VNs, respectively.
A VN has two modes of operation, described as follows.
1) Partial Initialization Mode: Prior to the decoding oper-

ation and when the channel probabilities are all loaded into

2Here and in the rest of the paper, it is assumed that each DC takes one clock
cycle.

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

SHARIFI TEHRANI et al.: FULLY PARALLEL STOCHASTIC LDPC DECODERS 5697

Fig. 6. Architecture for (a) a � � � VN, (b) a � � � VN and, (c) a � � �

VN based on IMs and an EM (in each figure, only one output and its corre-
sponding inputs are shown).

the decoder, VNs start to initialize their EMs according to the
received probability. Although it is possible for EMs to start
from zero state [41], however, the initialization of EMs im-
proves the convergence of the stochastic decoder. In the imple-
mented decoder, we consider partially initializing the EMs to
16 bits. During the partial initialization, the EMs of each VN
are bit-serially updated with the output of the node comparator
for DCs.

2) Decoding Mode: After the partial initialization phase, the
decoding operation starts. Each VN in the Fig. 6, uses a signal
to determine if the VN is in the hold state or not

. When the VN is not in the hold state, the new regenerative
bit is used as the output bit and also to update the EM. In the
case of the hold state, a bit is randomly chosen from the EM.
This scheme is also employed in each subnode to update the
IMs. The random selection of bits in EMs and IMs are done
by (pseudo) random addresses which vary in each DC. These
addresses are also provided by the DRE in Section IV-G.

Due to the partial initialization scheme at the beginning of
the decoder operation, the range of (pseudo) random addresses
is limited to 4 bits (i.e., 0 to 15) for 40 DCs. This ensures that
during the hold state, a valid bit is picked from EMs. When
decoding proceeds for 40 DCs and EMs are updated, the DRE
produces full range addresses for EMs.

Fig. 7. Architecture of a stochastic � � � PN. The “parity-check satisfied”
signal is used for termination criteria.

D. Hard-Decision Using Saturating Up/Down Counters

The output bit of each VN at the end of every DC is passed
to an up/down counter. Each counter is incremented when re-
ceiving 1 and decremented when receiving a 0 bit. The coun-
ters are implemented as saturating counters which stop incre-
menting/decrementing when they reach their maximum/min-
imum limits. For this implementation, we used 4-bit saturating
counters that count from 7 to 7. The sign-bit of each counter
determines the hard-decision, i.e., in a BPSK transmission a 0
sign-bit of the counters determines a “ ” decoded bit and a 1
sign-bit determines a “ ” decoded bit.

Based on our observation, we discovered that for the case of
stochastic LDPC decoders, up/down counters are mostly effec-
tive at low SNRs (high BERs). At high SNRs, up/down counters
can be neglected and replaced by 1-bit flip-flops. In this case,
the last output bit of each VN directly determines the hard-de-
cision. The reason is that at high SNRs where convergence of
stochastic decoders is fast, the counters easily become saturated
(i.e., high reliability) which implies that they mostly receive
constant output bits from VNs. The output bits of VNs at low
SNRs are, however, less reliable and are more varying.

E. Stochastic Parity-Check Nodes

The construction of a PN is based on XORing the input bits
received from VNs. Fig. 7 shows the structure of a
PN used in the implemented stochastic decoder. The construc-
tion of the in the decoder is similar. PNs send their
output bits to VNs. In addition, each PN produces a “parity-
check satisfied” output signal which determines if the corre-
sponding parity-check is satisfied. This signal is used to termi-
nate the decoding as will be discussed in Section IV-H.

F. Asynchronous Pipelining and Interleaver Design

As mentioned earlier, the structure of interleavers in LDPC
decoders results in (long) wires and forces a bottleneck on
the speed and throughput of decoders. For this reason, fully
parallel architectures can use pipelining to break the wires
and increase the speed/throughput. However, pipelining the
interleaver in conventional SPA or MSA-based decoders has
a drawback: it increases the number of clock cycles required
per iteration by a factor of , the number of pipeline stages.
The reason is that in SPA and MSA, there is a data dependency
between iterations and the output of nodes at each iteration
depends on their outputs at the previous iteration. For instance,

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

5698 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

assume that the nonpipelined decoder runs for iterations and
uses 1 clock cycle per iteration. In the decoder with pipelined
interleaver, clocks are needed to pass messages generated
in the previous iteration. Therefore, although the pipelined
decoder is faster than the nonpipelined decoder, it needs
clock cycles to provide the same BER decoding performance.
To reduce this inefficiency and to increase the utilization of
decoder, the pipelined LDPC decoders need to decode more
than one codeword in the pipelined interleaver at the expense of
more hardware complexity [22]. Another suggested technique
in the literature is block interlacing [13]. This technique is
used to increase the throughput of the decoder by processing
two consecutive blocks simultaneously. In [13], the block
interlacing technique together with a message broadcasting
technique provided high throughput for ASIC LDPC decoders
using 16 iterations of MSA and 32 iterations of hard-deci-
sion message-passing decoding algorithm [48]. In addition to
these methods, the flooding-type update-schedule algorithm is
suggested in [49]. This algorithm allows limited partitioning
of some of the long wires in the decoder using flip-flops [49]
without affecting the required clock cycles per iteration. This
relies on the similarity of time-consecutive messages which
limitedly let nodes tolerate operating with messages produced
in recent iterations. However, in this algorithm the degree of
freedom for partitioning wires is limited. In [49], only messages
from two consecutive iterations are used at VNs.

We claim that the above-mentioned drawbacks and limita-
tions do not apply to stochastic decoders. The operation of sto-
chastic nodes does not depend on the output bits produced in
the previous DC. In fact, the order of bits in stochastic streams
is not important for the nodes. That is why EMs with random bit
selection and different lengths can be used at VNs. Therefore,
if a stochastic decoder needs to operate for DCs to decode
a codeword, the -stage pipelined stochastic decoder needs a
maximum of DCs to decode the codeword. This in-
teresting characteristic introduces a high degree of freedom for
partitioning wires in stochastic decoders, which is especially ad-
vantageous for ASIC implementations.

1) In principle, an “arbitrary” number of pipeline stages can
be used in the interleaver to break the wires and increase
the clock rate to a “desired” speed.

2) Pipelining in a stochastic decoder does not need to be
uniform in the entire factor graph. Different stages of
pipelining can be used for different edges. It is also
possible to only pipeline some (critical) wires in the inter-
leaver with an arbitrary number of pipeline stages.

It should be noted that because stochastic decoders (and other
bit-serial approaches) require less wires to represent the factor
graph, pipelining the interleaver in stochastic decoders requires
less hardware resources (registers) compared to the conven-
tional SPA or MSA-based decoders. For the implemented
stochastic decoder we used a four-stage pipeline interleaver.

G. Distributed Randomization Engine

The randomization engine is responsible for providing
random numbers in the decoder. In the proposed architecture,
(pseudo) random numbers are used in comparators and also

as the addresses of EMs and IMs. Although this amount of
random numbers for the entire decoder might seem high, as
shown in [41], (pseudo) random numbers can be significantly
shared at two levels without having a considerable impact on
the decoding performance of the decoder: 1) different EMs can
share the same random address and 2) random numbers used in
comparators and random numbers used as the addresses of EMs
and IMs can share bits. Sharing random numbers significantly
reduces the complexity of the randomization engine.

In this paper, we propose a distributed architecture to gen-
erate random numbers. The DRE consists of 48 independent
randomization engines (REs). Each RE generates the required
random numbers for a portion of the factor graph and consists
of only two 10-bit linear feedback shift registers (LFSRs) as-
sociated with prime polynomials. Random bits in each RE are
generated by XORing different bits of the two LFSRs. The main
reason to use a distributed structure is to reduce the routing re-
quired by DRE. Note that by using the asynchronous pipelining
technique in Section IV-F the interleaver is no longer a bottle-
neck for the speed of a stochastic decoder. This is so because an
arbitrary number of registers can be used to break long wires
in a pipelined stochastic interleaver. In this case, the routing
required by REs becomes a limiting factor for the speed and
hence using a distributed architecture for generating random
numbers becomes essential. It should be noted that the asyn-
chronous pipelining technique is also applicable for DRE be-
cause the sequence/order of random numbers is not important
for comparators, EMs and IMs.

H. Termination Criteria

The stochastic decoder checks two criteria in each DC to ter-
minate the decoding operation: 1) it checks if all the PNs are
satisfied or 2) if a maximum number of DCs has been exceeded.
As soon as one of the criteria is satisfied, the decoder outputs
the sign-bit of each saturating up/down counters as the decoded
codeword and starts loading the probabilities for the next re-
ceived block. Checking the first criterion is done by NORing
“parity-satisfied” signals from all PNs (i.e., decoding is termi-
nated if all the 528 parity-checks are satisfied). This is imple-
mented as a three-stage pipelined NOR tree. The latter criterion
is checked using a counter.

I. Input/Output Unit

As mentioned previously, the decoder uses DCs
to load 1056 received symbols (each with 6-bits precision) into
the decoder and apply scaling. To do so, the decoder employs
264 input pins. While loading the probabilities, the decoder also
outputs the previous 1056 bit decoded codeword using 44 pins
(in DCs). Therefore, the total IO overhead is

24 DCs.

V. PERFORMANCE AND TRADEOFFS

Table II lists the parameters used for each code. To obtain
the characteristics of the proposed architecture, the (1056,528)
irregular LDPC decoder is implemented on a Xilinx Virtex-4
XC4VLX200-11FF1513 device using Xilinx ISE 9.2 tool. The
Sections V-A–D discuss the performance of the decoder.

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

SHARIFI TEHRANI et al.: FULLY PARALLEL STOCHASTIC LDPC DECODERS 5699

TABLE II
DECODING PARAMETERS USED

Fig. 8. BER performance of the implemented (1056,528) irregular stochastic
decoder and decoders in [41] and [50].

Fig. 9. BER performance of the (1056,704) irregular stochastic decoder.

A. Bit Error Rate Performance

Figs. 8 and 9 show the BER performance. These figures also
depict the performance of the floating-point SPA. Also depicted
in Fig. 8 is the performance of the decoder in [50] whose im-
plementation values will be discussed in Section VI. Compared
to floating-point SPA with 32 and 16 iterations, the irregular
stochastic decoders only have a loss of about 0.5 and 0.25 dB,
respectively, at low BERs. It should be highlighted that, in
the shown BER region, a similar error-floor behavior to that
of floating-point SPA is observed. Note that the floating-point
implementation outperforms the fixed-point implementation
which is usually considered in hardware implementations. In
fact, due to the complexity/area concerns, in most fully parallel

TABLE III
XILINX VIRTEX-4 XC4VLX200-11FF1513 DEVICE UTILIZATION (LUT:

4-INPUT LOOKUP TABLE, FF: FLIP-FLOP)

Fig. 10. Histograms of � at different SNRs (based on 1 million blocks).

decoders fixed-point implementation with limited precision
(usually 4 bits) is considered which causes additional de-
coding loss and higher error-floors.

B. Area and Clock Frequency

Table III summarizes the area consumption of the (1056,528)
decoder on the FPGA device. The decoder occupies about 38%
of the four-input lookup tables and 24% of the flip-flops avail-
able on the device. These occupied resources are distributed in
51% of the device slices. The decoder uses one clock cycle per
DC and achieves a clock rate of 222 MHz after place-and-route.

C. Throughput

As mentioned in Section IV-H, the decoder terminates the de-
coding and starts loading the next codeword when all the parity
check signals are satisfied or, when a maximum number of DCs
has been exceeded. Due to these termination criteria , the
average number of DCs used to load, decode and output code-
words determines the throughput of the decoder. For the sake of
brevity, we refer to as the average number of DCs in the
rest of the paper. is equal to

(6)

where is the average number of DCs used by the
core decoder to decode codewords and, as mentioned before,

and . It should be noted that at high
SNRs (low BERs), is much less than the maximum DC
used by the core decoder (DCs). In fact at
low BERs, only a few codewords require a high number of DCs
to decode. This is shown in Fig. 10 where the histograms of

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

5700 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

Fig. 11. � and throughput of the decoder at different SNRs (based on 1
million blocks).

Fig. 12. BER performance of the (1056,528) stochastic decoder over DCs.

over different SNRs are depicted. These histograms are
based on observation of 1 million blocks.

Fig. 11 shows the observed over different SNRs. It
also shows the throughput of the decoder based on at
different SNRs for the achieved clock rate of 222 MHz.
and the throughput of the decoder vary at different BERs. As
Fig. 11 shows, at high SNRs (low BERs) the throughput of the
decoder is higher than the requirements of many applications.
The decoder provides a throughput of more than 1 Gb/s for

dB. The throughput of the decoder at
4.25 dB is about 1.66 Gb/s.

D. Latency

Fig. 12 shows the BER performance of the stochastic decoder
versus DC. The maximum number of DCs used for decoding
the (1056,528) code was DCs. Due to the
termination criteria of the decoder, only influences
the latency of the decoder. The maximum latency of the decoder
is determined by which is calculated as

(7)

For the (1056,528) decoder, is 740 DCs. With the
achieved clock rate of 222 MHz, this results in a maximum
latency of 3.3 s which is in an acceptable range for most
applications such as the IEEE 802.16e (WiMAX) standard. In
addition, as Fig. 12 suggests, for applications which have a
strict latency requirement, it is possible to tradeoff the latency
with some BER performance.

VI. COMPARISON

A. Comparison With FPGA Fully Parallel Decoders

Table IV compares different aspects of the most recent
FPGA-based fully parallel LDPC decoders. To our knowl-
edge, the decoders in [50] and [21] are the fastest and the
second fastest (nonstochastic) FPGA-based fully parallel
LDPC decoders, respectively. The decoder in [50] decodes
a (1200,600) regular code which is constructed based on the
Progressive-Edge-Growth (PEG) method. The throughput of
the decoder is 12 Gb/s. This throughput was achieved by em-
ploying 3-bit fixed-point MSA with ten iterations. The decoder
in [21] decodes a (480,355) regular code with a throughput of
650 Mb/s using bit-serial approximate MSA with 15 iterations.
Also, the decoder in [41] is a (1024,512) stochastic decoder
with a throughput of 706 Mb/s at a BER of . Compared to
the regular code used in [41], the (1056,528) code in this paper
has a much more complex structure due to its irregularity and
high degree nodes.

Table IV gives the throughput efficiency per information bit
for each decoder. As discussed in Section V-C, the throughput of
the (1056,528) decoder varies at different SNRs. For example,
the decoder provides a throughput of 694 Mb/s at a
2.5 dB and at 4.25 dB

the throughput is about 1.66 Gb/s. This throughput is be-
yond the requirements of most applications. Compared to [50]
and [21], the stochastic decoder has a higher latency. This la-
tency is however within an acceptable range for many appli-
cations. Usually, a latency limit of about 6 s is assumed for
channel decoders in applications such as WiMAX. In addition,
as mentioned before, for applications with more strict latency re-
quirements, it is possible to tradeoff the decoding performance
and the latency (see Fig. 12).

Table IV also gives the absolute area as well as area efficiency
based on the number of four-input lookup tables and flip-flops
per coded bit and, slices per coded bit. Note that a Logic Element
in the Altera Stratix architecture has one four-input lookup table
and one flip-flop [51] which is half of the resources of a slice in
a Xilinx Virtex-4 architecture [52]. Since the number of lookup
tables and flip-flops were not reported in [21], the comparison
with this decoder is based on the approximate slice per coded
bit efficiency. The area efficiency of the stochastic decoder is
better than the bit-serial decoder in [21]. Compared to [50], the
stochastic decoder needs more lookup tables and flip-flops per
coded bit (but offers about 1.3 dB decoding gain as shown in
Fig. 8). The majority of this difference is due to the higher de-
gree of VNs. As shown, the stochastic decoder in [41], with the
same rate and node degrees as in [50], needs much less resources
than this work and offers a better slice per coded bit efficiency
compared to [50].

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

SHARIFI TEHRANI et al.: FULLY PARALLEL STOCHASTIC LDPC DECODERS 5701

TABLE IV
COMPARISON OF RECENT FPGA-BASED FULLY PARALLEL LDPC DECODERS (LUT: 4-INPUT LOOKUP TABLE, FF: FLIP-FLOP, LE: LOGIC ELEMENT)

Compared to other fully parallel approaches, an important
advantage of the stochastic approach is its good decoding per-
formance and error-floor behavior. Fig. 8 compares the perfor-
mance of decoders in [50] and [41]. Both codes are regular
and have the same rate and node degree. As shown, while the
PEG-based code in [50] is longer, stochastic decoders outper-
form this decoder by more than 1 dB. It should be noted that
the reported area efficiency for stochastic decoders is for pro-
viding a performance close to the floating-point SPA. The sto-
chastic decoding approach is able to easily tradeoff the hard-
ware complexity and decoding performance. For example, if a
performance close to fixed-point MSA with limited precision
is required, it is possible to significantly increase the area ef-
ficiency and/or reduce the latency of the stochastic decoder by
using much shorter EMs/IMs, simpler DRE and by reducing the
precision of comparators/counters.

B. Potentials for ASIC Implementation

The proposed architecture provides a significant potential for
high-throughput fully parallel decoding on ASIC. The routing
congestion problem caused by the large number of wires in
the interleaver is a daunting problem in fully parallel ASIC
LDPC decoders. In both ASIC and FPGA implementations,
the number of wires in the interleaver significantly affects the
area consumption [11], [12], [22]. As mentioned before, 50%
of the core area in [11] with a die size of 52.5 mm is occupied
by wires using 4-bit precision. Another example is [50] where
the authors report that with 5-bit precision the (1200,600)
fully parallel decoder could not fit in a Virtex-4 LX200 FPGA
device.3 Therefore, the conventional fully parallel LDPC de-
coders have to use limited precision (usually, 3 or 4 bits) [11],

3Using 5-bit precision, this decoder would use ����� �� �� � � �����

physical wires (in 2 directions) in the interleaver.

[12], [14], [21], [50] to make the number of wires low and/or to
prevent having large nodes with the expense of decoding loss.
In stochastic decoding, the number of wires in the interleaver
is minimized, i.e., one wire per direction. Also, the precision
of the input probabilities does not affect the interleaver and the
complexity of the majority of components in the decoder such
as PNs, VNs and saturating up/down counters. In addition,
stochastic decoding offers the asynchronous pipelining tech-
nique which provides a high degree of freedom for pipelining
the interleaver and breaking long wires in the decoder with
negligible effect on the number of DCs used. These inter-
esting features enable stochastic decoders to easily achieve
high speeds and provide a good decoding performance while
having a better/comparable area consumption compared to
conventional fully parallel methods with limited precision. The
achieved high clock frequency of 222 MHz and the throughput
of 1.66 Gb/s (at 4.25 dB) on an FPGA device for
a complex (1056,528) irregular code with high degree nodes
shows this potential.

C. Comparison With Partially Parallel Decoders

As mentioned in Section I, partially parallel decoders use
memory and share hardware to tradeoff area/flexibility with
throughput. Fully parallel decoders, however, occupy much
larger area but provide much higher throughput. In this re-
spect, partially parallel and fully parallel decoders occupy a
different place on the tradeoff curve. This is also the case for
the proposed fully parallel architecture. Compared to the recent
FPGA and ASIC partially parallel decoders, the (1056,528)
stochastic decoder occupies much more (absolute) area but
corrects more errors at a much higher speed. For example, the
multirate partially parallel decoder in [53] occupies 1640 to
6568 slices and uses more than 60K bits of RAM, and provides
a throughput of 41 to 278 Mb/s on a Xilinx Virtex-II 2V8000

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

5702 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 11, NOVEMBER 2008

device. Also, the partially parallel (8176,7154) decoder in [54]
uses about 23 K to 27 K slices and 128 block RAMs of a Xilinx
VirtexII-6000 FPGA device and, provides a throughput of
172 Mb/s with 15 decoding iterations. Another recent example
is the ASIC implementation of a partially parallel (1024,506)
decoder in [55] with a throughput of 31.2 Mb/s with eight
decoding iterations.

VII. CONCLUSION

We proposed an architecture for fully parallel stochastic
LDPC decoders. Using this architecture, we demonstrated
the performance of a fully parallel stochastic LDPC decoder
that decodes a state-of-the-art irregular (1056,528) code on a
Xilinx Virtex-4 LX200 FPGA device. This decoder exploits
several novel architectural techniques, provides a throughput
of 1.66 Gb/s at 4.25 dB (BER of) and,
achieves decoding performance within 0.5 and 0.25 dB loss of
floating-point SPA with 32 and 16 iterations, respectively. The
decoder also shows similar error-floor behavior as floating-point
SPA with 32 iterations. To our knowledge, this decoder is the
first stochastic LDPC decoder which decodes a state-of-the-art
code and it is the first irregular and one of the fastest and most
area-efficient fully parallel LDPC decoders implemented on
FPGA.

APPENDIX

PROOF OF STOCHASTIC VN AND PN OPERATIONS

Consider the XOR gate in Fig. 3(b) and its input stochastic
streams with and . The
output bit is 1 when and , or when and

. Therefore, .
The output of other boolean operations is calculated similarly.

Now consider the VN structure in Fig. 3(a). This structure can
be represented as a Markov chain with two states (0 state and 1
state). The probability (transition) matrix of this chain is

where in is the probability of transition from state to
. The probability of having 1 in the steady state

of the chain (i.e.,) is calculated by computing
the eigenvector of with respect to an eigenvalue of 1, which
is equal to .

ACKNOWLEDGMENT

The authors would like to thank the reviewers and the asso-
ciate editor for providing helpful comments.

REFERENCES

[1] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inf.
Theory, vol. 8, no. , pp. 21–28, Jan. 1962.

[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,” Electron. Lett., vol. 32, no. 18, pp.
1645–1646, 1996.

[3] The Digital Video Broadcasting Standard [Online]. Available: www.
dvb.org

[4] The IEEE P802.3an 10GBASE-T Task Force [Online]. Available:
www.ieee802.org/3/an

[5] The IEEE 802.16 Working Group [Online]. Available: http://www.
ieee802.org/16/

[6] The IEEE 802.11n Working Group [Online]. Available: http://www.
ieee802.org/11/

[7] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[8] N. Wiberg, “Codes and Decoding on General Graphs,” Ph.D. dis-
sertation, Electrical Engineering Dept., Linkoping Univ,, Linkoping,
Sweden, 1996.

[9] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519, Feb.
2001.

[10] P. Urard et al., “A 135 Mb/s DVB-S2 compliant codec based on
64,800b LDPC and BCH codes,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2005.

[11] A. Blanksby and C. Howland, “A 690-mw 1-Gb/s 1024-b rate-1/2 low-
density parity-check code decoder,” IEEE J. Solid-State Circuits, vol.
37, no. 3, pp. 404–412, Mar. 2002.

[12] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A 3.3-Gbps bit-
serial block-interlaced min-sum LDPC decoder in 0.13-�m CMOS,”
in Proc. Custom Integrated Circuits Conf., Sep. 2007, pp. 459–462.

[13] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Block-interlaced
LDPC decoders with reduced interconnect complexity,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 55, no. 1, pp. 74–78, Jan. 2008.

[14] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Multi-Gbit/Sec
low density parity check decoders with reduced interconnect com-
plexity,” in IEEE Int. Symp. Circuits Syst., San Jose, CA, May 2005,
pp. 5194–5197.

[15] E. Boutillon, J. Castura, and F. Kschischang, “Decoder-first code
design,” in Proc. 2nd Int. Symp. Turbo Codes Related Topics, Brest,
France, Sep. 2002, pp. 459–462.

[16] E. Yeo, B. Nikolic, and V. Anantharam, “Iterative decoder architec-
tures,” IEEE Commun. Mag., vol. 41, no. 8, pp. 132–140, Aug. 2003.

[17] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,”
IEEE Commun. Mag., vol. 11, no. 6, pp. 976–996, Dec. 2003.

[18] M. Mansour and N. Shanbhag, “A 640-Mb/s 2048-bit programmable
LDPC decoder chip,” IEEE J. Solid-State Circuits, vol. 41, pp.
684–698, Mar. 2006.

[19] J. Chen et al., “Reduced-complexity decoding of LDPC codes,” IEEE
Trans. Commun., vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[20] T. Zhang and K. Parhi, “Joint (3,k)-regular LDPC code and de-
coder/encoder design,” IEEE Trans. Signal Process., vol. 52, no. 4,
pp. 1065–1079, Apr. 2004.

[21] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A bit-serial
approximate min-sum LDPC decoder and FPGA implementation,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Greece, May 2006, pp.
149–152.

[22] T. L. Brandon et al., “A scalable LDPC decoder ASIC architecture with
bit-serial message exchange,” Integration, The VLSI J., vol. 41, no. 3,
pp. 385–398, May 2008.

[23] J. Zhang and M. P. C. Fossorier, “A modified weighted bit-flipping de-
coding of low-density parity-check codes,” IEEE Commun. Lett., vol.
8, pp. 165–167, Mar. 2004.

[24] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, “An improvement on the mod-
ified weighted bit flipping decoding algorithm for LDPC codes,” IEEE
Commun. Lett., vol. 9, pp. 814–816, Sep. 2005.

[25] N. Mobini, A. H. Banihashemi, and S. Hemati, “A differential
binary message-passing LDPC decoder,” in Proc. IEEE Global
Telecomm. Conf. (IEEE GLOBECOM), Washington, DC, Nov. 2007,
pp. 1561–1565.

[26] S. Seo, T. Mudge, Y. Zhu, and C. Chakrabarti, “Design and analysis of
LDPC decoders for software defined radio,” in Proc. IEEE Workshop
on Signal Processing Systems (SiPS), Shanghai, China, Oct. 2007, pp.
210–215.

[27] S. Hemati, A. Banihashemi, and C. Plett, “A 0.18 �m analog min-sum
iterative decoder for a (32,8) low-density parity-check (LDPC) code,”
IEEE J. Solid-State Circuits, vol. 41, pp. 2531–2540, Nov. 2006.

[28] F. Lustenberger et al., “All-analog decoder for a binary (18,9,5) tail-
biting trellis code,” in Proc. Eur. Solid-State Circuits Conf., 1999, pp.
362–365.

[29] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer, “An analog 0.25 �m
biCMOS tailbiting map decoder,” in Proc. IEEE Custom Integrated
Circuits Conf., Feb. 2000, pp. 356–357.

[30] V. Gaudet and G. Gulak, “A 13.3-Mb/s 0.35 �m CMOS analog turbo
decoder IC with a configurable interleaver,” IEEE J. Solid-State Cir-
cuits, vol. 38, pp. 2010–2015, Nov. 2003.

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

SHARIFI TEHRANI et al.: FULLY PARALLEL STOCHASTIC LDPC DECODERS 5703

[31] C. Winstead, J. Dai, S. Yu, C. Myers, R. Harrison, and C. Schlegel,
“CMOS analog map decoder for (8,4) Hamming code,” IEEE J. Solid-
State Circuits, vol. 39, pp. 122–131, Jan. 2004.

[32] D. Vogrig, A. Gerosa, A. Neviani, A. G. I. Amat, G. Montorsi, and S.
Benedetto, “A 0.35 �m CMOS analog turbo decoder for the 40-bit rate
1/3 UMTS channel code,” IEEE J. Solid-State Circuits, vol. 40, pp.
753–762, Mar. 2005.

[33] M. Arzel et al., “Analog slice turbo decoding,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2005, pp. 332–335.

[34] B. Gaines, Advances in Information Systems Science. New York:
Plenum, 1969, ch. 2, pp. 37–172.

[35] V. Gaudet and A. Rapley, “Iterative decoding using stochastic compu-
tation,” Electron. Lett, vol. 39, no. 3, pp. 299–301, Feb. 2003.

[36] A. Rapley, C. Winstead, V. Gaudet, and C. Schlegel, “Stochastic iter-
ative decoding on factor graphs,” in Proc. 3rd Int. Symp. Turbo Codes
Related Topics, Brest, France, Sep. 2003, pp. 507–510.

[37] W. J. Gross, V. Gaudet, and A. Milner, “Stochastic implementation
of LDPC decoders,” in Proc. 39th Asilomar Conf. Signals, Systems,
Computers, Pacific Grove, CA, Nov. 2005, pp. 713–717.

[38] C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel, “Stochastic iter-
ative decoders,” in Proc. IEEE Int. Symp. Information Theory (ISIT),
Sep. 2005, pp. 1116–1120.

[39] C. Winstead, “Error-control decoders and probabilistic computation,”
in Proc. Tohoku Univ. 3rd Student-Organizing Int. Mini-Conf. Infor-
mation Electronics System (SOIM-COE), Sendai, Japan, Oct. 2005, pp.
349–352.

[40] S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding
of LDPC codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718,
Oct. 2006.

[41] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “An area-efficient
FPGA-based architecture for fully-parallel stochastic LDPC de-
coding,” in Proc. IEEE Workshop on Signal Processing Systems
(SiPS), Shanghai, China, Oct. 2007, pp. 255–260.

[42] C. B. Schlegel and L. C. Perez, Trellis and Turbo Coding. Piscataway,
NJ: IEEE Press, 2004.

[43] A. Anastasopoulos, “A comparison between the sum-product and the
min-sum iterative detection algorithms based on density evolution,” in
Proc. IEEE Global Telecomm. Conf. (IEEE GLOBECOM), Nov. 2001,
vol. 2, pp. 1021–1025.

[44] F. Guilloud, E. Boutillon, and J.-L. Danger, “�-min decoding algorithm
of regular and irregular LDPC codes,” in Proc. 3rd Int. Symp. Turbo
Codes (ISTC), Brest, France, Sep. 1–5, 2003, pp. 451–454.

[45] S. Howard, C. Schlegel, and V. Gaudet, “A degree-matched check node
approximation for LDPC decoding,” in Proc. IEEE Int. Symp. Informa-
tion Theory, Adelaide, Australia, Sep. 4–9, 2005, pp. 1131–1135.

[46] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Survey of stochastic
computation on factor graphs,” in Proc. 37th IEEE Int. Symp. Multiple-
Valued Logic, Oslo, Norway, May 2007, pp. 54–59.

[47] M. R. Yazdani, S. Hemati, and A. Banihashemi, “Improving belief
propagation on graphs with cycles,” IEEE Commun. Lett., vol. 8, no. 1,
pp. 57–59, Jan. 2004.

[48] T. J. Richardson and R. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans.
Inf. Theory, vol. 47, pp. 599–618, Feb. 2001.

[49] N. Onizawa, T. Ikeda, T. Hanyu, and V. Gaudet, “3.2-Gb/s 1024-b
rate-1/2 LDPC decoder chip using a flooding-type update-schedule al-
gorithm,” in Proc. 50th IEEE Midwest Symp. Circuits Systems, Brest,
France, Aug. 2007, pp. 217–220.

[50] R. Zarubica, S. G. Wilson, and E. Hall, “Multi-Gbps FPGA-based low
density parity check (LDPC) decoder design,” presented at the IEEE
Global Telecomm. Conf. (IEEE GLOBECOM), Washington DC, Nov.
2007.

[51] Stratix Device Handbook, Altera Corporation, San Jose, CA [Online].
Available: www.altera.com

[52] Virtex-4 User Guide, Xilinx Corp., San Jose, CA [Online]. Available:
www.xilinx.com

[53] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman,
“VLSI architectures for layered decoding for irregular LDPC codes
of WiMax,” in Proc. IEEE Int. Conf. Communications, Jun. 2007, pp.
4542–4547.

[54] Z. Wang and Z. Cui, “Low-complexity high-speed decoder design for
quasi-cyclic LDPC codes,” IEEE Trans. VLSI Systems, vol. 15, no. 1,
pp. 104–114, Jan. 2007.

[55] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible
LDPC decoder,” IEEE Trans. VLSI Syst., vol. 54, no. 6, pp. 542–546,
Jun. 2007.

Saeed Sharifi Tehrani (S’05) received the B.Sc. de-
gree in computer engineering from Sharif University
of Technology, Tehran, Iran, in 2002 and the M.Sc.
degree in electrical and computer engineering from
the University of Alberta, Edmonton, AB, Canada,
in 2005. He is currently working towards the Ph.D.
degree at the Department of Electrical and Computer
Engineering, McGill University, Montreal, QC,
Canada.

His research interests include digital signal
processing systems, low-complexity error-control-

coding techniques, and design and hardware implementation of iterative
decoders.

Mr. Sharifi Tehrani received the Post Graduate Scholarship Award from the
Alberta Informatics Circle of Research Excellence (iCORE) during his M.Sc.
study at the University of Alberta. He is also an awardee of the doctoral research
scholarship from the Fonds Québécois de la Recherche sur la Nature et les Tech-
nologies (FQRNT) as well as a recipient of the Alexander Graham Bell Canada
Graduate Scholarship Doctoral Award (CGS D) from the Natural Science and
Engineering Council of Canada (NSERC).

Shie Mannor (S’00–M’03) received the B.Sc. degree
in electrical engineering, the B.A. degree in mathe-
matics (both summa cum laude), and the Ph.D. degree
in electrical engineering from the Technion—Israel
Institute of Technology, Haifa, Israel, in 1996, 1996,
and 2002, respectively.

During spring semester 2002, he was a Lecturer at
the Electrical Engineering Department of the Tech-
nion. From 2002 to 2004, he was a Postdoctoral Asso-
ciate with the Massachusetts Institute of Technology
(MIT), Cambridge. He is currently an Assistant Pro-

fessor of Electrical and Computer Engineering at McGill University, Montreal,
QC, Canada. His research interests include machine learning and pattern recog-
nition, planning and control, multiagent systems, and communications.

Dr. Mannor was a Fulbright scholar in 2002, and he is currently a Canada
Research Chair in Machine Learning.

Warren J. Gross (S’92–M’04) received the B.A.Sc.
degree in electrical engineering from the University
of Waterloo, Waterloo, ON, Canada, in 1996, and the
M.A.Sc. and Ph.D. degrees from the University of
Toronto, Toronto, ON, Canada, in 1999 and 2003,
respectively.

Currently, he is an Assistant Professor with the
Department of Electrical and Computer Engineering,
McGill University, Montreal, QC, Canada. His re-
search interests are in the design and application
of signal processing microsystems and custom

computer architectures. In summers 2004 and 2005, he was a Visiting Professor
at the Université de Bretagne-Sud, Lorient, France.

Dr. Gross is a member of the Design and Implementation of Signal Processing
Systems Technical Committee of the IEEE Signal Processing Society. He served
as the General Chair of the Sixth Analog Decoding Workshop. He has served on
the Program Committees for the IEEE Workshop on Signal Processing Systems,
the IEEE Symposium on Field-Programmable Custom Computing Machines,
and the International Conference on Field-Programmable Logic and Applica-
tions. He is a Member of the IEEE and a licensed Professional Engineer in the
Province of Ontario.

Authorized licensed use limited to: McGill University. Downloaded on October 17, 2008 at 18:02 from IEEE Xplore. Restrictions apply.

