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Abstract

Stochastic computation is a new alternative approach
for iterative computation on factor graphs. In this ap-
proach, the information is represented by the statistics of
the bit stream which results in simple high-speed hard-
ware implementation of graph-based algorithms. De-
spite the first purpose of its invention (i.e., low-precision
digital circuits), the stochastic representation has re-
cently been shown to be able to provide near-optimal
decoding performance for practical Low-Density Parity-
Check (LDPC) codes, with respect to Sum-Product Al-
gorithm (SPA). This paper provides a survey of stochas-
tic methods for graph-based iterative decoding, the
state-of-the-art and, their possible new applications.

1. Introduction

Stochastic arithmetic was introduced in the 1960’s
as a method to design low-precision digital circuits
[6]. The important motivation for considering stochas-
tic computation was the possibility of performing com-
plex computations using only simple circuitry [4, 6]. In
stochastic computation, probabilities are represented as
streams of random digital bits using Bernoulli sequences
in which the information is contained in the statistics of
the bit stream. Using this representation, complex oper-
ations on probabilities such as multiplication and divi-
sion are converted to operations on bits which can easily
be manipulated using simple stochastic gates. This al-
lows high clock rates for the stochastic computational el-
ements while requiring low computation hardware area.
In addition, due to the bit-serial nature of stochastic
computation, communication between computational el-
ements requires only one wire per signal. Also, com-
pared to other computing techniques, stochastic compu-
tation is fault-tolerant and it can trade off computation

accuracy and time without any change in hardware [4].
Stochastic computation has been considered for dif-

ferent applications such as implementation of artificial
neural networks [4] and a real-time motor controller
in [1]. Error control coding is a new recent application
for stochastic computation [2, 5, 8, 9, 16, 17]. The sim-
plicity of stochastic computation has made it attractive
for the implementation of so-called “capacity approach-
ing” decoders such as Turbo [3] and LDPC decoders [7]
in which hardware complexity, interconnect wiring and
routing congestion are major implementation problems.
However, the early stochastic decoding methods could
only work either on very simple short codes or for de-
coding some specific error-correcting codes on trellis
graphs and hence, they were not successful for decoding
state-of-the-art LDPC codes on factor graphs. Recently,
a new stochastic decoding method is proposed in [16]
which is able to provide a near-optimal performance for
decoding practical LDPC codes with respect to floating-
point SPA decoding. This method has indicated the vi-
ability of the stochastic approach for iterative decoding
of the state-of-the-art LDPC codes and its potential for
low-complexity high-throughput hardware decoding of
error-correcting codes on factor graphs.

The rest of the paper is organized as follows. Sections
2 and 3 give an overview of stochastic representation and
computation. Section 4 provides an overview of LDPC
decoding. Section 5 describes the recent application of
stochastic computation on factor graphs. Section 6 dis-
cusses the major problem of latching in stochastic de-
coding. Section 7 presents the new stochastic decoding
method proposed in [16]. Finally, Section 8 discusses
the possible perspective of stochastic computation.

2. Stochastic Representation

In stochastic computation, probabilities are encoded
by a Bernoulli sequence as a random sequence of {ai}
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digital bits. Each bit in the sequence is equal to logic
‘1’ with the probability to be encoded. As an example,
a sequence of 10 bits with 6 bits equal to logic ‘1’, rep-
resents the probability of 0.6. The encoding scheme is
not unique thus different encoded stochastic sequences
are possible for the same probability.

A common fallacy in interpreting the usefulness of
the stochastic computation approach is that the preci-
sion provided by stochastic representation is very poor
and this approach becomes very inefficient when high-
precision is needed. For example, it might be claimed
that to represent the probability of 0.001 only 10 bits
is needed in a fixed-point representation but the equiv-
alent stochastic representation needs at least 1000 bits.
It is important to note that stochastic sequences are not
necessarily “frames” of bits and they can be interpreted
and used as “stochastic processes” where no framing is
required. This is one of the main differences that dis-
tinguishes stochastic approach among other computing
techniques in many applications. Stream representation
is robust in the presence of noise and single bit faults [4]
and more importantly, it facilities the relaxation tech-
niques in applications and algorithms such as iterative
decoding where self-correcting and/or decision elements
are used. In other words, in such applications, computa-
tions rely on the flow of changes in the statistics of the
stochastic streams rather than on the precision of dis-
crete frames of bits. Therefore, the level of accuracy or
precision might not be as important as the statistics of
stream. For example, in such applications it might be
important to know that if a probability is converging to
1, however, we might not care if the exact value of the
probability at a given iteration is 0.900 or 0.901.

3. Stochastic Computation

The comparator shown in Figure 1 can be used to
convert probabilities to stochastic streams [1, 6]. In this
figure, X and R are W -bit wide inputs. R is a ran-
dom number with uniform distribution which varies in
each clock cycle. The output bit of the comparator is ‘1’
when X > R. Therefore, the probability of having an
output equal to ‘1’ is X/2W . The following subsections
describe main stochastic operations.

3.1. Multiplication

Let Pa = Pr(ai = 1) and Pb = Pr(bi = 1) be the
probabilities to be multiplied. The outcome, Pc, can be
computed by an AND gate shown in Figure 2. Similarly,
other boolean operations (e.g., NOT, XOR etc.) can be
used to implement different operations on probabilities.
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Figure 1. Probability to stochastic stream
conversion.
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Figure 2. Stochastic multiplication.

3.2. Division

Consider the JK flip-flop shown in Figure 3 with in-
put sequences of {ai} and {bi} representing the proba-
bilities of Pa and Pb, respectively. The output bit ci is
equal to ‘1’ with the probability of Pc and is equal to ‘0’
with the probability of 1 − Pc. A random output transi-
tion from ‘1’ to ‘0’ occurs with probability of (1−Pc)Pa

and the reverse transition occurs with the probability of
PcPb. Since the expected occurrence of random transi-
tion in both directions must be equal, we have

PcPb = (1 − Pc)Pa → Pc = Pa/(Pa + Pb). (1)

The operation of (1) is an approximation to Pa/Pb, if
Pa << Pb. There exist other stochastic division meth-
ods with more precision [6]. However, as will be dis-
cussed in Sections III and IV, (1) matches the variable
node operation in SPA.

3.3. Addition and Subtraction

Stochastic addition and subtraction are not as
straightforward as multiplication and division. This is
because they are not closed operations on the probability
interval of [0, 1]. Therefore, these operations should be
combined with a scaling operation to ensure the range
of [0, 1] for the outcome [4]. Addition with scaling is
performed as Pc =

∑
SlP (Al), where P (Al) = Pal

=
Pr(ali = 1) and Sl is the probability of selecting given
input Al such that

∑
Sl = 1 . The outcome is the scaled

sum of the input probabilities. This operation can be im-
plemented in hardware using a multiplexer as shown in
Figure 4, where RS refers to the random selection sup-
plied by (pseudo) random number generators. Generat-
ing RS is straightforward when the N is a power of two.
For the case where N is not a power of two, it is pos-
sible to increase N by padding ‘0’ signals to input with
the cost of sub-optimality of calculation [4].
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Figure 4. Stochastic (scaled) addition [4].

4. LDPC Decoding and Factor Graphs

LDPC codes [7] are a class of linear block codes
which the set of all codewords, x ∈ C, spans the null
space of a sparse parity-check matrix H i.e., Hx =
0. LDPC codes are decoded by means of SPA. These
codes are shown to be capable of error-correcting per-
formance close to the Shannon limit [15]. Graphical
representations such as Bayesian networks and later-
developed representations like factor graphs [12] are
unifying frameworks for LDPC decoding algorithms.
Figure 5 shows a factor graph for a (n = 12, k = 3)
LDPC code. The nodes of a factor graph are separated
into two distinctive sets: variable and check nodes. Each
edge in the graph connects a node from the two sets.

4.1. Sum-Product Algorithm

SPA is an iterative algorithm for LDPC decoding.
SPA is a form of Pearl’s belief propagation [14] that
uses message passing over the edges of factor graphs.
For good decoding performance, it is important that the
length of cycles in the factor graph are as long as pos-
sible. Short cycles such as the length-4 cycle (namely
4-cycle) highlighted in Figure 5, correlate messages and
degrade the performance of SPA. SPA computes the
Log-Likelihood Ratio (LLR) of the received sequence
and makes a decision by comparing this LLR to the
threshold value. In a Binary Phase Shift Keying (BPSK)
transmission (±1) over an Additive White Gaussian
Noise (AWGN) channel, the channel LLR value of the
i-th sample in the received block (i = 1, ..., n) is de-
fined as Li = log(Pr(xi=+1|yi)

Pr(xi=−1|yi)
) = 4yi

N0
, where N0 is the

AWGN power spectral density and, xi ∈ {−1,+1} and
yi ∈ R denote the i-th sample of the transmitted and
received block, respectively. Let Pi→j ∈ [0, 1] be the
probability message from a variable node vi with dv = 3

1v 2v 3v 5v4v 7v6v 8v 9v 10v 11v 12v

1c 2c 3c 5c4c 7c6c 8c 9c
n-k check nodes

n variable nodes

+ + + + + + + + +

Figure 5. Factor graph of a (12,3) LDPC
Code. Dashed lines show a 4-cycle.
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Figure 6. A) extrinsic and B) intrinsic prob-
ability messages in SPA.

to a check node cj (j = 1, ..., n − k) with dc = 3. Let
Qj→i ∈ [0, 1] be the probability message from cj to vi.
Also, let {vi, vl, vm} be the set of variable nodes con-
nected to cj and, {cj , cr, cs} be the set of check nodes
connected to vi

1. SPA steps can be described as follows.

1) For vi, convert Li to the initialization probability as
P i

init = eLi/(eLi + 1). vi sends Pi→j = P i
init to cj .

2) cj sends Qj→i to vi as (see Figure 6(A))

Qj→i = Pl→j(1 − Pm→j) + Pm→j(1 − Pl→j). (2)

3) vi sends Pi→j to cj as (see Figure 6(B))

Pi→j =
Qr→iQs→i

Qr→iQs→i + (1 − Qr→i)(1 − Qs→i)
. (3)

4) Stop decoding once the estimated codeword, x̂, sat-
isfies Hx̂ = 0 or a fixed number of iterations has been
completed. Otherwise, return to step 2.

5. Stochastic Decoding on Factor Graphs

The stochastic representation of probabilities in the
code factor graph results in low-complexity bit-serial
parity-check and variable nodes. Let Pa = Pr(ai = 1)

1Note that higher degree nodes can be converted to subgraphs con-
taining only degree three nodes [12].
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Figure 7. A) Parity-check and B) variable
nodes in stochastic decoding.

and Pb = Pr(bi = 1) be the probability of two input
bits, ai and bi, in a dc = 3 check node. The output
probability Pc is computed as

Pc = Pa(1 − Pb) + Pb(1 − Pa). (4)

Similarly, the equality function in a dv = 3 variable
node for inputs Pa and Pb is

Pc = PaPb/(PaPb + (1 − Pa)(1 − Pb)). (5)

Figure 7 shows the equivalent hardware structures for
(4) and (5) [8]. Note that the variable node in Figure
7(B) is in hold state (i.e., ci = ci−1), if the two input
bits are not equal (ai �= bi). In addition to simple vari-
able and check node structures, stochastic computation
also reduces the routing congestion problem. Because
only one bit (per direction) is required to represent an
edge between a parity-check and a variable node. This
implies that in a decoding round, the stochastic decoding
proceeds by the variable and check nodes exchanging a
bit (per direction) along each edge in the factor graph.
We refer to these decoding rounds as Decoding Cycles
(DCs) to highlight that they do not directly correspond
to the iterations in SPA.

The variable and check node structures shown in Fig-
ure 7 are used in [2] and [8] for decoding a (7,4) Ham-
ming and a (16,8) LDPC code, respectively. In [8], the
decoder had about 0.15 dB decoding performance loss
at a Bit Error Rate (BER) of 10−4 with respect to SPA
decoding. Unfortunately, due to the high decoding per-
formance loss, this method cannot directly be used to
decode longer (practical) codes. Several research works
have been conducted to improve the stochastic decod-
ing methods to be able to decode practical codes. These
efforts are discussed in the next section.

6. Latching and Rerandomization

A major difficulty observed in stochastic decoding is
the sensitivity to the level of random switching activity

++
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v2
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Figure 8. Latching within a 4-cycle.

(bit transition) for proper decoding operation [16, 17].
This problem is specially crucial when the code factor
graph has cycles. The latching problem refers to the
case where cycles in the graph correlate messages such
that a group of nodes are locked into a fixed state which
is solely maintained by the correlated messages [5, 16].
The latching problem is particulary acute in practical
LDPC decoders [16, 17]. This problem can be worse
at high Signal-to-Noise-Ratios (SNRs) because the re-
ceived LLRs are large so that the corresponding prob-
abilities approach 0 (or 1). In this situation, bits in
stochastic sequences are mostly ‘0’ (or ‘1’), making ran-
dom switching events very rare for proper decoding op-
eration [16, 17]. Figure 8 illustrates the latching of two
variable nodes, v1 and v2, into a fixed state (hold state
in this example) for several DCs, which is forced by a
4-cycle in the absence of enough switching activity. The
latching problem causes huge performance loss for de-
coding practical LDPC code. To circumvent this prob-
lem, different methods are suggested in the literature
which are discussed in the following sections.

6.1. Supernodes

The idea of supernodes is proposed in [5]. Supern-
odes are special structures which reduce the latching
problem by regenerating uncorrelated messages based
on the probabilities of incoming stochastic messages. A
supernode tabulates incoming messages in histograms to
estimate their probabilities and regenerates new uncorre-
lated stochastic messages. There exists different struc-
tures for supernodes with different complexity. Also, su-
pernodes are used in different positions in the decoder.
In [5], they are used as a special variable node which
can be placed in critical part of the graph (e.g., where
short cycles exist), however, in [9] they are placed be-
tween variable and check nodes of the decoder. Fig-
ure 9(A) shows the structure of supernodes used in [5]
for trellis decoding of a (256,121) product Turbo code.
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Supernodes in this trellis decoder [5] are used instead
of variable nodes shown in Figure 7. These supern-
odes were packetized in a sense that they are using the
conventional SPA calculation (i.e., (3)) after a time-
step to calculate the probabilities of the new outgoing
messages and regenerate new stochastic messages. A
reduced-complexity version of these supernodes is sug-
gested in [17] which only uses Random Number Gener-
ators (RNGs), fixed-point addition operation and coun-
ters. Figure 9(B) shows another structure of supern-
odes suggested in [5]. In this structure the input mes-
sages are fed directly to a counter to tally the number
of ones for a given number of samples. This count is
then used to generate new probabilities. This structure
is used in [9] for hardware implementation of a (16,8)
LDPC decoder where supernodes were placed between
variable and check nodes of the decoder to reorder and
break the correlation between stochastic messages.

6.2. Scaling Channel LLRs

As mentioned before, the latching problem can be
worse at high SNRs due to the lack of switching ac-
tivity. The idea of scaling channel LLRs is based on
scaling received LLRs to increase switching activity in
the decoder. This idea is used in [17] for stochastic de-
coding of a (16,11) Hamming code. In this method, ev-
ery block of the channel LLRs are scaled to a maximum
value to ensure the same level of switching activity for
each block. Noise-Dependant Scaling (NDS) is another
scaling method used in [16]. In this method, the chan-
nel LLRs are scaled by a scaling factor which is propor-
tional to the operating SNR. Because the scaling factor is
proportional to the noise level, it ensures a similar level
of switching activity for different ranges of SNRs. The
scaled LLR, L′

i, for the i-th symbol, yi, is calculated as
L′

i = (αN0/Y )Li = 4αyi/Y , where Y is a fixed max-
imum value of the received symbols and, α is a constant

factor (0 < α < Y ) in which its value can be chosen
based on the BER performance [16].

6.3. Rerandomization by Edge Memories

Edge Memories (EMs) are proposed in [16]. EMs are
M -bit shift registers introduced at each edge of the code
factor graph. Each EM is updated in accordance with (5)
only when the variable node is not in hold state for that
edge. If a hold state happens, a bit is randomly chosen2

from the EM of the edge and passed as the outgoing bit.
Using this updating scheme the random switching activ-
ity of stochastic messages in the code graph is increased
because the chance of locking into a fixed state is re-
duced. This is because in a hold state, a bit is randomly
chosen from those previous outputs of the variable node
which are not produced in a hold state. EMs rely on the
basic idea of stochastic computation on streams of bits
and hence they do not use the conventional SPA calcu-
lation and packetized bit sequences.

7. The New Stochastic Decoding Method

The new stochastic LDPC decoding method pro-
posed in [16] uses both NDS and EMs. The NDS
method is usually sufficient for decoding short codes
[16], however, both NDS and EMs are essential for de-
coding relatively longer LDPC codes. In this method,
after applying NDS to channel LLRs, one bit of corre-
sponding stochastic probability streams is passed to each
variable node during each DC. Variable nodes and EMs
operate as described in Section 6.3. The check nodes
perform the parity-check equation and pass their mes-
sages to the variable nodes. Each variable node com-
putes its output at the end of each DC and passes it to
an up/down counter which is decremented in case of a
‘0’ output and incremented in case of a ‘1’. The sign
bit of the up/down counter indicates the hard decision in
each DC. The decoder operations for a fixed number of
DCs unless the stopping criterion, Hx̂ = 0, is satisfied
sooner.

Figure 10 shows the BER performance of this method
for a regular (1024,512) LDPC code3. This code has
dv = 3 variable and dc = 6 check nodes. An M =
50 and α = 3 are used for EMs and NDS4, respec-
tively, with maximum 60K DCs. As shown, compared
to SPA with floating-point implementation, this method
provides a near-optimal performance for the (1024,512)
code. The SNR loss at the BER of 10−5 is less than 0.05

2This can be done by generating random addresses for EMs.
3In this figure, SNR=Eb/N0 (dB) and Eb is the average bit energy.
4An α = 3 provided the best BER performance.
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Figure 10. Simulation results [16].

dB. To demonstrate the individual performance contri-
bution of NDS and EMs, Figure 10 also shows results
for decoding with EMs but without NDS as well as re-
sults for decoding without NDS and EMs. The observed
average DCs per block are much less than the maximum
DCs. For example, the average DCs at the BER of 10−5

is about 6K DCs. It should be noted that DCs are not
equivalent to the iterations in SPA and because of the
simple structure of a stochastic decoder, it is more fea-
sible to have a fully-parallel stochastic decoder with a
clock frequency much higher than that of a SPA decoder.

8. New Applications

As suggested in [17], reliable computation in nano-
scale systems might be a new application for stochastic
computation and decoders. Nano devices provide sig-
nal energy that can be even below the thermal noise
energy at room temperature. Several methods for reli-
able computation using unreliable nanoelectronic com-
ponents have been proposed [10, 11] in which many of
them are similar to stochastic operations. Stochastic
gates might have a simpler implementation using inher-
ently noisy devices. As an example, a simple structure
for stochastic variable nodes is suggested in [17] using
nano-scale MOS devices in which variable operation is
accomplished by circuit random (noisy) behavior.

Beside the implementation and performance advan-
tages of stochastic computation, theoretical aspects of
stochastic representation of probabilities and their im-
pact on the dynamics of computation are also interest-
ing. An interesting application might be quantum com-
puting [13]. Stochastic computation is performed on
streams of stochastic bits. Equivalent representation of
stochastic bits using qubits and expressing the decoding
operation using quantum logic gates might open doors

for several research topics on the applications of quan-
tum computation for iterative decoding. Another inter-
esting research possibility is to consider stochastic ap-
proach for other message passing algorithms (instead of
SPA) for using inference on graphical models such as
Bayesian networks in real-time and control applications.
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