
716 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 10, OCTOBER 2006

Stochastic Decoding of LDPC Codes
Saeed Sharifi Tehrani, Student Member, IEEE, Warren J. Gross, Member, IEEE, and Shie Mannor, Member, IEEE

Abstract— This letter presents the first successful method
for iterative stochastic decoding of state-of-the-art Low-Density
Parity-Check (LDPC) codes. The proposed method shows the
viability of the stochastic approach for decoding LDPC codes on
factor graphs. In addition, simulation results for a 200 and a 1024
length LDPC code demonstrate the near-optimal performance of
this method with respect to sum-product decoding. The proposed
method has a significant potential for high-throughput and/or low
complexity iterative decoding.

Index Terms— LDPC codes, iterative stochastic decoding.

I. INTRODUCTION

THE class of LDPC codes has been shown to include
some of the most powerful known capacity-approaching

codes [1]. LDPC codes are decoded by means of iterative
belief propagation using the Sum-Product (SP) algorithm. The
SP algorithm involves passing messages over the edges of
a bipartite factor graph [2]. The implementation of LDPC
decoders tends to be complex and solutions for less complex
decoders are a focal point of research.

Stochastic computation was introduced in the 1960’s as
a method to design low-precision digital circuits [3]. This
method has been used to implement neural networks [4] and
recently considered for iterative decoding of some specific
error-correcting codes [5]–[9]. The main advantage of this
method is that probabilities can be manipulated using very
simple circuits. This feature is especially interesting for the
implementation of LDPC decoders in which hardware com-
plexity and routing congestion are major problems.

Up to the present, stochastic decoding methods were suc-
cessful for either short or some specific error-correcting codes.
In [5] and [6] stochastic decoders are used for decoding a (7,4)
Hamming and a (16,8) LDPC code. A new form of stochastic
algorithm is proposed in [7] and used for trellis decoding of an
acyclic (16,11) Hamming code and a (256,121) product Turbo
code based on 32 component decoders of this Hamming code.
CMOS and gate level circuits, and some modifications for this
algorithm are discussed in [8]. Finally, the implementation of
a stochastic decoder for a special acyclic (16,8) LDPC code
is described in [9]. To the best of our knowledge, none of the
above mentioned methods could successfully decode state-of-
the-art capacity-approaching LDPC codes on factor graphs.
In this letter, we propose a method for stochastic decoding
of LDPC codes. Compared to floating point SP decoding,
this method provides comparable performance for a (200,100)
and near-optimal performance for a (1024,512) LDPC code.

Manuscript received April 14, 2006. The associate editor coordinating
the review of this letter and approving it for publication was Dr. Vladimir
Stankovic.

The authors are with the Dept. of Electrical and Computer Engineering,
McGill University, Montreal, QC, H3A 2A7 Canada (email: {sshari9, wjgross,
shie}@ece.mcgill.ca).

Digital Object Identifier 10.1109/LCOMM.2006.060570.

aP
bP

)1()1(abba PPPP −−−−++++−−−−

)1)(1(baba
ba

PPPP
PP

−−−−−−−−++++
aP
bP

Fig. 1. Parity-check and equality nodes in stochastic decoding.

Both codes are regular, with no length-4 or 6 cycles and, have
degree 3 equality nodes (de = 3) and degree 6 check nodes
(dc = 6).

II. STOCHASTIC COMPUTATION ON FACTOR GRAPHS

In stochastic decoding, probabilities are encoded by a
Bernoulli sequence as a random sequence of digital bits in
which each bit of the sequence is equal to ‘1’ with the prob-
ability to be encoded. As an example, a sequence of N bits
with m bits equal to ‘1’, represents the probability of m/N .
The encoding scheme is not unique and different encoded
stochastic sequences are possible for the same probability. The
stochastic representation of messages in the code factor graph
results in low complexity parity-check and equality nodes. Let
Pa = Pr(a = 1) and Pb = Pr(b = 1) be the probability of
two input bits (a and b) in a dc = 3 check node. The output
probability Pc can be computed as

Pc = Pa(1 − Pb) + Pb(1 − Pa). (1)

Similarly, the equality function in a de = 3 equality node is

Pc = PaPb/[PaPb + (1 − Pa)(1 − Pb)]. (2)

Fig. 1 shows the equivalent hardware structures for (1) and
(2). Higher degree parity-check or equality nodes can be easily
converted to sub-graphs containing only degree three parity-
check or equality nodes [6]. Note that the equality node in
Fig. 1 holds on the previous output bit on the edge, if the
corresponding input bits of the node are not equal.

In addition to low complexity, stochastic computation re-
duces the routing congestion in the decoder, because only
one bit (in each direction) is needed to represent each edge
between parity-check and equality nodes. Therefore, the de-
coding algorithm proceeds by the nodes exchanging bits
along each edge in the graph. We refer to decoding rounds
as Decoding Cycles (DCs) to emphasize that they do not
correspond directly to the iterations in SP decoding.

III. STOCHASTIC DECODING OF LDPC CODES

One major difficulty observed in stochastic decoding is
the sensitivity to the level of random switching activity (bit
transition) for proper decoding operation [8]. The problem of

1089-7798/06$20.00 c© 2006 IEEE

SHARIFI TEHRANI et al.: STOCHASTIC DECODING OF LDPC CODES 717

++

=

=

Fig. 2. An example of latching within a 4-cycle in a factor graph.

latching is described in [7] for stochastic decoding on graphs
with cycles. The latching problem refers to the case where a
cycle in the code graph causes a group of nodes to lock into a
fixed state which is solely maintained by the messages within
the cycle [7]. The latching problem is particulary acute in
LDPC decoders [8]. Fig. 2 illustrates how the lack of switching
activity within a 4-cycle can cause equality nodes to lock
into a fixed state (“hold” state in this example). Note that
latching can be worse at high SNRs in which the received
Log-Likelihood Ratios (LLRs) become so large so that the
corresponding probabilities approach 0 (or 1). In this case, bits
in stochastic sequences are mostly ‘0’ (or ‘1’), hence random
switching events become too rare for proper decoding [8].

In [7], the idea of a packetized supernode is proposed to
avoid latching by preventing correlation between messages.
A supernode is a special equality node which tabulates the
incoming stochastic messages in histograms, estimates their
probability and regenerates uncorrelated stochastic messages
by random number generators. Supernodes were used in [7]
for trellis decoding of a (256,121) product Turbo code. All the
equality nodes were supernodes and they were packetized in a
sense that they were invoking the conventional SP calculation
after a time-step to calculate the probabilities of the new
outgoing messages. In addition to supernodes, the idea of
scaling channel LLRs is suggested in [8] and used in stochastic
decoding of a (16,11) Hamming code. In this method, every
block of the received LLRs are scaled to a maximum value to
ensure the same level of switching activity for each block.

Our approach uses a scaling method which increases the
level of switching activity over different ranges of SNRs. In
addition, we propose a method to avoid latching. This method
relies on the idea of stochastic decoding and does not use the
conventional SP calculation and packetized bit sequences as in
supernodes. Both methods are essential for decoding relatively
long LDPC codes.

A. Noise-Dependant Scaling

In Noise-Dependant Scaling (NDS), the received channel
LLRs are down-scaled by a scaling factor which is propor-
tional to the SNR. The down-scaled LLRs result in probabili-
ties which introduce more switching activity in the stochastic
decoder. Because the scaling factor is proportional to the
noise level, it ensures a similar level of switching activity for
different SNRs. Assuming a BPSK (±1) transmission over an

additive white Gaussian noise channel, the scaled LLR (L′
i)

for the i-th symbol (yi) in the received block is calculated as

L′
i = (

αN0

Y
)Li =

4αyi

Y
, (3)

where N0 is the single-sided noise power spectral density,
Li = 4yi/N0 is the channel LLR for yi, Y is a fixed maximum
value of the received symbols and, α is a constant factor
0 < α < Y . For BPSK transmission, we used Y = 6 and,
for the codes we used, an α around 3 resulted in the best
Bit Error Rate (BER) performance. The NDS method is often
sufficient for decoding short error-correcting codes (see Fig.
3). However, for longer codes, further improvement is needed.

B. Edge Memories

To increase the random switching activity of stochastic
messages in the code graph especially during latching, an M -
bit shift register is introduced at each edge in the graph. We
refer to these registers as Edge Memories (EMs). Each EM is
updated in accordance with (2) only when the equality node
is not in hold state for that edge. In case of a hold state, a bit
is randomly chosen from the corresponding EM and passed
through the edge as the outgoing bit. This updating scheme
reduces the chance of locking into a fixed state since every
time a hold state happens, a bit is randomly chosen from those
previous outputs which are not produced in hold states.

C. The Proposed Stochastic Decoding Method

The proposed decoding method exploits both NDS and
EMs. Upon receiving each block, the channel LLRs are scaled
as in (3). In each DC, one bit of corresponding stochastic
messages is passed to each equality node. If a hold state occurs
on an edge, the equality node randomly picks a bit from the
corresponding EM. Otherwise, the output bit of the equality
node is passed through the graph and EM is updated. The
check nodes perform the parity-check equation and pass their
messages to the equality nodes. Each equality node calculates
its output at the end of each DC and passes it to an up/down
counter. The counter is decremented in case of a ‘0’ output
and incremented in case of a ‘1’. At any given DC, the sign
bit of the counter indicates the hard decision, with a ‘0’ sign
bit indicating a decoded ‘+1’ and a ‘1’ sign bit indicating a
decoded ‘-1’. The decoder operates for a fixed number of DCs
unless all the parity-check equations are satisfied sooner.

IV. SIMULATION RESULTS

Fig. 3 shows the BER performance for stochastic decoding
of a (7,4) Hamming code using NDS with α = 3 and
maximum 2K DCs (EMs are not used). As shown, NDS
improves the performance of stochastic decoding and provides
comparable performance for different SNRs with respect to
SP decoding. These performance results are superior than the
results in [5].

Figs. 4 and 5 show the BER performance of the proposed
stochastic decoding method for (200,100) and (1024,512)
LDPC codes. We used M = 25 and maximum 10K DCs
for decoding the (200,100) code and, M = 50 and maximum
60K DCs for the (1024,512) code. An α = 3 is used for both

718 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 10, OCTOBER 2006

1 2 3 4 5 6 7 8 9
10-6

10-5

10-4

10-3

10-2

10-1

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(7,4) Hamming code, 100 block errors

Stochastic dec. without NDS and EMs (max. 2K DCs)

Log-SP dec. (floating point, 64 iterations)
Stochastic dec. with NDS and without EMs (α = 3, max. 2K DCs)

Fig. 3. Simulation results for a (7,4) Hamming code using NDS method.

codes. As shown, with respect to floating point SP decoding
with 64 iterations1, the proposed method provides comparable
BER performance for the (200,100) code and near-optimal
performance for the (1024,512) code. An SNR loss of about
0.1 dB is observed for the latter code at the BER of 10−6.
The observed average DCs per block are much less than the
maximum DCs. The average DCs for the (200,100) code is
about 200 DCs at the BER of 10−7 and for the (1024,512)
code, it is about 5K DCs at the BER of 10−6. Note that DCs
are not equivalent to the iterations in SP decoding and due to
the low complexity of a stochastic decoder, the clock rate can
be much higher than that of a fixed point SP decoder. Also,
it is more viable to have a fully-parallel stochastic decoder.

To show the performance contribution of NDS and EMs,
results for (i) decoding without NDS and EMs and, (ii)
decoding with EMs but without NDS are also depicted in
Figs. 4 and 5. The contribution of EMs can be observed by
comparing results for case (i) and (ii). Also, the contribution
of NDS at higher SNRs can be easily seen by comparing
the results of the proposed method and case (ii). It is worth
mentioning that unlike the results of the short Hamming code
in Fig. 3, NDS cannot improve the poor decoding performance
for the case where EMs are not used.

V. CONCLUSIONS

A method for iterative stochastic decoding of LDPC codes
is proposed. Compared to floating point SP decoding, results
show comparable performance for a (200,100) and near-
optimal performance for a (1024,512) LDPC code. For the
first time, these results indicate the viability of the stochastic
approach for decoding state-of-the-art LDPC codes on factor
graphs. They also open a broad set of research questions with
significant potential for high-throughput and/or low complex-
ity iterative stochastic decoding of error-correcting codes.

ACKNOWLEDGEMENT

The authors would like to thank V. Gaudet, S. Howard and
A. Rapley for helpful discussions.

1No major BER improvement is observed after the 64th iteration.

1 1.5 2 2.5 3 3.5 4 4.5 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/N0 (dB)

(200,100) regular LDPC code, 100 block errors

Stochastic dec. without NDS and EMs (max. 10K DCs)
Stochastic dec. without NDS (M = 25, max. 10K DCs)
Proposed stochastic dec. (α = 3, M = 25, max. 10K DCs)
Log-SP dec. (floating point, 64 iterations)

B
it

E
rr

or
 R

at
e

Fig. 4. Simulation results for (200,100) LDPC code.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b

/N
0

(dB)

(1024,512) regular LDPC code, 100 block errors
B

it
E

rr
or

 R
at

e

Stochastic dec. without NDS and EMs (max. 60K DCs)
Stochastic dec. without NDS (M = 50, max. 60K DCs)
Proposed stochastic dec. (α = 3, M = 50, max. 60K DCs)
Log-SP dec. (floating point, 64 iterations)

Fig. 5. Simulation results for (1024,512) LDPC code.

REFERENCES

[1] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, pp. 599–618, Feb. 2001.

[2] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519, Feb.
2001.

[3] B. Gaines, Advances in Information Systems Science. New York:
Plenum, 1969, ch. 2, pp. 37–172.

[4] B. Brown and H. Card, “Stochastic neural computation I: computational
elements,” IEEE Trans. Comput., vol. 50, pp. 891–905, Sept. 2001.

[5] A. Rapley, C. Winstead, V. Gaudet, and C. Schlegel, “Stochastic iterative
decoding on factor graphs,” in Proc. 3rd Int. Symp. on Turbo Codes and
Related Topics 2003, pp. 507–510.

[6] V. Gaudet and A. Rapley, “Iterative decoding using stochastic compu-
tation,” Electronics Lett., vol. 39, pp. 299–301, Feb. 2003.

[7] C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel, “Stochastic iterative
decoders,” in Proc. IEEE Int. Symp. on Information Theory 2005, pp.
1116–1120.

[8] C. Winstead, “Error-control decoders and probabilistic computation,” in
Proc. Tohoku Univ. 3rd SOIM-COE Conf., Oct. 2005.

[9] W. Gross, V. Gaudet, and A. Milner, “Stochastic implementation of
LDPC decoders,” in Proc. 39th Asilomar Conf. on Signals, Systems,
and Computers, Nov. 2005.

