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Abstract
The simulation and visualization of biological systems is ex-
pected to enhance our understanding of biological processes
towards the development of effective therapeutic treatments.
Biological systems are inherently stochastic at the molecu-
lar level, exhibit modified behavior under crowded conditions
and may be affected by spatial locality. Common simulation
approaches fail to account for these important aspects of bio-
logical systems, in part because they are computationally ex-
pensive. Here, we describe a stochastic, particle-based simu-
lator that takes spatial locality into account. Each particle in
the system is represented explicitly on a 3D grid where only
one particle can occupy a grid location. The grid structure and
stochastic approach removes the need for distance calculation
and particle search. We demonstrate the effect of molecular
crowding and spatial locality for a simple biological system.
We anticipate that this system will be useful in examining
more complex systems. Finally, this system is expected to be
suitable for acceleration with parallel customizable hardware,
a necessary requirement towards the simulation of an entire
cell.

1. INTRODUCTION
Computational cell biology is currently one of the most ex-

citing cross-disciplinary areas of research [1]. An ambitious,
long term goal of this field is to simulate a biological cell in
which researchers are focused on producing accurate simu-
lations of biological systems with molecular resolution. This
task has two major challenges: 1) the construction of accurate
biological models and 2) the development of scalable simu-
lation architectures. Efforts towards realizing these objectives
are expected to support therapeutic drug development against
human diseases by increasing our understanding of biological
systems.

Molecular systems are inherently stochastic and spatially
dependent such that they require compatible simulation meth-
ods. It is well known that molecules behave with Brownian
dynamics [2]. The functionality of certain proteins known as
enzymes are limited by the rate of diffusion in the solution
medium. An important aspect to this functionality has to do
with the mobility of particles in what is increasingly believed

to be a crowded environment [3]. Importantly, certain cellu-
lar responses occur as a result of single or few particle fluc-
tuations, and this precludes the use of modeling the systems
with continuum dynamics. As well, the effect of spatial local-
ization is expected to play an important role in the behavior
of the system [1]. The idealization of a “well mixed” system
is unlikely to reflect biological reality where molecular com-
plexes form scaffolds for recruitment for cellular signaling
and metabolism. Indeed, stochastic and spatial considerations
are necessary for the in silico simulation of biological cells.

The simulation of discrete, stochastic, spatially-dependent
molecular systems is however extremely computationally ex-
pensive and most current simulators do not support all of
these functionalities. A brief overview of some of the current
popular simulator follows.

The stochastic simulation algorithm (SSA) from Gillespie
[4] is a stochastic and dimensionless algorithm that has been
used to simulate many different systems. The position of the
particle is not tracked and a “well mixed” system is assumed.
Virtual Cell [5] is a deterministic simulator that solves par-
tial differential equations (PDE) to compute the concentration
and location of every species. The simulation space is divided
into compartments that have no specific geometry. StochSim
[6] is a stochastic simulator that tracks individual molecules
on a discretized 2D grid. Simple 2D structure can be cre-
ated where nearest-neighbour interactions of molecules can
be simulated. MCell [7] is a stochastic simulator that tracks
individual particles in a continuous 3D space. The diffus-
ing particles move independently with Brownian dynamics.
2D membrane surfaces and sites of chemical reactions are
mapped in the 3D volume. A ray-tracing algorithm is used to
detect collisions between particles and the surface, resulting
in chemical reactions. SmartCell [8] is a stochastic simulator
that divides the 3D space into smaller cells that can contain
several molecules. Inside each of these small cells the well
mixed assumption holds and an algorithm similar to the SSA
is used. Particles can diffuse to neighboring cells. ChemCell
[9] induces stochastic behavior for individual particles with
a dependency on diffusion coefficient in a 3D volume, and
evaluates chemical events by converting rate laws into proba-
bilities. A binning algorithm is used to find the neighbor par-
ticles that are susceptible to enter in a reaction. The binning
is an O(N) algorithm in the number of particles N. While
many of these methods are effective in simulating biologi-
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Figure 1. The 27 possible directions of a D3Q27 grid.

cal processes, they do not address the issue of parallelization,
performance and scalability which are necessary for whole
cell simulations.

We have developed a stochastic simulator that handles spa-
tial locality, very low particle concentrations and collision be-
tween particles using a discrete 3D grid. This paper is struc-
tured as follow. Section 2 describes the simulation model.
Section 3 gives preliminary results of our model. We discuss
current challenges and future directions in Section 4. Conclu-
sions are offered in Section 5.

2. THE SIMULATION MODEL
We propose a simplified model for molecular movement

and interaction. Molecules are represented as particles that
move within discrete volumes in discrete time steps. An
integer-addressed 3D grid avoids floating-point computation
and distance calculations. These choices were made with the
future goal of enabling highly parallel, large-scale simula-
tions using custom hardware. The model components includ-
ing the grid, particle movement and interaction, and cellular
geometry are described below.

2.1. Grid-Based Stochastic Model
The simulation volume is divided into a three-dimensional

grid of voxels on the nanometer scale. The grid follows the
D3Q27 model shown in Figure 1 meaning that a given voxel
has access to its 27 neighbors (including itself) for movement
and reaction and anything outside this immediate neighbor-
hood is ignored. Each voxel may contain at most one par-
ticle. Together, these remove the need for distance calcula-
tion while enabling a tremendous amount of parallelism that
can be exploited with parallel architectures. The voxel dimen-
sions can be selected to obtain a trade off between space res-
olution and total model volume.

2.2. Particle Movement
A particle represents macro-molecules such as protein,

small molecules such as ions, inert particles that contribute
to molecular crowding or complex structures such as mem-
branes. Particles can move in the grid and interact with each
other. A particle can only move in one of 27 surrounding loca-
tions, including staying in the current location. A particle can
move at most once per time step or turn. A “moving ratio”
between 0 and 1 representing the probability of movement
at every turn is set for each different species. Particles with
two different “moving ratios” have different diffusion speeds.
The random selection of the movement direction results in
the particle following a Brownian random walk. The particle
data structure contains the type of the particle and flags in-
dicating whether it has moved or reacted in the current time
step (turn).

2.3. Probability of Interaction
Particles may interact with each other when in spatially ad-

jacent grid cells. Common interactions include aggregation
events such as molecular complex formation/dissolution or
conversion events such as chemical reactions. The probability
of reaction per time step is derived from the rate of reaction.
Particles may react only with their immediate neighbors and
only once per turn. Complex reactions involving more than
three particles are decomposed into several elementary reac-
tions of up to three particles. Three different reactions involve
three or less particles: one reactant and one product, one re-
actant and two products and finally, two reactants and one
product. Let’s consider the two reactions that involve a single
reactant.

A→ B, (1)

A→ B+C. (2)

Both reactions have a forward rate of reaction k in units of
time−1. The time step which is the elapsed time between 2
successive iterations of the algorithm is t seconds. Assuming
N particles of type A are in the system, then in both cases the
expected number of reactions per turn is given by Nkt. Con-
sidering each particle individually, a particle reacts at each
turn with probability equal to kt. In our stochastic model, a
uniform random number Rn ranging between 0 and 1 is gen-
erated for each particle and the reaction takes place if and
only if Rn < kt. For a given k, it is possible to have a product
kt larger than one. Should that happen, a smaller time step t
is required in order to maintain a coherent simulation.

In a reaction with only one reactant and one product, the re-
actant is replaced by the product if Rn < kt. In a reaction with
one reactant and two products, a search is first conducted in
the surrounding area of the reactant if Rn < kt. If the search
detects at least one free voxel in the cube surrounding of the



particle, the reaction takes place and the second product is po-
sitioned in that free location while the first product is placed
at the position of the initial reactant. The reaction is blocked
if no free position is found. Consider the following reaction
with two reactants:

A+B→C, (3)

with a rate constant k in units of (molarity*time)−1 and a time
step between each iteration of t second. The total number of
reactions Nr is given by

Nr =
kNaNbt

AvV
, (4)

assuming Na particles of type A, Nb particles of type B, a vol-
ume V and Avogadro’s number Av. On average, the desired
number of reactions in our system should be equivalent to
the result of the above equation. In a well-mixed system, the
number of (A,B) pairs that are close enough to each other to
generate a reaction is given by N = NaNbVc/V where Vc is
the volume of the cube containing the 26 neighboring voxels
and V is the total volume of the simulation. If each of those
pairs react with probability P, then Nr = NP. Setting the two
equations Nr = NP = kNaNbt/(AvV ) gives the equation

P =
kt

AvVc
. (5)

The formula is independent of V , Na and Nb as expected. Sim-
ilar to the previous case, for a given rate constant k, it is pos-
sible to have a set of parameter t/Vc such that P is greater
than 1. If that is the case a smaller time step or larger voxels
(proportional to Vc) have to be selected. A smaller time step
reduces proportionally the number of reactions taking place
during a turn. Similarly, a greater Vc increases the search area
which increases the number of (A,B) pairs that can react to-
gether. Since the number of reactions must remain the same,
the probability of reaction for each of those pairs is decreased.
Each turn, a random number Rn between 0 and 1 is generated
for the first of the two reactants. If Rn < P, then the first reac-
tant will search its surrounding area for the second reactant.
If one is found, the reaction takes place and the product is
placed at the location of the first reactant. If no reactant is
found, the reaction is aborted.

2.4. Complex reactions
More complex reactions are implemented by cascading

several elementary equations. Complex reactions are broken
down into a series of simpler reactions by introducing “tem-
porary” species. Consider the following reaction with 1 reac-
tant and 5 products,

A→ B+C +D+E +F, (6)

where k is the rate of reaction in units of time−1. For each
additional product exceeding two products, a “temporary”

species will be created. In this case, three temporary species
are created. It follows that the reaction will be broken down
into:

T1 → B+C, (7)

T2 → D+E, (8)

T3 → F +T1, (9)

A→ T2 +T3, (10)

where T1, T2 and T3 are the first, second and third temporary
species respectively. By setting the rate of reaction of Equa-
tion 10 equal to k and the probability of reaction of equations
containing any temporary species on the reactant side equal to
one, we reduce the artifacts due to the creation of the tempo-
rary species to a minimum. The temporary species disappear
from the system as quickly as possible and the overall rate
of reaction is identical. Shown below is the case where more
than two reactants merge into a single product:

A+B+C +D+E → F. (11)

The procedure is similar to the previous case and for more
than two reactants such that one temporary species will be
created for each additional reactant.

A+B→ T1, (12)

C +D→ T2, (13)

E +T1 → T3, (14)

T2 +T3 → F. (15)

where T1, T2 and T3 are the first, second and third tempo-
rary species respectively. In order to obtain the same overall
probability of reaction and to reduce the impact of the tem-
porary species on the system to a minimum, the probability
of reaction of any reaction containing temporary species on
the reactant side (Equations 13 and 14) is set to 1. Assuming
that P is the probability of reaction of the reaction presented
in 11 and P1 and P2 are the probability of the first and sec-
ond simple reaction A+B→ T1 and C +D→ T2 then, we set
P = P1P2. We also set P1 = P2 and equating the two equations
gives P1 = P2 =

√
P. In general, the probability of the simple

reactions Pn containing no temporary species is equal to

Pn = Pb
2

Nreactants
c, (16)

where P is the probability of reaction and Nreactants is the
number of reactants of the initial reaction.

Each temporary particle has a parameter li f etime which
indicates the number of turns the particle has to live in the
system before reverting back to its previous state. The short
lifetime of “temporary” particles is important for two reasons.



First, it makes sure that “temporary” particles are effectively
temporary and do not stay in the system for a long period of
time. It also makes sure that all the reactants are to be close to
each other in order for the reaction to complete. A lifetime of
2 or 3 turns is reasonable since it gives enough time to react
with the neighboring particles while making sure temporary
particles do not constitute the bulk of the system.

2.5. Reversible reactions
Reversible reactions are handled by creating two separate

reactions, one for the forward reaction with the forward re-
action rate and one for the backward reaction with the cor-
responding backward reaction rate. Assuming the following
reaction

A+B+C +D+E ↔ F, (17)

with forward reaction rate k f and backward reaction rate kb.
This reversible reaction is then split into

A+B+C +D+E → F, (18)

with a reaction rate k f and

F → A+B+C +D+E, (19)

with reaction rate kb. Temporary particles involved in a re-
versible reaction must also remember if they are participating
in a forward or backward reaction such that they revert back
to the proper reactants when their lifetime reaches zero.

3. RESULTS
Several molecular models were simulated. The first two

models consist of only a few different reactions and a lim-
ited number of species. The first model is a simple reversible
reaction A + B ↔ C. The second one is a Michaelis-Menten
system, which describes the kinetics of many enzymes. It is
important to validate our approach by comparing the results
with an already well known and proven approach, the SSA
from Gillespie [4]. It is a very good candidate to validate our
model as both approaches should provide the equivalent re-
sults for well mixed systems. The third example will demon-
strate the effects of crowding by adding inert particles to a
Michaelis-Menten system and the last example shows how
the structure of a system can play in important role.

3.1. Simple reaction
This system is a simple reversible reaction involving three

different species A, B and C in the following manner: A+B↔
C. The forward reaction A+B→C has a rate of reaction k f of
1010 per mole per second. The reverse reaction C→A+B has
a rate of reaction kb of 1 per second. The simulation space is
a cube with a volume of 10−11 liters and the time step is 10−4

seconds. The initial number of particles is 3000 A particles,

Figure 2. Comparison between our model and the Gillespie
approach for the reaction A+B↔C.

1000 B particles and 0 C particles. The system reaches steady-
state fairly quickly and after 1 second of simulated time, the
species reach equilibrium with the exception of some small
stochastic noise. The SSA simulator has been set with sim-
ilar parameters: a simulation length of 1 second and a time
step of 10−3 second. The results are shown in Figure 2. Both
simulators produce the same results with small, but expected
stochastic fluctuations. This model has been simulated by the
ChemCell software with similar results [9]. These results sup-
port the idea that the discretization of the volume into a grid
does not affect system behavior under these conditions.

3.2. Michaelis-Menten reaction
The Michaelis-Menten equations are used to describe

most enzymatic reactions. Michaelis-Menten kinetics are de-
scribed by the following equation:

E +S↔ ES→ E +P. (20)

The species E is an enzyme which can react with the sub-
strate S to form the complex enzyme-substrate ES. The ES
complex can revert back to its original dissociated form E +S
or create the product P, liberating at the same time the orig-
inal enzyme E. As in the previous case, the simulation takes
place in a cube of 10−11 liters, the number of enzymes E is
1000 particles and the initial amount of substrate S is 3000
particles. The forward rate of reaction k1 of E + S ↔ ES is
1010 per mole per second and the reverse rate of reaction is
1 per second. The forward rate of reaction of ES → E + P
is also 1 per second. The simulation runs for 10 seconds, the
time step in both cases has been set to 10−3. The results pro-
duced our simulators is compared with the SSA algorithm
and presented in Figure 3. Similar to the previous case, both
approaches produce the same results.



Figure 3. Comparison GridCell and the dimensionless SSA
approach for a Michaelis-Menten system.

3.3. Crowding

Molecular crowding occurs when density of particles re-
duces their movement and hence affects their reactivity.
Crowding is typically ignored in most models since the kinet-
ics are often based on controlled, in vitro conditions that are
not crowded. As well, simulators do not typically accommo-
date for this feature since it is computationally expensive to
keep track of all particle positions, their excluded volume and
the implementation of collision detection algorithms. Here,
we demonstrate the effect of crowding by adding inert parti-
cles to the system. Inert particles do not react with other mole-
cules but reduce movement in the grid and affect the overall
number of reactions. The effect of crowding has been tested
with the Michaelis-Menten system described in the previous
subsection. Figure 4 shows the number of products over time
for a wide range of varying concentrations of inert particles.
The number after the P in the legend signifies the percent of
the voxels occupied by inert particles. The inert particles have
a minimal impact on the system when they occupy less than
30% of the available space. However, above 30% the reac-
tion slows down linearly as more and more inert particles are
added. Interestingly, no matter the concentration of inert par-
ticles, product formation is similar in the first 0.5 seconds.
After 0.5s, the slope of curve begins to deviate from the non-
crowded case. The likely explanation for this is that there is
sufficient substrate S near every enzyme particle (E) to react
at full speed. As time passes, nearby particles (S) are con-
verted into product particles (P) and the enzymes and reac-
tants must move to other positions to contact each other. At
this point the reaction slows down dramatically, as noted by
an abrupt change in the slope of graph.

Figure 4. Effect on crowding on the creation of products in
a Michaelis-Menten system. The inert particles occupy 0% to
90% of the voxels.

3.4. Localization
Localization of particles, either by recruitment to a spe-

cific location or by anchoring them in relatively structured
environments is expected to affect cellular processes. Here,
we examine the effect of localization on reaction rates when
a system is not well-mixed. Localization to cellular structures
such as membranes may influence the overall behavior of the
system by fixing position, reducing diffusion and hence af-
fecting the rate of collision between interacting particles. The
biochemical model is a Michaelis-Menten reaction where en-
zymes are localized to regions of a semi-porous membrane
made of immobile inert particles. The substrate particles are
also all placed on one side of the membrane. This example is
similar to the one presented in [10]. The top view of the struc-
ture is shown in Figure 5. Substrate particles initially located
on the left side slowly migrate to the right side as shown in
Figure 6. The S concentration is still much higher on the left
side than the right after 10s of simulation time. Concentration
of the S is lowest at the two enzyme sites. This is because S
are converted to product when interacting with enzymes em-
bedded in the membrane. Figure 7 shows the evolution of the
species P.

Figure 8 shows the difference in the overall reaction rate
between a well-mixed system and a system with the struc-
ture described by Figure 5. Both simulations have the same
number of particles, the same volume and the same reaction
rate. However, the overall speed of reaction is substantially
different between the two systems. Due to the presence of the
semi-porous membrane and only two specific areas where the
reaction can take place, the non well-mixed system exhibits
a much slower reaction rate than the ideal well-mixed case.
This demonstrates that the structure can have a significant



Figure 5. Top view of the simulation structure. The red area
indicates the location of the substrate, blue areas indicate the
location of the enzymes and the yellow areas indicate the inert
particles forming the porous membrane.

impact on the behavior of a biological pathway and that the
well-mixed assumption can induce a large amount of error.

4. FUTURE DIRECTIONS
4.1. Compartments

Compartments are important for many biological processes
because they play a role in regulating the concentration of
particles required for normal cellular function and may be in-
volved in the recruitment of macromolecular complexes in-
volved in cell signaling. Models that include compartments
are aiming to understand the role of species partition, and this
necessarily abandons the assumption of a well mixed system.

Compartments are not yet not fully supported. Support for
these entities is currently being implemented and should be
available for the next version of our simulator. Briefly, these
will be treated as follows. Each voxel in the model will be
assigned a compartment number. A particle moving from one
compartment to another has to check a compartment table that
contains a probability indicating how often that particle will
go through that new compartment. Particles may not interact
with particles located in different compartments.

4.2. FPGA Acceleration
While tracking every single particle in the system may pro-

vide additional biological insight it comes at a steep compu-
tational cost over conventional approaches. Simulations that
could have been performed in a matter of seconds with dif-
ferential equations may take several hours to complete. One
way to minimize this additional computation is to parallelize
the algorithm.

A major motivation in applying a discrete 3D grid with a
simple neighbor finding system for ”collision” detecting is

Figure 6. Top view contour plot of the concentration of sub-
strate at t = 0, t = 2, t = 6 and t = 10.

Figure 7. Top view contour plot of the concentration of
product at t = 0.1, t = 2, t = 6 and t = 10.

that it avoids expensive searches and makes possible the im-
plementation to a parallel architecture. By keeping the algo-
rithm simple and regular, it is possible to design a simple cus-
tom pipelined architecture which could operate on many par-
ticles at the same time. In the current system all particles apart
by more than two locations in every direction are completely
independent from each other and can be processed at the same
time, exposing a high degree of parallelism. Fine-grained par-
allel devices such as Field-Programmable Gate Arrays (FP-
GAs) are prime candidates for hardware acceleration.



Figure 8. Concentration plot of the same Michaelis-Menten
system under two different conditions. The first one consid-
ers localization effect, the second one assumes a well-mixed
system.

5. CONCLUSIONS
We describe a stochastic simulator that handles locality,

very low species concentration and collisions using a discrete
3D grid. Simulation results were found to be comparable to
those obtained with the SSA algorithm. We demonstrate the
negative impact that 1) crowding and 2) locality may have on
reaction rates. Hence, biological simulations should no longer
assume well mixed systems as these may lead to significant
error. The adoption of a discrete 3D grid facilitates nearest-
neighbour determination for interactions and reduce the re-
quirement for computionally expensive distance calculations
that depend on floating-point arithmetic. The regularity and
simplicity of the algorithm makes it a good candidate for ac-
celeration with a parallel architecture.
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