
A Methodology for Prototyping Flexible
Embedded Systems

John Sachs Beeckler and Warren J. Gross
Department of Electrical and Computer Engineering,

McGill University
Montreal, Quebec, Canada

e-mail: john.beeckler@mail.mcgill.ca, warren.gross@mcgill.ca

Abstract— A methodology is presented for prototyping flex-
ible, custom embedded systems using low–cost reconfigurable
hardware, open–source FPGA–ware, and open–source software.
This is done through a case study of the complete design of
a custom embedded system. The system is intended as a low–
cost, flexible, and reconfigurable platform with multimedia and
networking capabilities, for prototyping interactive entertainment
applications. The system features an FPGA system–on–chip
design supported by a custom board with a versatile set of
interfaces including Ethernet, color television, stereo audio and
others. The project contains work in three main areas: board
design, HDL chip design, and software.

I. INTRODUCTION

This paper examines a methodology for prototyping flexible,
custom embedded systems using low–cost reconfigurable hard-
ware, open–source FPGA–ware, and open–source software.
This is done through the case study of the complete design of
a custom embedded computer system. The system, shown in
Figure 1, is intended as a low–cost, flexible, and reconfigurable
platform with multimedia and networking capabilities, for
prototyping interactive, entertainment applications. The system
features a FPGA system–on–chip design based on the open–
source LEON microcontroller [1], supported by a custom
board with a versatile set of interfaces including Ethernet,
color television, stereo audio, analog game controllers, and
others. The work concerns three main areas: board design,
HDL chip design, and software. The open–source design
methodology is described in Section 2. The design speci-
fications are introduced in Section 3. Section 4 discusses
the system design. Section 5 presents the FPGA synthesis
results, and Section 6 discusses the software configurations.
Conclusions are presented in Section 7.

II. A FLEXIBLE DESIGN METHODOLOGY

We used a flexible, “open–source” design methodology
at all three levels. Wherever possible, we used open–source
software and VHDL hardware models instead of proprietary
solutions. There are several resources for top quality, ASIC
proven, open–source HDL designs, or “cores”. These range
from 8–bit microcontrollers to 64–bit DSPs, and hardware
square root units to video compression. OpenCores.org is
one such organization providing freely available, freely usable
and re–usable open source hardware. OpenCores.org has a
selection of verified open–source hardware designs including

Fig. 1. Prototype system.

microprocessors, complete systems–on–chip, arithmetic cores,
communication cores, encryption cores, coprocessors, error–
correction encoders and decoders, and even board layouts.
There are several advantages of development using open–
source HDL designs, including:

• Independence from technology (FPGA and ASIC), ven-
dors, boards, and tools

• ASIC prototyping,
• Support and information available from an active com-

munity of users participating in continued development,
• Transparency of design,
• Blocks are truly configurable, alterable, and customizable,
• Software support (open–source drivers and operating sys-

tem ports).

Open–source HDL is generally designed for independence.
A perfect example of this is the LEON open–source HDL
library from Gaisler Research. All technology dependent fea-
tures of the LEON are isolated and contained in a special,
separate VHDL package. All one has to do to investigate how
certain features are implemented for a particular technology
is study the corresponding entry of this package. Similarly,
porting the LEON to a new FPGA or ASIC technology is as
simple as specifying how each entry of this package should
be implemented. Open–source libraries such as the LEON or

0840-7789/07/$25.00 ©2007 IEEE
1679

OpenRISC are ideal for prototyping ASIC systems using an
FPGA. The logic design itself is independent of any FPGA
and can be either directly, or with little effort, modified for
ASIC fabrication. This is generally not possible with “IP”
(proprietary closed designs) which target a specific FPGA
technology. The configurability provided by the open–source
nature of these cores greatly simplifies the porting of designs
for use on new boards and in new systems and applications.
This was made clear to us when attempting to instantiate
a Nios I system on the board. The Nios I is a propriety
microcontroller system design for Altera FPGAs. Because the
Nios I system made certain assumptions about a shared tristate
bus on the board, which were true of many other boards but not
true of the custom board, it was difficult to use some essential
Nios peripherals. When the same problem was encountered
with LEON, because we had the source code, the simple
addition of three lines of VHDL to the source code solved the
problem. Although this may sound like an isolated problem,
it illustates the importance of having access to the VHDL
of a hardware device. Another aspect to open–source design
is configurability. One of the greatest strengths of an FPGA
based system is the potential use of its reconfigurability for
special, custom hardware. Without access to source code, then
the reconfigurability of a system is limited to macroscopic or
fixed customizations.

A. An Argument for Proprietary Solutions

The use of proprietary, closed–source technology, both
software and hardware, is and continues to be a good solu-
tion for many engineering projects. Here we examine a few
possible reasons. Proprietary cores made by the manufacturer
of an FPGA are highly optimized for the technology used.
Such FPGA specific cores can be optimized for area and
speed, achieving higher maximum clock frequencies and much
smaller FPGA areas than those of technology independent
designs. An important aspect to proprietary solutions, both
software and HDL cores, is that they offer isolation. In many
situations isolation is exactly what is required. It is not realistic
for many engineering projects to be directly involved in all
aspects of design.

III. DESIGN SPECIFICATIONS

The objective is to create a custom embedded system with
multimedia and networking functionality, using reconfigurable
hardware and open–source resources. Of particular importance
is that the FPGA used be a low–end device because the target
applications are consumer market oriented. The design of the
system is divided into three phases:

Phase 1 of the project involves designing and building a
custom circuit board (Figure 2). The first board prototype
was designed, assembled, and experienced several cycles of
testing, debugging, and altering for each subsystem it contains.
It is a two–layer FPGA board with enough RAM and FLASH
for a 32–bit embedded Linux system. It has hardware for
interfacing to Ethernet, NTSC output, stereo audio output, and
game controller inputs. The board features a low–cost Altera

FLASH
JTAG

Audio

Color TV Video

Config FLASH

Serial Port
Joystick Port

FPGA SRAM

DRAM

Ethernet

Fig. 2. The board.

Cyclone FPGA with 12,060 logic elements and 239 Kbits of
embedded RAM.

Phase 2 of the project is the design of a custom system–
on–chip, realized in the reconfigurable logic of the FPGA.
It is based on a modified version of LEON 2, a SPARC
compatible, open–source VHDL processor design. The LEON
has been augmented with custom logic cores and peripherals
implementing each of the subsystems and targeting board
hardware. These subsystems include a custom bursting mem-
ory controller, an on–chip NTSC color video system, an audio
controller, and input game controller interfaces.

Phase 3 of the project is embedded software development.
Low–level software drivers for the Ethernet, video, audio, in-
put, and flash subsystems are have been developed. The system
is currently capable of running RTEMS, an open–source real–
time kernel, µCLinux, an embedded Linux distribution for
microcontrollers, and bare executables with interrupt handlers.
Software applications and operating systems are loaded by
a custom boot–loader either from FLASH, Ethernet, or a
serial link. C libraries support board hardware and application
software such as the fractal graphics software shown in Figure
1 demonstrate the capabilities and functionality of our system.

IV. SYSTEMS DESIGN

The system architecture is illustrated in Figure 3. Below,
we describe the main components of the design.

A. FPGA

The Altera Cyclone EP1C12 device was chosen for a
number of reasons. The Cyclone is a low–cost, high–density,
and feature–rich device. Altera advertises volume prices of less
than $0.99 per 1,000 logic elements for the Cyclone family
and $0.64 per 1,000 logic elements for the Cyclone II family,
making it a realistic option for cost sensitive applications. The
device chosen, the EP1C12, contains 12,060 logic elements,
239 Kbits of embedded RAM, 2 PLLs, and 249 I/O pins. It
was important that the FPGA contain enough logic elements
to instantiate a 32 bit microprocessor system, the system’s pe-
ripheral logic set, coprocessors, and “application acceleration”

1680

Data
Cache

Instr
Cache

Audio
Controller

Debug
Unit

UART

Max. Throughput
SRAM Arbitrator

port Bport A

Video Ctrl

NTSC
timing src

Serial Port

Timers
Inter. Ctrl
etc.

Bursting FPM
DRAM Ctrl

DRAM
Main Memory

Audio
Circuit

Video SRAMFLASH

3−State

E
thernet

C
ontroller

Joystick Port

SPARC V8
compatible

CPU

��
��
��
�� ����

��
��
��
��

��
��
��
��

��������������������
��������������������
��������������������
��������������������

��
��
��
��

��
��
��

��
��
��

Color
Palette

FPGA

AHB High Speed Bus

Video Circuit

APB Bus

Fig. 3. System architecture overview

logic. The available logic elements and embedded RAM on the
EP1C12 have proved to be sufficient. The current LEON based
system–on–chip design, with all peripheral hardware uses
about 79% of the logic elements. 38% of the embedded RAM
is used for microprocessor caches and the video color palette.
The on–chip PLLs are used to derive the system clock from
the video clock. PLLs in FPGAs bring even more versatility to
a design, providing flexible control over the frequencies and
phases of multiple clocks domains within one design. This
flexible on–chip clock management was useful in the design
of a microcontroller with on–chip video logic. Another factor
considered when selecting the FPGA was that, at the time,
the EP1C12 was the largest Cyclone device available in a
package other than a BGA (ball grid array). BGA packages
can be difficult to work with manually, making debugging,
testing, manual board changes, and assembly problematic.
Equally important are the development tools available for
an FPGA. The Cyclone family is fully supported by the
free edition of the Quartus FPGA development suite. This
means that anyone, given a board, can download tools and
start developing immediately without purchasing expensive
development software. This is critical if a board is intended
to be “user–programmable”.

B. Memory

A small configuration FLASH stores data for configuring
the FPGA with a system design. This configuration FLASH
is programmed via a special port. The FPGA can also be
programmed directly using the JTAG port. A 512 KB NAND
FLASH is used for storing a boot–loader, software, and data.
NAND FLASH has the desirable feature of “RAM–style”
read accesses, allowing the “in–FLASH” execution of program
code. The device used has a lifetime of 10,000 program–
erase cycles, making it acceptable for use as a data storage
device. 4 MB of 32–bit wide, fast–page–mode DRAM forms
the main memory, a sufficient size for µCLinux, or RTEMS

applications, and large when compared to some popular hand–
held systems. In addition, 512 KB of independently accessible,
low–latency SRAM, on a separate bus, make a special memory
for use as either a video frame buffer, or a dedicated coproces-
sor memory. The FPGA internal embedded RAM is used for
microprocessor caches, a color palette for the video system,
and special peripherals.

C. Video

An essential board–level hardware requirement for video
applications is an independently accessible, low–latency mem-
ory for use as a frame buffer. This is provided by the SRAM.
A logic video system, in the FPGA, is included as part of
the microcontroller’s on–chip peripherals. However, special
board hardware is necessary for synthesizing the analog signal.
The composite NTSC color video signal contains three analog
levels: luminance Y , and two color difference signals, U
and V . The two color difference signals, U and V are
used to modulate a high frequency color carrier of 14.318180
MHz, at 0o and 90o phase difference. These high frequency
color waves are then added to the luminance signal. Finally,
synchronization pulses and color carrier pilot bursts are added
to the signal. Video system logic in the FPGA creates signal
timing and video content, originating from the frame buffer.
Output from the FPGA includes digital RGB values (red, blue,
and green) and digital synchronization pulses. Analog RGB
voltages are synthesized by passive circuity, resistor networks
and capacitors, using a pulse–width–modulation technique for
higher color resolution. These analog RGB levels and synchro-
nization pulses are fed to the AD724 chip, which performs the
necessary RGB–to–YUV conversion, color modulation, sync–
injection, and filtering, finally creating a NTSC composite
video signal.

D. Audio

Analog levels for both left and right audio channels are
created from the FPGA via pulse–width–modulation, using

1681

TABLE I

FPGA RESOURCE UTILIZATION

Logic elements 9627/12060(79%)
Memory bits 91392/239616 (38%)

Registers 3428/12567 (27%)
Combinational Functions 8781

Interconnect Usage 50%

two low–pass RC filters, and buffered by single supply op–
amps. A logic audio controller or coprocessor can be included
in the FPGA.

E. Ethernet

The trend with highly–integrated, embedded microcon-
trollers, is to include on–chip Ethernet MAC (media access
control) peripherals. The world of FPGA microcontroller
systems seems to be following that trend. OpenRISC from
OpenCores.org, LEON from Gaisler Research, Microblaze
from Xilinx, and Nios from Altera are all FPGA systems–on–
chip which include Ethernet controllers as on–chip peripherals.
However, when looking at real boards and systems based
on these designs, one realizes that within a certain range
of systems, the ideal single chip system is not yet a reality.
At present, a full–featured embedded system cannot be made
without at least 4 major chips. Other than the FPGA or ASIC
itself, external RAM, external non–volatile memory for both
software and programming an FPGA, and finally Ethernet are
required. No matter what logic the system–on–chip contains,
todays digital FPGAs require an external interface for any
analog subsystem such as Ethernet. In order to save valuable
FPGA resources for other systems, an external, all–in–one
Ethernet IC is used. The CS8900A is a complete analog and
digital Ethernet solution, containing an Ethernet MAC engine,
4 KB of integrated buffer memory, with a complete analog
front end for 10Base–T. The FPGA interfaces directly to the
CS8900A, which connects to an RJ–45 connector through
isolation transformers.

V. FPGA SYNTHESIS

The chip design was synthesized for the Cyclone
EP1C12Q240C7 FPGA at a system frequency of 45 MHz.
Table I indicates the FPGA resource utilization data for the
compiled design. Figure reffig:fpga shows a floorplan view
of the FPGA compilation, highlighting areas of about 75%
routing congestion. Of the 9,600 logic elements used, approx-
imately 7,900 were used by LEON cores, which includes the
processor, buses, caches, and basic peripherals. Of the 7,900
logic elements used by LEON cores, 3,278 were used for
the CPU integer unit. Thus far, custom peripherals have only
added 1,700 logic elements to the LEON, and we can therefore
look forward to using the remaining logic elements, 148,000
bits of embedded RAM, and 9,000 registers to add future
hardware blocks.

VI. SOFTWARE

Software development for the system is done using open–
source libraries, kernels, and the GNU SPARC tool–chain. Our

Fig. 4. FPGA routing congestion.

Fig. 5. Multimedia Software Application.

system’s hardware is completely supported by custom drivers
and libraries for both the µCLinux and RTEMS operating
systems. Currently, applications can be developed using the
following software environments:

• “Bare Metal”– Stand–alone executables with interrupt
handlers, but no kernel or OS,

• RTEMS – An open–source, real–time embedded operat-
ing system for embedded and multiprocessor systems,

• µCLinux – A Linux configuration for micro–controllers
without virtual memory.

A custom bootloader loads operating systems and applica-
tions from FLASH or the network interface using TFTP. Real
multimedia software applications, such as the original video
game shown in Figure 5, demonstrate the system’s capabilities.

VII. CONCLUSIONS

A flexible methodology was explored for prototyping cus-
tom embedded systems using low–cost reconfigurable hard-
ware and open–source FPGA–ware. We presented a case
study of a embedded system with multimedia and networking
capabilities for entertainment applications.

REFERENCES

[1] LEON2 Processor User’s Manual, http://www.gaisler.com/doc/leon2-
1.0.27-xst.pdf

1682

