
Efficient Automata-Based Assertion-Checker Synthesis
of PSL Properties

Marc Boulé and Zeljko Zilic
McGill University, Montréal, Québec, Canada

marc.boule@elf.mcgill.ca, zeljko.zilic@mcgill.ca

Abstract— Automata-based methods for generating PSL hard-
ware assertion checkers were primarily considered for use with
temporal sequences, as opposed to full-scale properties. We
present a technique for automata-based checker generation of
PSL properties for dynamic verification. A full automata-based
approach allows an entire assertion to be represented by a single
automaton, hence allowing optimizations which can not be done
in a modular approach where sub-circuits are created only for
individual operators. For this purpose, automata algorithms are
developed for the base cases, and a complete set of rewrite rules
is developed and applied for all other operators. We show that
the generated checkers are resource-efficient for use in hardware
emulation, simulation acceleration and silicon debug.

I. INTRODUCTION

Assertion-Based Verification (ABV) is emerging as a pow-
erful methodology for design verification [1]. Using temporal
logic, a precise description of the expected behavior of a
design is modeled, and any deviation from this expected
behavior is captured by simulation or by formal methods.
Hardware verification assertions are written in verification
languages such as PSL (Property Specification Language) or
SVA (SystemVerilog Assertions). When used in dynamic ver-
ification, a simulator monitors the Device Under Verification
(DUV) and reports when assertions are violated. Information
on where and when assertions fail is an important aid in the
debugging process, and is the fundamental reasoning behind
the ABV methodology.

As circuits become more complex, simulation time becomes
an important bottleneck in dynamic verification. Simulation
acceleration using hardware emulation is increasingly used in
the industry – EDA companies such as Cadence and Mentor
Graphics offer hardware solutions for high-performance sim-
ulation. Hardware emulation involves loading and executing
the circuit on reprogrammable hardware, often on an array of
programmable logic devices. Once implemented in hardware,
the emulator fully exploits the inherent circuit parallelism
and the DUV does not have to be processed serially in a
conventional simulator.

Assertion languages allow the specification of expressions
that do not lend themselves directly to hardware implemen-
tations. Such languages allow complex temporal relations
between signals to be stated in a compact and elegant form.
In order to consolidate assertion-based verification and emula-
tion, a checker generator is used to generate hardware assertion
checkers [2], [3]. These checkers are typically expressed in a
Hardware Description Language (HDL). An assertion checker

is a circuit that captures the behavior of a given assertion, and
can be included in the DUV for in-circuit assertion monitoring.
A checker generator allows the flexibility of automatically gen-
erating custom monitor circuits from any assertion statement.

Assertion languages such as PSL and SVA are built using
Boolean expressions, regular expressions for describing se-
quences, and higher-level properties. In this paper, we focus on
properties as used in the PSL language. Since many themes are
common to other assertion languages, the presented techniques
are not restricted to PSL.

This paper introduces automata techniques and rewrite rules
for transforming properties used in assertions into resource-
efficient circuits suitable for hardware emulation. These tech-
niques are implemented in our checker generator called
MBAC. Ideally, assertion circuits should be compact, fast, and
should interfere as little as possible with the DUV, with which
it shares the emulator resources. To our knowledge, the only
other available stand-alone tool capable of generating hard-
ware checkers from PSL assertions is IBM’s FoCs Property
Checkers Generator [2], [4]. It will be shown that the circuits
generated by MBAC can be significantly more efficient.

The automata produced in [5], [6] can be used to check a
property during simulation. These types of checkers indicate
the status of the property at the end of simulation/checking
only, and are not ideal for debugging purposes. It is much
more informative to provide a dynamic trace of the assertion
and to signal each assertion failure instance: having a choice
of violations to explore eases the debugging process, as some
errors may reveal more than others. The time required to
generate checkers is larger [5], sometimes significantly so [6]
than with FoCs.

A modular approach is employed in [7], [8], whereby
sub-modules for each property operator are built and inter-
connected according to the expression being implemented.
Paired interconnects are used, and assertions produce a pair
of signals that indicate the status of the assertion. Our circuits
produce a single result signal for each assertion and are
thus simpler to monitor. We implement liveness properties
in a manner similar to FoCs by utilizing a special end-of-
execution signal, which can be shared across all assertion
circuits. This signal marks the end of time and obligations that
were not fulfilled cause the assertion signal to trigger. Since
we implement entire assertions as automata, optimizations that
can not be seen across module boundaries [3], [7], can be seen
in automaton form, and thus help produce minimized checkers.

The contributions of this paper are:
1) Introduction of efficient automata-based (as opposed to

the modular approach) methods for compiling a base set
of PSL properties, along with an implementation in our
checker generator;

2) Introduction of a set of rewrite rules suitable for the
remaining non-base properties, thereby simplifying the
design of our checker generator (the simple subset
of PSL imposes restrictions which do not allow most
sugaring definitions [9] to be used as rewrite rules);

3) Presentation of the first published (to our knowledge)
implementation of the entire set of PSL properties for
dynamic verification, whether automata-based or other.

II. BACKGROUND

A. Assertion Languages and Properties

While there are several modern assertion languages, our
tool currently uses PSL (IEEE 1850 Standard, [10]), which
is arguably the most complex. We briefly present its features,
using the Verilog flavor, with emphasis on PSL properties.

The Boolean Layer in PSL is built around the Boolean
expressions of the underlying HDL, in addition to symbols true
and false. Let top-level Boolean expressions be represented by
single primary symbols labeled bi. Each bi can be a single
signal or a Boolean function of multiple signals. Sequential-
Extended Regular Expressions (SEREs) are used to specify
temporal chains of events of Boolean primitives. Under a
defined clock signal, a simple sequence of Boolean expressions
is satisfied in a given clock cycle if in previous clock cycles,
each bi evaluates to true at its respective time point. For
example, the SERE {b1; b2; b3} evaluates to true (is matched,
is observed) if b3 evaluates to true, and in the previous cycle,
b2 was true, and before that, b1 was asserted.

Definition 1: SEREs are defined as follows [9]. If b is a
Boolean expression and r, r1 and r2 are SEREs, the following
expressions are SEREs 1:

• b • {r} • r1 ; r2 • r1 : r2

• r1 | r2 • r1 && r2 • [∗0] • r[∗]
The curly brackets are equivalent to parentheses in conven-
tional regular expressions, and the semicolon represents con-
catenation. In assertion context, concatenation of two Boolean
expressions bl; br indicates that the Boolean expression bl must
evaluate to true in one cycle, and br must be true in the next
cycle. The [∗] operator indicates a repetition of zero or more
instances, and the | operator corresponds to SERE disjunction.

The colon operator denotes SERE fusion, which is a con-
catenation in which the last Boolean primitive occurring in
the first SERE must intersect (both must be true) with the
first Boolean primitive occurring in the second SERE. Empty
SEREs in either side do not result in a match. The length
matching SERE intersection (&&) requires that both argument
SEREs occur, and that both SEREs start and terminate at the

1The clocking operator was purposely omitted because PSL expressions
will be implicitly clocked to the default clock, specified with PSL’s default
clock directive.

same time. The [∗0] operator is the empty SERE, and can be
seen as a primitive which spans no clock cycles.

PSL defines additional syntactic “sugaring” operators which
simplify the writing of assertions, but do not add expressive
power to the language. The most popular PSL SERE sugaring
operators are shown below, which we use as rewrite rules in the
checker generator. b is a Boolean expression; r is a SERE; l, h
and c are nonnegative integers with h ≥ l; and the �= symbol
indicates equivalency, with a preferred direction to be used as
a rewrite rule. The + superscript denotes a positive integer.

• r[+] �= r ; r[∗]
• r[∗0] �= [∗0]
• r[∗c+] �= r ; r ; . . . ; r (c times)
• r[∗l:h] �= r[∗l] | . . . | r[∗h]
• b[–>] �= {(∼b)[∗] ; b}
• b[–> c+] �= {b[–>]}[∗c]
• b[–> l+: h+] �= {b[–>]}[∗l:h]
• b[= c] �= {b[–> c]} ; (∼b)[∗]
• b[= l:h] �= {b[–> l:h]} ; (∼b)[∗]
• r1 & r2 �= { {r1} && {r2; [∗]} } |

{ {r1; [∗]} && {r2} }
The [∗c] and [∗l:h] operators are known as repetition count

and repetition range. The first four operators can be used
without the SERE r, in which case r = true is implied. The [=]
operator corresponds to non-consecutive repetition, whereas
the [–>] operator is known as goto repetition. The single &
is called non-length-matching intersection.

PSL also defines properties on sequences and Boolean
expressions. When used in properties, SEREs are placed in
curly brackets. Sequences are denoted using the symbol s,
which are formed from SEREs:

s := {r}
SEREs and sequences are different entities, and production
rules are more constrained than what was stated in the defin-
ition of SEREs (Definition 1). For example, the && operator
requires arguments in curly brackets. Since we are mainly
concerned with the effect of an operator, the exact syntax rules
are deferred to [9].

Properties, like SEREs, are built from a reasonably compact
set of operators, to which “sugaring” operators are also added.
However, because the simple subset imposes many modifica-
tions to the arguments of properties, we will not make the
distinction between sugaring and base operators.

Some forms of properties are not suitable for simulation
and can only be evaluated by formal methods. The portion of
PSL suitable for simulation is referred to as the simple subset
of PSL. The PSL foundation language properties are shown
below (in the Verilog flavor). The properties have been slightly
modified to reflect the recent IEEE standard for PSL [10], and
are presented with the simple subset modifications (Section
4.4.4 in [10]). Since entire properties are clocked to the same
signal edge in our checkers, the clocking property is not
shown. Furthermore, PSL’s LTL operators X , G, F , U and W
are syntactically equivalent to next, always, eventually!, until!

and until, respectively, and are omitted.
Definition 2: Let b, b1 and b2 be Boolean expressions,

let s be a sequence and let p, p1 and p2 be properties. If
l, h and c are nonnegative integers with h ≥ l, then PSL
foundation language properties are defined as follows in the
simple subset. Here, + also denotes a positive integer.

• b • (p)
• s • s!
• p abort b • !b
• p1 && p2 • b || p
• b <–> b • b –> p
• s |–> p • s |=> p
• p until b • b1 until b2

• p until! b • b1 until! b2

• b1 before b2 • b1 before b2

• b1 before! b2 • b1 before! b2

• next p • next event(b)(p)
• next! p • next event!(b)(p)
• next[c](p) • next event(b)[c+](p)
• next![c](p) • next event!(b)[c+](p)
• next a[l:h](p) • next event a(b)[l+: h+](p)
• next a![l:h](p) • next event a!(b)[l+: h+](p)
• next e[l:h](b) • next event e(b1)[l+: h+](b2)
• next e![l:h](b) • next event e!(b1)[l+: h+](b2)
• always p • never s
• eventually! s

Semantics of each property will be discussed in the next
section, as it is rewritten or implemented in an automaton
form. Properties that appear below the separating line are those
for which rewrite rules to the basic cases (above the line) will
be devised. Following the above definition of properties, it can
be observed [3] that sequences and Boolean expressions can
be interpreted in two modes in dynamic verification.

Definition 3: Conditional mode. Context for which the
detection of a sequence or Boolean expression must be per-
formed. For each start condition of a Boolean expression
(sequence), the result signal is triggered each and every time
the Boolean expression (chain of events described by the
sequence) is observed.

Definition 4: Obligation mode. Context for which the failure
of a sequence or Boolean expression must be identified. For
each start condition, if the chain of events described by the
Boolean expression or sequence does not occur, the result
signal is triggered. For a given start condition of a sequence,
only the first failure is identified.

For example, in assertions

assert never {b1 ; b2};
assert always ({b1 ; b2} |–> p1);

both sequences are in conditional mode because their presence
is used to detect a failing condition. On the other hand, in

assert always {b1 ; b2};
assert always (b1 –> {b2 ; b3});

both sequences are in obligation mode because their failure to

occur is used to trigger a condition.
As shown in Definition 2, Boolean expressions and se-

quences can be used directly as properties. When such a case
occurs, a start condition indicates that the Boolean expression
or sequence should occur, and that a non-occurrence con-
stitutes a violation of the expected behavior. The obligation
that is placed on sequences is not strong, meaning that if the
execution terminates and the sequence did not complete, no
error is signaled. A strong sequence, s!, is used to indicate
that each start condition should see the sequence complete.
For these types of properties to be evaluated properly, an
end-of-execution (EOE) signal must be provided by the user.
This signal is normally at logic-0 and must be asserted for
at least one clock cycle when the simulation / emulation has
completed. If an EOE occurs during the processing of a strong
sequence, the assertion signal will trigger.

As an example of the use of properties in concrete hardware
verification, consider the property encountered in the verifica-
tion of bus arbiters:

always ({requestA} |–> {(∼grantA)[∗0:15] ; grantA})
This property states that when a request is issued to the arbiter,
agent A will receive a bus grant within 16 clock cycles. If the
stated condition is not satisfied, an assertion error occurs.

A checker generator is the tool that transforms assertions
into assertion monitor-circuits (checkers), directly usable in
hardware emulation. Individual assertions, once converted to
circuit form, are also referred to as assertion circuits.

B. Automata for Sequences and Boolean Expressions

An automaton can be depicted by a directed graph, where
vertices are states, and the conditions for transitions among the
states are inscribed on edges [11]. In our case, the transition
conditions are symbols which represent complete Boolean-
layer expressions. For a given assignment of various symbols,
all conditions that are true will cause a transition into a new
set of active states, thereby producing a non-deterministic
automaton. A sequence can be converted to an equivalent finite
automaton in a recursive manner [12]. First, terminal automata
are built for the Boolean expressions. Next, these automata
are recursively combined according to the operators used in a
sequence.

In the automaton that represents an assertion, an assertion
violation is reported each time a final state is activated.
To provide more useful debug information, our automata
algorithms are designed such that the assertion result signal
does not simply indicate a yes/no answer obtained at the end
of execution, but rather a continuous and dynamic report of
when the assertion has failed.

Henceforth, A(
expr

)
and AC

(
expr

)
indicate the construc-

tion of an automaton for a given PSL expression. We will
use symbols s and b for representing sequences and Boolean
expressions respectively. Subsequently, A(

s
)

and A(
b
)

denote
obligation mode automata for sequences and Boolean expres-
sions, respectively, in accordance with Definition 4. This mode
will be employed when Boolean expressions or sequences

s1 s2
true

Fig. 1. AC

(
true

)
, A

(
false

)

s1 s2
false

Fig. 2. AC

(
false

)
, A

(
true

)

s1 s2
a

s4
c

s3

b c

Fig. 3. AC

(
{a ; b[*0:1] ; c}

)

are used in properties. Some properties such as never and
suffix implication also require conditional mode sequences and
Boolean expressions, for which the corresponding automata
are denoted AC

(
s
)

and AC

(
b
)
. Since a Boolean expression b

can be seen as the sequence {b}, the construction of automata
for Boolean expressions in both modes is subsumed by the
construction of automata for sequences. Further details of
constructing automata for sequences appear in [12], but are
not required for this paper.

Figures 1 and 2 show simple automata for the Boolean
expressions true and false, in both modes. In Figure 2, since
the false symbol can never be true, the automaton never
reaches the final state. Figure 3 shows a conditional mode
automaton for detecting the sequence {a ; b[*0:1] ; c}. Figure 4
shows how the same sequence is processed in obligation
mode by an automaton. When a conditional mode automaton
reaches a final state (double circle), the expression represented
by the automaton has been detected. When an obligation
mode automaton reaches a final state, the first failure of the
expression has been caught. The state in a bold circle is the
start state of the automaton.

III. TRANSFORMING PROPERTIES INTO CIRCUITS

We now show how to transform properties into automata,
for subsequent conversion to circuit form. The resulting HDL
circuit descriptions become the checkers that are responsible
for monitoring the behavior that is modeled by the assertions.
Implementing an automaton in hardware is done in two parts.
First, each state signal is sampled by a flip-flop (FF). The FF’s
output is referred to as the sampled state-signal. Second, a state
signal is defined as a disjunction of the edge signals that hit
a given state. An edge signal is a conjunction of the edge’s
symbol with the sampled state signal from which the edge

s1

s4

~a

s2

a
~b&~c

s3

b&~c ~c

Fig. 4. A
(
{a ; b[*0:1] ; c}

)

originates. The signal which is returned by the automaton,
called result signal, is a disjunction of the state signals of the
final states (as opposed to the sampled state signals). This is an
important distinction because when the automaton represents
the left side of a non-overlapping temporal implication, for
example, this result signal is used as the start condition for
the right side, which must start immediately when the start
condition is detected. In sum, automata are implemented in
hardware using combinational logic and flip-flops. In this
section, target properties from Definition 2 will be underlined.

To show how properties and automata relate, compiling
property (p) simply involves the automaton returned by the
argument of this property, namely A(

p
)
. Since the parentheses

are used for grouping:

A(
(p)

)
= A(

p
)

Compilation of a PSL property involves recursively scan-
ning the syntax tree of the PSL expression. Each node returns
an automaton describing the behavior of the sub-property
rooted at that node. The parent then builds its own sub-
property automaton from its children automaton(s), using a
variety of transformations and operations.

Properties are inherently in obligation mode; however, De-
finition 4 is too strict for use in properties. To provide more
debugging information for properties, the obligation is not
limited to the first failure for each start condition. For example,
the property never {a} is made to trigger every time a is
observed. Since properties are meant to catch failures, the PSL
directive assert p does not affect the automaton for p:

A(
assert p

)
= A(

p
)

An assertion signal is normally at logic-0, and triggers when
a violation is observed.

In general, automata equivalency ≡ means that both au-
tomata detect the same patterns, and does not imply that
both automata are identical. In automata theory, equivalent
automata are said to accept the same language. The = sign
above emphasizes that the automata are in fact identical.

A. Implementation of Base Cases

The approach for implementing the base cases consists
in taking the automaton(s) returned by the arguments of a
property, and then building a single resulting automaton for
the property and its arguments. This way, an entire assertion
can be represented by a single finite automaton.

The properties !b and b1 <–> b2 are in effect relegated
to the Boolean layer in the simple subset. The negation and
equivalency of properties – as allowed in full PSL – create
properties that are not suitable for monotonically advancing
time. The simple subset version of these properties are there-
fore handled in the A(

b
)

construction. Equivalency is rewritten
as the Boolean expression: (∼ b1 | b2) & (∼ b2 | b1).

The automata for properties b and s are obtained by con-
structing A(

b
)

and A(
s
)

respectively. Implementing property
s! involves constructing A(

s
)

with a slight modification. The
typical obligation mode automaton for s is constructed, with

added edges that cause the automaton to transition from any
active state to a final state upon activation of the end-of-
execution signal. If the automaton is processing a sequence
when the EOE occurs, a completion is not fulfilled and an
error is detected.

Handling the p abort b property involves modifying the
automaton of p. When the abort operator is encountered in
the syntax tree, A(

p
)

is built and a new primary symbol for
∼b is created. This primary symbol is then and-ed to each
symbol on the edges in A(

p
)
. When an abort is asserted, all

transitions in the automaton are disabled and the automaton is
in effect reset.

Constructing an automaton for the p1 && p2 property in-
volves creating an automaton for:

A(
p1

) | A(
p2

)

The | operator represents automata disjunction, a well-known
operator [11]. The disjunction is required because a failure by
either sub-property constitutes a failure for the && property.
At this point, we start noticing a form of negation between
conditional behavior and obligation behavior. This was seen
earlier, when the example AC

(
true

)
=A(

false
)

was shown.
The negation behavior was also observed in [5]. In our work,
the negation is not perfect given the dynamic behavior we
wish our circuits to offer. In dynamic property checking, a
proper negation between both modes is not apropriate because
a sequence that failed once could continue to fail for the
remainder of execution, which is inadequate for debugging
purposes.

Although rewriting p until b as {(∼b)[+] : {p}} might appear
logical, this can not be included as a rewrite rule in the next
subsection. Fusion with a property is not valid in PSL syntax.
We keep the equivalency here however, because it illustrates
what is done in the kernel. The algorithm for the fusion of
two automata was developed in the context of SEREs [12];
however, the algorithm can be used on property automata as
well, given that sequence automata and property automata are
based on the same automata techniques. In other words, the
automata fusion algorithm can be seen as a general automata
operator, in the same class as automata disjunction, which was
used above for the && property. For the until rewrite, all that
must be done is to ensure that the semantics of the fusion
operator is appropriate and provides the desired behavior in
the context of properties, which we explain next (full proofs
are omitted for reasons of space).

The until operator states that property p must be true on
each cycle, up-to, but not including, b being true. The overlap
created by the fusion has the effect of sending a start condition
to p for each cycle of consecutive ∼b’s. In our dynamic
semantics for the until operator, the property is allowed to
fail multiple times for a given start condition when b is
continuously false.

Suffix implication is often used in assertions, and will be
utilized in some of the rewrite rules of the next subsection. Im-
plementing the s |–> p suffix implication can be summarized
by the following strategy:

AC

(
s
)

: A(
p
)

When used in the context of automata, the “:” symbol denotes
the actual automata fusion algorithm, the same algorithm that
is invoked when the SERE fusion operator “:” is encountered.
Using fusion in properties does not create unwanted side-
effects, considering that the empty SERE can not cause a
match on either side of fusion. In properties, a conditional
or obligation mode automaton’s start state can never be a final
state; this creates automata behavior that is consistent with the
formal semantics of PSL in Appendix B in [9]. As an example,
when a sequence automaton’s start state is a final state, and this
sequence is used as a precondition to suffix implication, the
empty match can not cause the post-condition to be enforced.
When a conditional mode sequence automaton is used at the
property level and its start state is a final state, the state is
made non-final. When an obligation mode sequence automaton
is built for a sequence that can not hold, the automaton from
Figure 1 is returned to the parent operator. This allows the
proper processing of the following assertions:

assert always {s} |–> { {b} && {b;b} };
assert always {b[∗0:1]} |–> p;

In the first line, the length-matching intersection results in a
post-condition automaton identical to Figure 1. The assertion
thus fails whenever s is observed. In the second line, b must
be asserted once in order for the post-condition to be enforced.
The null intersection and empty repetition ([∗0]) are known as
degenerate sequences. Fusion is also used in the algorithm for
suffix implication presented in [5].

Property replication using the forall operator 2 is imple-
mented by looping through each value of the forall value
set, and performing the automata disjunction of each sub-
property’s automaton.

In our work, a full automaton approach allows the produc-
tion of efficient automata. Consider the following examples,
which yield identical automata, as opposed to the modular
approach which will not simplify the goto repetition, given the
preceeding always operator. A modular approach will generate
more checker code in the second example than in the first, even
though both assertions are semantically identical.

assert always {a} |=> b;
assert always {a[–>]} |=> b;

B. Rewrite Rules for Properties

Most properties from Definition 2 do not need to be
explicitly handled in the checker generator kernel. When
such properties can be expressed using the base cases from
the previous subsection, they are dynamically rewritten when
encountered during checker generation. The rules by which
these properties are rewritten are called rewrite rules. In some
cases, the semantics of the property can be captured by a single
sequence, for others, sequences and base properties are used.

As indicated in the introduction, using the sugaring defin-
itions from Appendix B in [9] as rewrite rules is generally

2The forall operator is not a foundation language property as such [9].

not feasible because of the restrictions imposed by the simple
subset. For this purpose, we introduce a set of rewrite rules
that is suitable for the simple subset of PSL, within the context
of dynamic verification. The rules are not intended to extend
upward to full PSL. Although a few rewrite rules may appear
intuitive, they are nonetheless included for completeness. The
following sugaring definition shows an example of why such
definitions can generally not be used as rewrite rules:

always p = ¬ eventually! ¬p (G p = ¬F¬p [9])

The above sugaring definition for always can not be used
in the simple subset because negating a property is not
permitted. In this section, rewrite rules that are compatible
with the simple subset are developed. In some cases, the easiest
way to handle an operator is by rewriting it using a more
complex operator. Since the more complex operator has to
be handled, we avoid writing particular code for the simpler
cases. For example, rewriting next a using next event a may
appear overly complex; however, since next event a already
exists and must be supported, it subsumes all simpler forms
of this family of operators.

Shown below are the rewrite rules that we have developed
for the simple subset of PSL. A brief explanation follows each
rule, while full proofs are omitted for space reasons.

b || p �= (∼ b) –> p

In the simple subset, one of the properties used in disjunction
must be a Boolean expression. For simplicity, in the rule above
and in Definition 2, the Boolean expression is shown as the
left argument. This rewrite rule is based on the fact that if the
Boolean expression is not true, then the property must be true;
else the property is automatically true because b is true.

b –> p �= {b} |–> p

Since a Boolean expression can be easily expressed as a
sequence, we can rewrite the above form of implication to
a suffix implication.

always p �= {[+]} |–> p
never s �= {[+] : s} |–> false

As explained in the previous subsection, suffix implication
has a conditional-mode sequence as a precondition (prefix),
and a property as a post-condition (suffix). When a property
must always be true, it can be seen as the post-condition of a
suffix implication with a constantly asserted precondition ([+]
is sugaring for true[+]). When a sequence must not occur, a
property which fails instantly is triggered upon the sequence
detection. Because suffix implication does not have a clock
cycle delay between pre and post-conditions, these rewrites
offer the correct timing.

next p �= next[1](p)
next! p �= next![1](p)

The above rewrites use a slightly more explicit form of
next operators. Since the right-hand side of this rule is not
terminal, it is subsequently rewritten using another rule. This

recursive process continues until no more rewrites apply, and
we reach sequences, Boolean expressions or base cases from
the previous subsection.

eventually! s �= {[+] : s}!

Rewriting the eventually! operator is done by enforcing that
the sequence s must complete before the end of execution.
The sequence may start at any time after it is triggered, hence
the fusion with [+]. This rewrite does not apply to degenerate
sequences, which are handled separately.

p until! b �= (p until b) && ({b[–>]}!)

Property conjunction and the weak version of the until property
are base cases. The strong version of this property is created
by using the weak version, and adding a temporal obligation
for the releasing condition to occur, namely b. This can be
modeled by the strong single-goto of the Boolean condition b.
If the end-of-execution occurs before the releasing condition
has manifested itself, the assertion will trigger, even though
the weak until may have always held.

b1 until b2 �= {(b1)[+] : (b2)}
b1 until! b2 �= {(b1)[+] : (b2)}!

The behavior of the overlapped until properties can be cap-
tured by sequences, given that no properties are allowed in
their arguments in the simple subset. It should be noted
that the rewrites above create sequences in the place of the
operators they replace, and are inherently in obligation mode.
The rewrite rules state that b2 must occur fused with a block of
any number of consecutive b1’s. Since fusion is used, b1 must
be true for at least one cycle concurrently with b2, therefore
the overlap required by the “ ” is also well modeled.

b1 before b2 �= {(∼b1&∼b2)[*] ; (b1&∼b2)}
b1 before! b2 �= {(∼b1&∼b2)[*] ; (b1&∼b2)}!

b1 before b2 �= {(∼b1&∼b2)[*] ; b1}
b1 before! b2 �= {(∼b1&∼b2)[*] ; b1}!

The before family of properties can also be modeled by
obligation mode sequences. The overlapped versions state that
b1 must be asserted before or simultaneously with b2. The
strong versions also expect b2 to occur before EOE, if not the
assertion will trigger.

next[c](p) �= next event(true)[c+1](p)
next![c](p) �= next event!(true)[c+1](p)

Alternate rewrite rules for next[c](p) could also be developed
using next a. The above form is chosen here so that the “c +1”
artifact can be better explained; this explanation will also apply
to some of the rewrite rules that will follow. When converting a
next property to a next event property, there is a slight nuance
as to what constitutes the next occurrence of a condition. The
next occurrence of a Boolean expression can be in the current
cycle, whereas the plain next implicitly refers to the next cycle.
Therefore, when utilizing next event(true) to subsume next,
an extra cycle must be added, hence the increment by one
on c. Another reasoning shows the consistency between the

operators: we observe that next[0](p) could not be modeled
without the increment because next event(b)[c+](p) requires a
positive count. Incidentally, next[0](p) is equivalent to (p).

next a[l:h](p) �= next event a(true)[l+1 : h+1](p)
next a![l:h](p) �= next event a!(true)[l+1 : h+1](p)
next e[l:h](b) �= next event e(true)[l+1 : h+1](b)
next e![l:h](b) �= next event e!(true)[l+1 : h+1](b)

The above family of rewrite rules for the next a and next e
properties are based on the fact that the next event version is
a more general case, with the “+1” adjustment to handle the
mapping of the Boolean true, as indicated previously.

next event(b)(p) �= next event(b)[1](p)
next event!(b)(p) �= next event!(b)[1](p)

When no count is specified for the above form of next event,
a count of 1 is implicit.

next event(b)[c+](p) �= next event a(b)[c:c](p)
next event!(b)[c+](p) �= next event a!(b)[c:c](p)

The strategy behind the above rewrites is to utilize the
next event a form, with identical upper and lower bounds for
the range. The semantics of next event a is explained next.

next event a(b)[l+:h+](p) �= {b[–>l:h]} |–>(p)

The next event a property states that all occurrences of the
next event within the specified range must see the property
be true. This can be modeled using a goto repetition with a
range as a precondition to the property. This in effect sends
a start condition to the property each time b occurs within
the specified range after the current property received its start
condition. These types of properties are notorious for creating
highly pipelined and temporally complex chains of events. The
automaton approach is well suited to handle these situations.

next event a!(b)[l+:h+](p) �=
next event a(b)[l:h](p) && {b[–>h]}!

This is the strong version of the full next event a property.
Similarly to the strong non-overlapped until property, it is
rewritten using the weak version, to which a necessary com-
pletion criterion is conjoined. The addition of the strong
goto sequence with the h bound indicates that for each start
condition of the next event a, all h occurrences of the b event
must occur before execution terminates.

next event e(b1)[l+:h+](b2) �= {b1[–>l:h] : b2}
next event e!(b1)[l+:h+](b2) �= {b1[–>l:h] : b2}!

The next event e properties state that b2 should be asserted at
least once in the specified range of next events of b1. This
behavior is modeled by a goto repetition that is fused with the
consequent. Once the b2 consequent is observed in the proper
range, the obligation mode sequence has completed and will
not indicate a failure. The strong version is created by using
a strong sequence.

s |=> p �= {s ; true} |–> p

This rewrite rule follows from the sugaring definition in
Appendix B in [9]. The simple subset does not affect this
definition, therefore it can be used directly as a rewrite rule.

IV. EXPERIMENTAL RESULTS

In this section, the circuits produced by the MBAC checker
generator are evaluated using various test assertions. The hard-
ware comparison metrics involve synthesizing the assertion
circuits using ISE 6.2.03i from Xilinx, for a XC2V1500–6
FPGA. The number of flip-flops (FF) and four-input lookup
tables (LUT) required by a circuit is of primary interest when
assertion circuits are to be used in hardware. The maximum
operating frequency (MHz) for the worst clk-to-clk path is
also reported. MBAC’s final result signals are sampled by a
FF, and thus have the same timing as FoCs’ circuits.

The assertions used for evaluating checker generators typ-
ically do not contain complex Boolean expressions because
such expressions have no effect on the temporal complexity of
assertions. Without loss of generality, the Boolean layer is ab-
stracted away using simple signal names a, b, etc. Furthermore,
temporally simple assertions such as those used for verifying
bus protocols (e.g., AMBA bus assertion from from [13]) are
not informative for evaluating a checker generator, as they
span very few clock cycles.

The FoCs and MBAC checker generators are evaluated
with the set of assertions shown in Table I. The synthesis
results are reported in Table II, where N.S.Y. indicates “Not
Supported Yet”. With the exception of P14 and P19, in the test
cases where FoCs succeeds, both tools produce functionally
equivalent circuits. This was verified by exercising the checker
circuits using a testbench which produces 105 pseudo-random
test vectors. For each clock cycle of the simulation, the circuits
produced by both tools offer the same behavior on each
clock cycle, for a given assertion. Signal probabilities were
adjusted in order for the assertions to trigger reasonably often.
This method is not a proof that the circuits are functionally
equivalent, however it does offer reasonable assurance.

For the P14 test case, slight differences in behavior were
noticed due to the semantics of the until operator. When
handling p until b, it is up to the tool’s architect to decide
whether to flag all failures of p before b occurs, or to flag only
the first one. This flexibility is expected in dynamic verification
with PSL, and may occur with other operators as well. With
P19, we believe our circuit is operating properly. The results
show that in all cases, our circuits are more resource-efficient
than FoCs’.

V. CONCLUSION AND CONTINUING WORK

We have presented methods suitable for efficiently im-
plementing PSL properties in checker generators. The base
cases were handled using automata techniques which build on
our work using automata for SEREs. A set of rewrite rules
that account for all peculiarities of PSL were also devised.
These rewrites represent the simplest way to support such
operators in the kernel of the checker generator. The rewrite
rules presented are independent of the automata techniques

TABLE I

BENCHMARKING PROPERTIES.

Property (note: properties P1 to P6 are from [8])

P1: always (a –> next (next a[2:10](next event(b)[10]((next e[1:5](d)) until (c)))))
P2: always ((a –> next(next[10](next event(b)((next e[1:5](d)) until (c))))) || e)
P3: (always (a –> next(next[10](next event(b)((next e[1:5](d)) until (c)))))) &&

(always (e –> (next event a(f)[1:4](next((g before h) until (i))))))
P4: always (a –> (next event a(b)[1:4](next((d before e) until (c)))))
P5: always (a –> (next event(c)((next event e(d)[2:5](e)) until (b))))
P6: always (a –> next event e(b)[1:6](c)) P7: always {a;b;c} |=> never {d[*0:3];e}
P8: always a –> eventually! b P9: always (a –> {[*0:7];b}) abort ∼c
P10: always a –> next a![2:4](b) P11: always a –> next e![2:4](b)
P12: always a –> next event e!(b)[2:4](c) P13: always a –> next event a!(b)[5:10](c)
P14: always a –> (b until! c) P15: always a –> ({b;c} until! d)
P16: always ({a;b} |–> eventually! {c;d}) abort e P17: never {a;[*];b;c[+]}
P18: assert always (a –> ((eventually! b[*5]) abort c)) abort d P19: always a –> (b before! c)
P20: always ((a –> (b before c)) && (c –> eventually! {b;d})) abort e P21: always (({a;d} |–> next e[2:4](b)) until c)
P22: always {a;b[*0:2];c} |=> ({d[*2]} |–> next ∼e) P23: always (e || (a –> ({b;c} until d)))

TABLE II

HARDWARE METRICS FOR PROPERTY CHECKERS.

Property MBAC FoCs
“assert Px;” FF LUT MHz FF LUT MHz

P1 26 11 428 290 196 378
P2 17 8 622 24 15 622
P3 26 22 355 53 44 357
P4 10 17 425 30 31 357
P5 8 12 404 48 49 454
P6 7 9 487 12 13 622
P7 7 8 487 N.S.Y.
P8 2 3 622 2 3 622
P9 8 9 680 N.S.Y.
P10 5 4 487 N.S.Y.
P11 5 6 487 N.S.Y.
P12 5 9 425 N.S.Y.
P13 11 11 378 N.S.Y.
P14 2 4 622 3 5 487
P15 3 5 483 N.S.Y.
P16 4 6 428 N.S.Y.
P17 3 3 622 9 8 428
P18 6 13 428 N.S.Y.
P19 2 4 622 3 5 487
P20 4 8 428 N.S.Y.
P21 6 6 680 N.S.Y.
P22 7 7 622 N.S.Y.
P23 3 5 487 N.S.Y.

employed, and can be implemented in any tool that utilizes
PSL for dynamic verification.

We are currently exploring a more efficient implementation
for eventually!, which involves multiple automata and various
non-standard modifications. In our approach, conditional mode
automata remain nondeterministic and are thus more resource-
efficient when implemented in circuit form. By implementing
eventually! with a conditional mode automaton, as opposed to
the obligation mode automaton implied by our rewrite rule, we
have observed that a more efficient implementation is possible
in most test cases.

Future work involves using theorem provers such as HOL

or PVS to formally prove the rewrite rules in section III-
B. The equality of rewrites could be modeled as conjectures
using the PSL embedding in HOL [6]; however, proving the
conjectures is a non-obvious semi-automated procedure. We
are also updating our checker generator to consolidate a full
automaton approach with the various debug enhancements
introduced in [14].

REFERENCES

[1] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design, 2nd ed.
Kluwer Academic Publishers, 2004.

[2] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic Generation of Simulation Checkers from Formal
Specifications,” Conference on Computer Aided Verification, pp. 538–
542, 2000.

[3] M. Boulé and Z. Zilic, “Incorporating Efficient Assertion Checkers
into Hardware Emulation,” IEEE International Conference on Computer
Design (ICCD–2005), pp. 221–228, 2005.

[4] IBM AlphaWorks, “FoCs Property Checkers Generator ver. 2.03,”
www.alphaworks.ibm.com/tech/FoCs, 2006.

[5] S. Gheorghita and R. Grigore, “Constructing Checkers from PSL Prop-
erties,” 15th International Conference on Control Systems and Computer
Science (CSCS15), vol. 2, pp. 757–762, 2005.

[6] M. Gordon, J. Hurd, and K. Slind, “Executing the Formal Semantics of
the Accellera Property Specification Language by Mechanised Theorem
Proving,” Lecture Notes in Computer Science, vol. 2860, pp. 200–215,
Oct. 2003.

[7] K. Morin-Allory and D. Borrione, “A Proof of Correctness for the
Construction of Property Monitors,” IEEE International High Level
Design Validation and Test Workshop (HLDVT’05), pp. 237–244, 2005.

[8] D. Borrione, M. Liu, K. Morin-Allory, P. Ostier, and L. Fesquet,
“On-Line Assertion-Based Verification with Proven Correct Monitors,”
ITI 3rd International Conference on Information & Communications
Technology (ICICT 2005), pp. 123–143, 2005.

[9] Accellera, “Property Specification Language Reference Manual, v.1.1,”
www.eda.org/vfv/docs/PSL-v1.1.pdf, 2004.

[10] IEEE Computer Society, “IEEE Standard for Property Specification
Language (PSL),” IEEE Standards, 2005.

[11] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages and Computation, 2nd ed. Addison–Wesley, 2000.

[12] M. Boulé and Z. Zilic, “Efficient Automata–Based Assertion–Checker
Synthesis of SEREs for Hardware Emulation,” (under review), 2006.

[13] B. Cohen, S. Venkataramanan, and A. Kumari, Using PSL/ Sugar for
Formal and Dynamic Verification. Los Angeles, California: VhdlCohen
Publishing, 2004.

[14] M. Boulé, J. Chenard, and Z. Zilic, “Adding Debug Enhancements to
Assertion Checkers for Hardware Emulation and Silicon Debug,” (to
appear) IEEE International Conference on Computer Design, 2006.

