
Using Arithmetic Transform for Verification of Datapath Circuits via Error
Modeling

Katarzyna Radecka and Zeljko Zilic
McGill University, Dept. of Electrical and Computer Engineering,

3480 University St., Montr´eal, Québec H3A 2A7, Canada
fkasiar,zeljkogmacs.ece.mcgill.ca

Abstract

In this paper, we consider verification under error-model
assumption. We exploit the algebraic properties of the arith-
metic transforms that are used in compact graph-based rep-
resentations of arithmetic circuits, such as *BMDs. Verifi-
cation time can be shortened under assumption of corrupt-
ing a bounded number of transform coefficients. Bounds are
derived for a number of test vectors, and the vectors suc-
cessfully verified arithmetic circuits under a class of error
models derived from recently proposed basic design error
classes, including single stuck-at faults.

1. Introduction

Modern microprocessors, embedded and signal proces-
sors as well as communication ASICs utilize various arith-
metic circuits in their datapaths. These arithmetic circuits
vary in their area, delay and power constraints. Hence,
many different realizations of arithmetic circuits can be
found, from custom to those that are modified from the stan-
dard library elements. Their design, testing and verification
poses a major challenge.

Verification of arithmetic circuits has exposed limits of
methods based on Decision Diagrams (DDs). The orig-
inal Reduced Ordered Binary Decision Diagrams (ROB-
DDs) present a canonical reduced representation of a truth
table. They could be used to verify in polynomial time cir-
cuits such as adders. However, ROBDDs are of exponen-
tial size [1] even for multipliers. Numerous extensions to
the ROBDDs were proposed that made the verification of
arithmetic circuits more efficient. The most relevant are the
extensions to the world-level diagrams, such as *BMDs [3]
or EVBDDs [6], for multi-output Boolean functions. All
such diagrams are included in World Level Decision Dia-
grams (WLDDs). The common limitation of any WLDDs
is its inability to represent dividers [9] and the more com-

plex datapath operators by polynomial size diagrams.
While WLDDs enabled the verification of circuits such

as multipliers, we believe that their current use has serious
shortcomings. First, they have been used only for equiva-
lence/model checking, that compares a function implemen-
tation against its specification. This approach is analogous
to comparing two abstraction levels for each input combi-
nation. However, under some conditions, a smaller number
of comparisons could be performed. For example, if a set of
possible errors were to be known, one could devise a set of
test vectorsthat can detect all such faults. Further, it would
be useful if the verification vectors could be applied for the
testing purposes, i.e. for a single stuck-at fault error model.

In this paper, we explore the theoretical bounds, and
present the experimental demonstration of such a verifica-
tion scenario. We exploit the properties of the Arithmetic
Transform, which presents the underlying mechanism be-
hind the word-level DDs. We present the basic test vector
generation scheme and some of its optimizations, together
with deriving an upper bound on the number of test vectors
under the assumption of bounded error in spectral domain.
Finally, we demonstrate that the same test vector can be ap-
plied successfully to a model of design errors [2], consid-
ered recently for verification by error modeling.

2. Arithmetic Transform

The Arithmetic Transform (AT), also known as integer-
valued Reed-Muller (RM) polynomials [5] extend the tra-
ditional RM forms by allowing the integer function values,
while the inputs remain Boolean. The RM forms are ob-
tained by employing a Davio expansion around each input
variablex; y; : : : as follows:

f = f jx=0 +x (f jx=1 �f jx=0) (1)

The arithmetics is performed modulo 2; consequently, “+”
and “-” denote an XOR operation. The AT is obtained by
using in Equation 1 the integer addition instead.

0-7695-0613-5/00 $10.00 � 2000 I

Integer Encoding Number Normjxj

Unsigned
Pn�1

i=0 xi2
i

Sign extended (1� 2xn�1)
Pn�2

i=0 xi2
i

1’s complement
Pn�2

i=0 xi2
i � xn�1(2

n�1 � 1)

2’s complement
Pn�2

i=0 xi2
i � xn�12

n�1

Table 1. Norms of Integer Encodings

The Arithmetic Transform of a multi-output Boolean
functions is calculated by applying the expansion from
Equation 1. This expansion leads to a polynomial:

f =

1X
i1=0

1X
i2=0

: : :

1X
in=0

ci0i1:::in�1x
i0
0 x

i1
1 : : : x

in�1
n�1 (2)

Integer coefficientsci1i2:::in are called thearithmetic spec-
trum. Each coefficient multiplies a productxi00 x

i1
1 : : : x

in�1
n�1 ,

where each Boolean variablexj is raised to an exponentij .
When an exponentij is equal to 1, the variable appears in
the product term, otherwise it does not. Hence, each coef-
ficient multiplies a product term consisting of a subset of
all variables. There are2n such subsets, and the arithmetic
spectrum coefficients can be associated with these subsets,
or equivalently with the subset characteristic functions.

To quickly derive arithmetic spectra for datapath circuits,
we use an auxiliary norm functionjxj, equal to the integer
value that a binary-represented number takes. For an un-
signedn-bit variablex = x0x1 : : : xn�1, this value is cal-
culated asjxj =

Pn�1
i=0 xi2

i. Table 1 contains norms of
frequently used integer data type encodings.

To obtain the Arithmetic Transform of the adder, we con-
sider the numerical value of the sum of two n-bit unsigned
numbersx andy, calculated as:

jx+ yj =
n�1X
i=0

(xi + yi)2
i:

Comparing with Equation 2, we notice that this is a polyno-
mial with integer coefficients representing multiple-output
function of argumentsxi; yi wherei = 0; : : : ; n � 1. In
conclusion, the AT of the addition operation has2n nonzero
spectral coefficients.

In the similar way, the subtraction operation is obtained
by replacing the arithmetic ”+” with a ”-” sign. For ex-
ample, for sign-extended encoding, the difference can be
obtained as:

x�y =

n�2X
i=0

(xi�yi)2
i�2xn�1

n�2X
i=0

xi2
i+2yn�1

n�2X
i=0

yi2
i:

Multipliers can be represented in a straightforward way
by usingO(n2) spectral coefficients:

jx � yj =

n�1X
i=0

xi2
i �

n�1X
i=0

yi2
i

resulting inn2 spectral coefficients after the sums are mul-
tiplied out. In practice, this number can be reduced to2n by
keeping the polynomial in the above factored form.

The cases of multipliers and adders have been addressed
in a similar way in the construction of *BMDs [3] (and
all subsequent DDs). The extension to the more complex
arithmetic expressions can be done as follows. A multiple-
output Boolean function will be represented by a single
polynomial (i.e. its arithmetic spectrum). For example, a
simple expression

jx+ yzj =

n�1X
i=0

xi2
i +

n�1X
i=0

yi2
i �

n�1X
i=0

zi2
i

leads to the arithmetic spectrum for the expressionx + yz.
Any linear filter withm coefficientsa1; a2; : : : am applied
to n-bit integers,x1; x2; : : : xm has mn spectral coeffi-
cients:

ja1x1+a2x2+: : : amxmj =

n�1X
i=0

(a1x1i+a2x2i+: : :+amx2m)2i

The application of the AT to the alternative data types re-
sults in the spectra of the size comparable to that for the
unsigned integer encoding.

2.1. Calculation of Arithmetic Spectra

The Arithmetic Transform of an arbitrary multi-output
Boolean function can be obtained by multiplying the vector
of function values, considered as integers, by the transform
matrix. The transform matrix is defined recursively as:

Tn =

�
Tn�1 0
�Tn�1 Tn�1

�
; T0 = 1 (3)

The transform matrix has22n entries, and the transform, ob-
tained by multiplyingTn with the vector of values, requires
O(22n) operations.

More efficient is the Fast Arithmetic Transform, which
in O(n2n�1) time andO(2n) space recursively employs the
expansion from Equation 1.

This approach is best used in conjunction with DD rep-
resentations, to reduce its execution time and produce graph
representations such as *BMDs.

The arithmetic spectrum can be obtained as a polynomial
that is interpolated from the values that a function takes.
Another way of obtaining the arithmetic spectrum is derived
from this interpretation. It is most useful to consider multi-
output Boolean functionsf : 2n 7! 2m through the Boolean
lattice structureB = 2n. The partial order relation� is
defined on Boolean vectors (points in the lattice2n). We say
thaty � x if the 0 coordinates inx are the subset of the 0
coordinates ofy. For example0010 � 1010. Incomparable

0000

01011010

0111

1111

0011011010011100

101111011110

layer 0

layer 1

AT(f) = (a0 +b0) + (a1 + b1)x2

0001001001001000

c1000=2 c0010=2 c0001=1

a1 a0 b1 b0

c0100=1

Figure 1. Lattice Structure 24 - Transform of Adder

vectors exist, such as1010 and0110. Vectors withi ones
are said to belong to the sameithlayer in the lattice. For

n-variable functions,ithlayer contains

�
n

i

�
vectors.

The Arithmetic Transform can be obtained by traversing
the lattice in the increasing order of points. It can be shown
that at each pointx, the transform coefficientcx can be cal-
culated by subtracting all the preceding coefficients from
the function value atx:

cx = fx �
X
y�x

cy (4)

Consider, for example, transforming the adder function
a + b, for the 2-bit unsigned encoding:a = a1a0 and
b = b1b0. The spectral coefficients are generated by ap-
plying Equation 4 in the lattice order, i.e.c0000 = f0000 =
0 + 0 = 0, c0001 = f0001 � c0000 = 0 + 1 � 0 = 1,
c0010 = f0010 � c0000 = 0 + 2 � 0 = 2, c0100 = 1
andc1000 = 2. All other coefficients are 0, , as inscribed
on Figure 1 where the nonzero coefficients are highlighted.
For unsigned arithmetic functions, all such traversals result
in forms whose nonzero coefficients are in the layer 1 (for
adders) or layer 2 (multipliers) of the lattice.

In our case, the arithmetic spectrum will be used as a
specification of the arithmetic operation. The shape of the
polynomial for a given arithmetic operation is known and
it depends only on the data type used; the addition exam-
ple uses unsigned numbers. We use the knowledge of the
shape of the representation polynomial to verify if the cir-
cuit matches it. We are especially interested in the minimum
amount of comparisons needed under the error modeling,
i.e. when all possible errors are given.

3. Error Models

Each faulty circuit can be modeled by an error superim-
posed on the correct circuit. Identification of accurate and

robust error models is an important step in developing test-
ing and verification methods.

In verification by error modeling, a set of test vectors is
found to verify that the circuit contains no error included
in the model. A circuit can be treated as ablack box, by
which the description of the design error can be obtained
by subtracting the responses of the erroneous circuit from
the corresponding responses of its (correct) specification.
This additive error modelis directly useful in conjunction
with the Arithmetic Transform. Under the assumption of
an error of bounded spectral complexity, we derive efficient
verification methods.

3.1. Additive Error Model

Any error can be modeled by a quantity added to the
circuit output. The operation~f of the faulty circuit is rep-
resented by the additive error model as a sum of the correct
output and an errore, i.e. ~f = f + e. The Arithmetic
Transform is linear, and satisfies the equation:

AT (~f) = AT (f + e) = AT (f) +AT (e):

The ”size” of the error will be measured in terms of the
number of spectral coefficients inAT (e).

For the considered verification scheme, we treat each de-
sign error as an additive error. Although the value ofe for
each such error can be obtained by simulations of the faulty
and correct circuits, and subtracting their outputs, we em-
phasize that this model, and the analysis to follow, do not
require the explicit identification of the error.

3.2. Arithmetic Transform of Basic Design Errors

We defined an error model through its Arithmetic Trans-
form. The question of relating the additive error model to
the models used more often in practice is addressed next.
We consider the design error classes proposed in [2]. Most
of these classes can be described as the additive errors with
few spectral coefficients. The basic error types identified
in [2] are the bus errors: Bus Order Error (BOE), Bus
Source Error (BSE), Bus Driver Error (BDE), Bus Sin-
gle Stuck Line (SSL) Error and Module Substitution Error
(MSE) When the buses are considered in isolation, the er-
ror spectra, for most of the above classes, are compact, as
shown next.
Bus Order Error This class includes a common design er-
ror of incorrectly ordering the bits in a bus. For example, if
the signalsxl andxk of the bus with bitsxi, i = 0; : : : ; n�1
have been interchanged, the transform of a bus considered
in isolation is:

AT (~f) =

n�1X
i=0

xi � 2
i+xk � 2

l�xk � 2
k+xl � 2

k�xl � 2
l:

If the correct circuit transform wasAT (f), the transform of
the faulty one is:

AT (~f) = AT (f) + xk � 2
l � xk � 2

k + xl � 2
k � xl � 2

l:

The error polynomial has four nonzero spectral coefficients.
In general, any permutation of bus signals will have the er-
ror transform with at most2n spectral coefficients.
Bus Source Error This class replaces the intended source
xk with a sourcerk . In this case, the AT of the error would
be:

AT (e) = rk � 2
l � xk � 2

k:

Bus Driver Error This kind of errors corresponds to a bus
being driven by two sources. It manifests itself in a way de-
pendent on the implementation technology. For example, if
the bus line is implementing ”wired-OR”, then by connect-
ing an additional sourcerk to a linexk, the resulting signal
is xk _ rk. Using integer arithmetics, the logical OR is ob-
tained asxk _ rk = xk + rk � xk � rk. This identity leads
to the following AT of the additive error:

AT (e) = (rk � xk � rk) � 2
k:

Module Substitution Error A module is replaced by an-
other module with the same number of inputs and outputs.
Depending on the circuits replaced and their position in a
logic network, various transforms can be obtained. In a sim-
ple example, where an AND gate producingxk = i1 ^ i2 is
replaced by an OR gate producingxk = i1 _ i2, the error is
transformed at the output as:

AT (e) = (i1 + i2) � 2
k;

because the logical AND transform results ini1 ^ i2 = i1 �
i2. By considering single gates, thegate replacementerror
model is included in this class.
Bus Single Stuck LineThe error in which a bus is stuck

at a constant value (0 or 1) is manifested as the additive
error for which the arithmetic transform hasn spectral co-
efficients. For this SLL error, the transform is:

AT (~f) =

n�1X
i=0

xi �2
i�

n�1X
k=0

xk �2
k = AT (f)�

n�1X
k=0

xk �2
k:

Hence the error transform equals

AT (e) = �

n�1X
k=0

xk � 2
k:

In the case of a bus stuck-at-1, the error transform has2n
nonzero coefficients:

AT (e) =

n�1X
k=0

(2k � xk � 2
k):

Faults

10

20

30

40

50

60

70
Spectra Size

Figure 2. Spectrum Size Distribution of Stuck-at
Faults in 4x4 Multiplier. X Axis: Faults in topologi-
cal node order. Y Axis: Spectrum size

Any combination of the SSL errors would have the error
transform that is linear in the number of lines that are stuck.
Single Stuck-At Faults In contrast to the above, the sin-

gle stuck-at faults have a direct relation to testing of a cir-
cuit. These faults cannot be described by a single formula.
For example, the distribution of spectra of all single stuck-
at faults in an 4x4 CSA multiplier is plotted in Figure 2.
This figure shows that a number of faults result in a sub-
stantial error spectrum. Regardless of the spectra size of
the stuck-at faults, we demonstrate by the experiments that
these faults are easily detectable by the vectors for small
spectral error methods. The small additive error assump-
tion is partly motivated by the examples of the common de-
sign error classes from [2]. There are several classes of cir-
cuits that are ”small”, such as the class of constant depth
circuits. The results in [7] imply that this class of circuits
has its (Fourier) spectrum small and concentrated in the low
order coefficients.

4. Detecting Small Additive Errors

Under the assumption that the size of the additive error
is bounded, the verification by error modeling can be done
by using the bounds on the test vector size that are derived
next.

The arithmetic transform of an arbitrary multi-output
Boolean function can be obtained by multiplying the func-
tion values by the transform matrixT , defined in Equa-
tion 3. Rows of this matrix multiply the values that a func-
tion takes at all points of the function domain. A test set
will contain a selected set of these points; finding out the
polynomial representing a function can be performed by in-
verting the matrix. The structure of the matrix is identical
to that of the RM error correcting code check matrix [8],
albeit with a different addition operation. The redundancy
incorporated in the matrix allows us to find a minimal test
set for the case of a bounded spectrum error.

An error check matrixHr consists of theT�1n rows cor-
responding to the points in the topr+1 layers of the lattice.
This matrix has2n columns; the number of rows is equal to
the number of points in these lattice layers. The auxiliary
lemma, proven in Appendix, states that the matrixHr has
at least2r+1 � 1 independent columns. The following the-
orem is used to derive a test set for the case of small spectra
errors.
Theorem 1:Any error that results in up tot spec-
tral coefficients can be detected by examiningV =Pdlog2(t+1)e�1

i=0

�
n

i

�
points indlog2(t + 1)e � 1 upper

layers of the lattice.
Proof: By selecting all the points in the upperdlog2(t +
1)e � 1 layers, we obtain a reduced matrixHdlog2(t+1)e�1

of sizeV �2n. It is sufficient to check that each2t columns
of this matrix are independent. Then, as in RM error cor-
recting codes, any error polynomial with up tot terms will
be detected. By the lemma in Appendix, the minimal num-
ber of independent rows is:

2dlog2(t+1)e�1+1 � 1 � 2t

Therefore, any polynomial with up tot terms will be
uniquely identified.

This theorem uses the properties of the Arithmetic Trans-
form that are identical to those of binary RM transform, due
to the fact that both transforms consider binary inputs. A
proof of the theorem for binary RM transform can be found
in [8]. We note that a non-binary input generalization had
been proven in [4] for detecting faults for circuits described
by a multiple-valued RM transform. While the RM trans-
form is of exponential size even for adders, the Arithmetic
Transform is always of polynomial size, hence our result is
more practical. Also, our result offers a generalization of
the theorem in [8] for non-binary outputs.

This theorem provides an upper bound on the number of
points that have to be simulated to detect this class of errors.
In actual circuits, faults that involve many more spectral co-
efficients will be detected.

5. Experimental Results

We have performed a set of experiments over several
most commonly used arithmetic circuits and several MCNC
benchmarks. The errors considered include stuck-at faults
and module replacement errors. Three types of gate replace-
ment faults are applied. These faults substitute any gate in
a circuit with AND, OR or XOR gate of the corresponding
size. Faults are chosen to represent the basic design errors
considered in Section 3.2. The stuck-at faults are selected
for the additional reason of indicating the testing capabili-
ties of this verification approach.

Circuit single s-a-v gate replacement
2nd 3rd �4 AND OR XOR

9symml 49.9 50.1 100 100 100 74.0
alu2 91.9 97.7 98.5 97.8 96.6 100
alu4 90.1 96.1 98.9 97.8 98.2 100

cordic 74.5 87.0 98.0 100 98.0 44.4
f51m 100 100 100 100 100 100
mux 90.0 100 100 100 100 100

my adder 100 100 100 97.6 100 100
parity 96.7 96.7 100 100 100 N/A 1

cm138a 67.5 77.5 97.5 100 100 100
decod 76.7 74.4 100 100 100 100

i1 86.9 86.9 86.9 50.0 66.7 85.7
z4ml 84.6 100 100 100 100 100

Table 2. MCNC Benchmark Coverage with lattice
points up to 4 top layers

We recorded the coverage of these four classes of faults,
as well as the statistics on the test set size. Tables 2 and 3
report the coverage of MCNC benchmarks and arithmetic
circuits, respectively. The results indicate that only 4 lay-
ers are sufficient for the detection of the given classes of
faults in arithmetic circuits, as well as most of the consid-
ered MCNC benchmarks. The goal of these experiments
was to determine the effectiveness of the complete test set,
including the information on the number of vectors per layer
that detect each fault. Hence, no fault dropping was applied,
and the reporting simulation time would not reflect the ac-
tual time needed in the verification. Otherwise, the running
time is proportional to the circuit size and the number of
vectors needed to detect the faults, which are reported.

It is worth noting that, compared with Theorem 1 and
the experimental results considering the error spectra from
Figure 2, a larger number of layers would have been ex-
pected. We interpret this by the fact that the theorem gives
an upper bound on the number of vectors. Also these vec-
tors are, according to Theorem 1, necessary for the unique
identification of the error polynomial. We note that for the
verification and testing purposes, only the detection of the
presence of the error is required.

5.1. Improvements - Neighborhood Subspace Points

Although only up to 4 lattice layers (plus vector11 : : : 1)
were needed for good coverage, there were many redundan-
cies in the test sets. This prompts us to consider the alter-
native schemes that use a subset of the considered lattice
points.

We construct the vector windows covering exhaustively
only the neighboring variables. We consider the neighbor-
ing inputs to beai, bi, ai+1 and bi+1. In adders, for ex-

1A purely XOR circuit - XOR gate replacement creates no errors

Circuit Size sav AND OR XOR
lat nei lat nei lat nei lat nei

Lookahead 8x8 93.2 83.3 98.1 98.1 94.6 84.0 78.6 78.6
Adder 12x12 94.3 83.8 98.8 98.0 95.2 85.5 81.1 79.8

16x16 94.8 84.0 99.1 99.1 95.4 85.9 82.1 82.1
Ripple 8x8 99.2 99.2 100 100 82.8 82.8 100 100
Adder 12x12 99.5 99.5 100 100 83.7 83.7 100 100

16x16 99.6 99.6 100 100 83.9 83.9 100 100

Array 6x6 98.9 98.9 100 100 82.9 82.9 100 100
Multiplier 7x7 99.1 99.1 100 100 83.7 83.7 100 100

8x8 99.2 99.2 100 100 84.2 84.2 100 100
Booth 6x6 94.2 92.1 92.3 91.3 98.9 97.3 91.0 89.9

Multiplier 7x7 93.7 92.4 91.8 91.0 98.9 97.5 91.5 19.8
8x8 94.5 92.8 92.4 91.8 99.1 97.0 91.6 97.5

ALU 8x8 99.7 76.8 100 71.4 100 78.6 96.6 83.1
12x12 99.8 77.1 100 73.2 100 80.1 97.9 85.2

Table 3. Arithmetic Circuit Coverage: Lattice and neighbor points, 4 top layers

ample, the expressionci = (ai + bi)2
i joins together the

neighbor variables in a polynomial term that is multiplied
by the same constant. The size of the considered windows
is in this case 4. Table 3 compares the two methods. First
column for each fault type shows the coverage obtained by
the exhaustive lattice points, and the second column reports
the neighbor window results. We notice that little coverage
is lost - further improvements are possible by experimenting
with larger windows and alterinative schemes for neighbor
signal selection.

Table 4 compares the test set lengths. Testing with all
the vectors belonging to the top four layers requiresO(n4)
points. With the window size of four, the exhaustive test
set for all the neighbor variable combinations needs only
O(n2) points. The savings are equivalent to using two lay-
ers less in the test set.

This way of generating test vectors follows the univer-
sal test set approach, in which the tests are independent on
the circuit implementation. Additional information used to
restrict the test set came not from the circuit structure, but
from the high-level specification.

6. Conclusions and Future Work

We proposed a vector-based verification of datapath cir-
cuits using the Arithmetic Transform and a concept of error
modeling. We have shown that this approach can be applied
to derive effective test sets for several classes of design er-
rors. Furthermore, testing can be combined with the val-
idation process through reusing of verification vectors for
detecting manufacturing faults.

Through the arithmetic spectrum, the compact circuit
representations and the capability of relating the common
errors to the bounds on the vector set size are achieved. This

provides the confidence in restricting otherwise exhaustive
test set to its smaller subsets, without sacrificing the fault
detection capability.

The improvements to the basic concept include the use
of the high-level information on the input variable depen-
dences, through neighbor window variables. More im-
provements are possible for circuits such as ALUs. Pre-
liminary results show that dividers can be verified using the
same approach. More work is needed in this direction. Fur-
ther work on error modeling using this approach needs to
be done.

References

[1] R. Bryant. On the Complexity of VLSI Implementations and
Graph Representations of Boolean Functions with Applica-
tions to Integer Multiplication.IEEE Transactions on Com-
puters, 40(2):205–213, February 1991.

[2] D. V. Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and
R. B. Brown. High-Level Design Verification of Micropro-
cessors via Error Modeling.ACM Transactions on Design Au-
tomation of Electronic Systems, 3(4):581–599, October 1998.

[3] Y.-A. Chen. Arithmetic Circuit Verification Based on Word-
level Decision Diagrams. PhD thesis, Carnegie-Mellon Uni-
versity, School of Computer Science, May 1998.

[4] T. Damarla. Generalized Transforms for Multiple Valued Cir-
cuits and their Fault Detection.IEEE Transactions on Com-
puters, 41(9):1101–1109, Sept. 1992.

[5] B. J. Falkowski. A Note on the Polynomial Form of Boolean
Functions and Related Topics.IEEE Transactions on Com-
puters, 48(8):860–864, August 1999.

[6] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula. Formal Verifi-
cation Using Edge-Valued Binary Decision Diagrams.IEEE
Transactions on Computers, 45(2):247–255, Feb. 1996.

[7] N. Linial, Y. Mansour, and N. Nisan. Constant Depth Circuits,
Fourier Transform, and Learnability.Journal of the ACM,
40(3):607–620, July 1993.

Circuit Size sav AND OR XOR
lat nei lat nei lat nei lat nei

Lookahead 8x8 30 18 19 17 30 26 18 16
Adder 12x12 46 27 28 26 46 39 26 22

16x16 60 36 45 35 56 52 42 30
Ripple 8x8 22 22 2 2 15 15 1 1
Adder 12x12 34 34 2 2 23 23 1 1

16x16 46 46 2 2 31 31 1 1

Array 6x6 11 11 6 6 11 11 1 1
Multiplier 7x7 14 14 7 7 14 14 1 1

8x8 15 15 8 8 15 15 1 1

Booth 6x6 31 22 17 15 21 18 18 18
Multiplier 7x7 7 28 18 16 23 19 24 19

8x8 43 35 22 20 37 29 23 21

ALU 8x8 68 22 51 20 49 20 30 23
12x12 74 25 65 28 58 24 35 32

Table 4. Arithmetic Circuit Vector Set Length Comparison

[8] R. M. Roth and G. M. Benedek. Interpolation and approxi-
mation of sparse multivariate polynomials over GF(2).SIAM
Journal of Computing, 20(2):291–314, April 1991.

[9] C. Scholl, B. Becker, and T. M. Weis. Word-level Decision
Diagrams, WLCDs and Division. InInternational Confer-
ence on CAD, pages 672–677. ACM, San Jose, California,
November, 1998.

Appendix: Check Matrix Hr - Auxiliary Lemma
The check matrixHr is obtained from the inverse trans-

form matrix by selecting the evaluation points. The inverse
of the AT transform matrix is defined as:

T�1n =

�
T�1n�1 0

T�1n�1 T�1n�1

�
(5)

(Proof:) By multiplyingTT�1 = I .
Consider first an example withn = 3. If two top layers

are taken, i.e. the points taken are111, 011, 101 and110.
The check matrixH1 is obtained fromT�13 . Adding one
more layer toH1 results in a matrix:

H2 =

2
666666664

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

3
777777775

The maximal number of independent columns ofH1, i.e.
a matrix rank, is 4 by considering columns 4, 6, 7 and 8.
Notice that not every four columns are independent, such
as columns 5, 6, 7 and 8. However, any 3 columns are in-
dependent, and the minimum number of columns that are
independent is 3. The structure of the matrix is such that
this number can be found by inspecting the end columns,

i.e. 5, 6 and 7. By taking more points, the rank is always
equal to the number of rows, whereas the minimal number
of independent columns is claimed to be2r+1 � 1, for Hr,
with r+1 top layers taken. This statement can be inspected
by considering the2r+1 � 1 columns, corresponding to the
points considered. Here, the minimal number of indepen-
dent columns is 7. In general, the minimal number of inde-
pendent columns increases every time a new layer is added,
and is equal to the largest subspace contained in the tailing
columns. The fact that the diagonal entries of the matrix
are 1 ensures that the tailing columns are sufficient to con-
sider, as the columns ahead cannot be linearly dependent to
any tailing column. By inspectingH1 andH2, one can no-
tice that the number of tailing columns considered is2k+1,
for k layers, and that the first of these2k+1 tailing columns
is dependent on the rest. Hence, when a layer is added to
Hk, a new2k+1 vectors are added to the independent set of
columns. We are now ready to formally prove the lemma,
which is independent on the number of variablesn.

Lemma 1: Matrix Hr has at least2r+1 � 1 independent
columns.

Proof: By induction. Base step: we showed that for the
casek = 2, the minimal number of independent column is
2k+1 � 1.

In the induction step, fork+1 layers, the minimal num-
ber of independent columns is equal to those fork layers, to
which new2k+1 columns are added. Then, the total number
of independent columns is

2k+1 � 1 + 2k+1 = 2k+2 � 1 = 2(k+1)+1 � 1

