
Identifying Redundant Wire Replacements for Synthesis and
Verification

Katarzyna Radecka and Zeljko Zilic
McGill University, Dept. of ECE

{kasiar,zeljko}@macs.ece.mcgill.ca

ABSTRACT

We propose the redundancy identification of wire replacement
faults. The solutions rely on the satisfiability (SAT) formulation
of redundancy identification, augmented with the means to
effectively use any single stuck-at-value redundancy
identification in the approximate schemes. In the latter, we
employ the novel use of don’t care approximations that detect
many redundant faults and quickly identify those that can be
detected by stuck-at value identifications. A test generation
scheme that uses the error-correcting properties of Arithmetic
Transform is incorporated into the overall verification
procedure. The test set provides high fault coverage.

1. INTRODUCTION

Recently, there has been a lot of interest in using the
automated test pattern generation (ATPG) based schemes
in logic optimization, which explore the redundant wires
[10]. Further, implementation verification techniques
based on simulations, place special emphasis on wire
replacement errors in a netlist. The wire error modeling
and detection, as well as the redundant error identification,
are used in such verifications and logic optimizations.
Design errors are often the results of changes introduced
manually or even during the automated synthesis [1]. The
most common errors of that kind are gate or wire
replacements which belong to the design error models
proposed in [1] and [2]. A fault model is a necessity when
verification is performed by simulations. It has been
reported in [2] that by applying modern design flows,
98.9% of all design errors of a common processor, and
94.2% of errors in floating point units are caused by gate
or wire replacement errors.

A detecting capability and running time of the
simulation-based verification is seriously impaired by
redundant faults. Simulations alone cannot deal with that
problem, unless applied exhaustively.

In this paper we propose novel procedures for
identifying redundant wire replacement faults. Safe
approximations to local don’t cares are used to identify
faults that are either likely to be redundant or detected by
standard s-a-v methods. In Section 3 we construct an exact
identification of replacement faults using an all-SAT
formulation. In addition to identifying redundant wire
replacements for the verification purposes, such
information can be used to improve the process of circuit

optimization. Our approach to redundant wire
identification can be applied to such logic optimizations.

Majority of rewiring techniques are based on s-a-v
ATPG. However, as the rewiring faults differ from s-a-v
faults, and the redundant wire detection requires that both
s-a-0 and s-a-1 faults at that wire are redundant, each
identification of such a redundant wire requires two runs of
ATPG. Additionally, ATPG algorithms are optimized for
quick deterministic vector generation, rather than for
identifying the faults that are redundant.

Similarly, verification by test vectors relies on full
testability of all possible design faults considered. This
application also critically depends on the ability to detect
redundant faults from a fault model.

2. WIRE REPLACEMENT FAULTS

Wire replacements are used both in synthesis [3], [4],
[9], [10] and verification, [1], [2] applications. Many
recent advances in synthesis are due to the rewiring
approach, where selected wires are chosen for the
replacement, in the attempt to find a better implementation
for logic at nodes considered. It is recognized [9] that the
rewiring techniques critically depend on quick
identification of redundant faults.

Rewiring or insertion of design–for-testability (DFT)
elements like scan, test points or Built-in Self Test (BIST)
are post-synthesis steps, as they are performed on the
originally synthesized netlist, and generally affect small
areas of the design. They often require human interaction,
and can potentially result in errors, such as wrong wire
connections, missing/added gate or wire, etc. Hence, there
is an obvious need to verify whether such errors were
introduced to the final netlist. In the remainder of this
paper we discuss the detection of wire replacement errors
in combinational networks. We are interested only in the
errors that do not create cycles, which are easy to detect.

We can classify wire replacements into two categories.
The first one deals with errors affecting I/O port
connections. I/O ports in this context can be either primary
I/O pins, or can represent ports of internal complex blocks
(cores) such as adders in the datapath architecture.
Detection of these errors is discussed in detail in Section 4.
The second category describes errors causing one or more
internal wires in the circuit to be wrongly connected to
nodes. We distinguish two types of such replacements.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Definition 1: Single port wire errors (SPWEs) are the
replacements affecting a single node in a netlist, such as
added/missing wire and permuted wire at the input to a
node, Figure 1.a. Internal wire interchange errors (IWIEs)
are the replacements affecting multiple nodes in the netlist.
IWIE errors include exchange of two nets, where the two
single stem nets are swapped to drive the sink node
originally driven by the other net, as in Figure 1.b. �

Figure 1: Wire Replacements: SPWE and IWIE

Note that wire replacement errors, unlike gate
replacements or s-a-v faults can change the design at
different levels of abstraction. Wire replacement errors can
affect multiple wires and change functionality of the nodes.

A redundant replacement is a substitution that does not
change the original function of the circuit. Unlike a s-a-v
fault, which permanently ties a signal to either 0 or 1, the
polarity of an error caused by a replacement fault depends
on stimuli. To deal efficiently with such faults, we seek
new redundant fault identification methods.

2.1 Redundancy Detection by Don’t Cares
Although single port wire errors (SPWEs) and Internal

wire interchange errors (IWIEs) affect the wires, the fault
effects are observed at nodes to which the erroneous wires
fan in. Therefore, the redundancies are caused by don’t
care (DC) conditions at such nodes. These are either
observability don’t care (ODC) or controllability don’t
cares (CDCs) inhibiting the error detection.

Our first redundant fault identification consists of two
steps, both of which can be performed in various degrees
of approximation. First, we use the don’t care (DC)
information in the network to screen out most of the
redundant faults. The use of DC subsets guarantees that no
irredundant fault will be declared as redundant. For
selected remaining faults, in the second step, we apply the
modification of single stuck-at-fault redundancy
identifications. We employ a method based on the
satisfiability (SAT) formulation of the problem.
Information on replacements that are to be probed by SAT
is provided by DC care sets obtained in the first step.
Definition 2: A local don’t care set at a given circuit node
consists of controllability don’t cares (CDCs) and

observability don’t cares (ODCs) associated with this
node. A local care set (Carelocal) of a given node is the
complement of the local don’t care (DC) set. �

Each replacement h that coincides with the original
function g on a local care set, Carelocal, at a given node,
creates a redundant fault.

Figure 2: Internal Wire Interchange Error (IWIE)

Lemma 1: Consider an interchange of two wires, Figure
2. Let these wires be driven by nodes N1 and N2,
performing functions f1 and f2, respectively. By taking into
account ON-sets of N1 and N2, i.e., f1

ON and f2
ON, and local

care sets of N1 and N2, CareN1 and CareN2 (before the
exchange) and Care’N1 and Care’N2 (after the exchange)
the replacement is redundant if:

.’

’

2221

1211

N
ON

N
ON

N
ON

N
ON

CarefCaref

and

CarefCaref

∩=∩

∩=∩

Proof: If the first relation holds, then the net cut at N1 is
redundant, as f1 at N1 is being replaced with the equivalent
function f2 at net N1. Consequently, if both equations are
true, then cuts at nets N1 and N2, Figure 2, are both
redundant, and the wire interchange is redundant. ~

Figure 3: Circuit with IWIEs

Example 1: Consider a circuit and IWIE errors in Figure 3,
where nets b and c are replaced with their respective
predecessor nets. The local DC sets at nodes b and c
consist of observability DCs (ODCs). The original function
f and Carelocal sets are shown in Table 1. When a stem has
multiple branches, the additional index is added to the

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

branch, as with a_1, a_2 and x3_2. The functions at the nets
a, b and c are given as well. Upon a replacement, these
functions are interchanged, and we aim to detect the
difference between the original and replaced functions,
according to Lemma 1. ♦

Function 3231321 xxxxxxxf ′∗+′∗+∗∗=

Careb 32 xxCODCare bb ′+=′=

Carec 32321 xxxxxCODCare cc ′+′+=′=

Carea_1)xx(xCarea 3211
′+′=

Carea_2)xx(xCarea 2132
′+=

Carex3_2 323232
xxxxCarex ′+′=

fb 32321 xxxxxfb ∗′+′∗+=

fc 32 xxfc ′+=

fa 3232 xxxxfa ′+′=

Table 1: Carelocal Sets for Figure 3

2.1.1 Don’t Care Approximations

If we have the exact don’t care sets, Lemma 1 provides
us with the exact redundancy identification. Practical
schemes use only the subset of DCs. ODC space
requirements are the biggest, and we approximate them by
compatible observability don’t cares (CODCs) [8]. The
advantage of ODC subsets is that the replacements
affecting multiple nodes do not change the CODC value.
CODCs can hence be used for multiple wire replacements.
Definition 3: An approximated don’t care set (DCapprox)
associated with a given node is the set of local don’t cares
where observability don’t cares (ODCs) are approximated
with compatible observability don’t cares (CODCs), while
other DCs are exact. Correspondingly, an approximated
care set (Careapprox) of a given node is the complement of
the approximated local don’t care set. �

The approximated local don’t care set (DCapprox) is the
subset of the exact local set DClocal at a given node

localapprox DCDC ⊆ ,

while Careapprox is the superset of the exact local care set.
Consider the following use of the Hamming distance

Nd nn �}1,0{}1,0{: × between two Boolean functions.

The distance is equal to the number of minterms (w) of the
Boolean difference between the two intersections of
functions with the local care set:

))()((),(CarehCaregwhgd ONON
Care ∩⊕∩= . (1)

Symbol “⊕” denotes the Boolean difference between two
sets, calculated by XOR-ing their characteristic functions.
Care set represents either Carelocal or Careapprox for
determining dlocal or dapprox, respectively.

Example 2: Consider the three faulty circuits (F.C.1
through F.C.3) from Figure 3. Additionally, let W denote

the permutation of input wires to OR gate (node b). Table
2 describes the effects of these wire replacement faults.
The first row includes the Hamming distances between the
correct and faulty gates with no DC set taken into account.

 W F.C.1 F.C.2 F.C.3

d 0 2 6 4

 dCare 0 1, 2 2, 4 2, 3

vec 0 2 3 4

Table 2: Hamming Distances (d) and Number of Vectors
Detecting Error Gates for Circuit in Figure 3

The Hamming distances of the intersection with local care
sets, calculated at both affected nodes, are shown in the
second row of Table 2. The number of test vectors (the last
row) increases with the Hamming distance. Replacement
W is redundant, and no vector detects it. ♦

Distance dCare in Equation 1 is positive for redundant
faults not detected by the use of Careapprox, as well as for
irredundant replacements. Our next task is to distinguish
these two cases. The distances obtained by the exact and
approximate local DC sets are related as follows [7].
Lemma 2: The following relation is true for the Hamming
distances dlocal and dapprox, for a single node replacement
between function g and its fault h, calculated with the use
of local and approximated DC sets, respectively:

() ()hgdhgd approxlocal ,, ≤ .

The distance information is used for assessing the
likelihood that a fault will be redundant without applying a
complete redundancy identification scheme. Further
identifications can be parameterized by nonzero distance:

.))(),((),(ε<∩∩= CarehCaregdhgd ONON
Care (2)

The small distance replacements possess the additional
properties, useful in detecting redundant replacements. The
distance-1 replacements (i.e., ε = 2), can be detected by s-
a-v identifications, as the fault will be of one polarity only.

2.2 Using SAT for Redundancy Identification

A satisfiability (SAT) solver is used for our redundancy
identifications [5]. To test for a s-a-v fault in a circuit, a
Conjunctive Normal Form (CNF) is constructed. This
product of sums (clauses) is equal to one for all solutions;
therefore the satisfying assignment is a test vector. If there
is no solution, i.e., the fault is redundant, then the CNF
expression is unsatisfiable. The SAT formulation for a
single s-a-v fault redundancy consists of several types of
clauses. Good circuit clauses represent the correct
operation of a circuit. Faulty circuit clauses describe
effects of a single s-a-v fault on the downstream network
nodes. Active clauses are introduced to give the activation
conditions of a fault. Finally, the fault site and goal clauses
describe the observation and detection of the fault.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

Example 3: The following clauses are generated for a s-a-0
fault at node b of the correct circuit in Figure 3.a. The SAT
variables are associated with nodes in the network. Those
with no subscripts are the good clause variables, such as x,
the faulty circuit variables at the same node have the
subscript f, as in xf, while the activation variables have the
subscript a. The conditions for which the individual clauses
are created are placed in square brackets, Table 3. An
assignment x1 = 1, x2 = x3 = 0 is a test vector sought. ♦

Good
Circuit
Clauses

[OR]:),)()((11 abxbbax ++++

[NAND]:),)()((33 cxcacax ++++

[AND]:),)()((dcdbdcb ++++

[XOR]:
))()()((32323232 axxaxxaxxaxx ++++++++

Faulty
Circuit

[AND]:))()((cbddcdb ff ++++

Active
Clauses

[Active⇒(Good≠Faulty)]:
),)((fafa bbbbbb ++++

[Active⇒Outputa]:)(aa db +

Fault
Location

[Node b s-a-0]: fa bbb

Goal [Active Output]: da

Table 3: SAT Clauses for Node b s-a-0 (Figure 3.a)

This approach can be time consuming if applied to all
faults. Next, we show how our DC-based algorithm can be
used to filter out many cases of replacement faults.

2.2.1 Approximate Redundancy Identification

We can derive a SAT formulation for replacements
not filtered by don’t cares (DCs) using Lemma 2. The
distance between the original and the replacement gate,
obtained by approximate DC set, can be passed to SAT.
This proximity information can represent additional
criteria for creating further approximations to the problem.

By considering only the single-cube distance
replacements, as in Equation 2, an efficient SAT
formulation can be obtained. We first create an s-a-v SAT
instance corresponding to the polarity of the single-value
faults, according to Lemma 2. It is sufficient to add to
CNF the 1-clauses (clauses with one literal) to restrict gate
inputs to a single failing cube.
Example 4: To obtain a SAT instance for replacing the
OR gate from Figure 3 with an XOR gate, clauses are
added to restrict the inputs to their (single-cube)
assignments that differentiate the gate functions. The
following 1-clauses are added to those for s-a-0 fault at
node b (Example 3).

Additional clauses: [Distinguishing OR → XOR]: x1a.♦
The approximate identification algorithm is shown in

Algorithm 1. After intersecting the original and replaced
gates with the approximate care sets, their Boolean
differences (⊕) are obtained. If the differences are empty,
then the fault is redundant and is not simulated (line 5).
Otherwise, if the difference is a single cube with faults of
one polarity, a 1-Cube distance check is performed by s-a-
v identifications, augmented with the distinguishing single-
cube input assignment (line 12 or 15). If redundancy is not
detected, the fault is assumed irredundant and is simulated.

3. EXACT REDUNDANCY IDENTIFICATION

The approximate solution has the advantage of reusing
fast stuck-at fault methodologies, while possibly missing
some redundant faults. Next, we present an all-SAT
formulation that is exact. The SAT formulation uses the
good circuit, faulty circuit and active clauses that are the
same as in the standard single stuck-at SAT. However,
fault site clauses will be augmented by an activating
condition. The condition for activating a fault where
function g is replaced by a function h is g ≠ h, regardless
of the fault. We hence create an auxiliary node equal to l =
g ⊕ h. Then, the fault location clause will assert l = 1.
Figure 4 depicts the SAT formulation that is applicable for
any faults affecting two nodes in a netlist.

In the case of internal wire interchange errors (IWIEs),
when multiple nodes are affected, the same inequality is
introduced for each node affected. The conditions at each
node are OR-ed, i.e., the additional OR gate is added to
assert that the difference in the faulty and fault-free circuits

1. Generate CODC Approx. of the network
2. for each fault (g → h){
3.
4. Obtain: (h ∩ Careapprox), (g ∩ Careapprox),
 l = (h ∩ Careapprox) ⊕ (g ∩ Careapprox)
5. if (h ∩ Careapprox = = g ∩ Careapprox)
6. { /* l = = ∅ */
7. break;
8. }
9. if (d(h ∩ Careapprox, g ∩ Careapprox) = 1)
10. { /* l = 1, 1-Cube approx. */
11. if (h ∩ Careapprox ≥ g ∩ Careapprox)
12. if (detect_s-a-0_with_cube(l))
13. break;
14. else if (h ∩ Careapprox ≤ g ∩ Careapprox)
15. if (detect_s-a-1_with_cube(l))
16. break;
17. }
18. simulate_fault_n_lattice_layers (g, network)}

Algorithm 1: Approximate Redundancy Identification

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

has to be present in at least one of the nodes affected, as
shown in Figure 4.b. Further optimizations are applied for
replacements that do not create combinational cycles.

Figure 4: Exact SAT Formulation

Lemma 3: Consider an internal wire interchange error
(IWIE) at nets g and h, applied to acyclic combinational
netlist that results in a faulty netlist that is still acyclic and
combinational. The activating condition for a fault is to
XOR the logic functions g and h of the two wires that are
replaced. Then, instead of OR-ing the two XOR
differences, considering only one difference is sufficient.
Proof: If there is no path between g and h, the two
differences are the same, and the lemma is proven. Assume
without loss of generality that the node g is downstream
from node h in acyclic combinational netlist. Then, the
replacement at net g, will be activated by condition

l1 = g ⊕ h,
since the function g is replaced by h. The second
replacement, i.e., at net h, will in general affect all the
downstream nodes, including g, changing it to a function
g1. Then, the condition for activating this wire replacement
would be

l2 = g1 ⊕ h.
However, notice that if g has changed, a combinational

loop was created, and the circuit is cyclic, contradicting
our assumption. Hence, the node g, will not change i.e., g
= g1, and conditions at both nets affected will be g ⊕ h.
Then, the overall activation condition is:

l1 + l2 = (g ⊕ h) + (g ⊕ h) = (g ⊕ h).
Therefore, one XOR-ing of the nodes affected is sufficient
to describe the activating conditions. ~

 Figure 5 depicts the application of Lemma 3 to the
condition for IWIE faults that result in an acyclic netlist.
Example 5: Consider again faults in Figure 3. For exact
SAT formulations of these three faults, the activation
condition are created. According to Lemma 3, the original
functions at the affected node pairs (the second column in

Table 4) are XOR-ed with each other. The resulting
conditions are shown in the third column of Table 4.

Figure 5: Simplification for Acyclic IWIE Faults

The overall SAT formulation consists of two parts. In
addition to the clauses created for the stuck-at-value fault
at one of the nodes affected, new clauses are added to
describe the activation condition.

Faulty
Circuit

Nodes
compared

Activation
Condition

F. C. 1 a, b x1⊕x2⊕x3
F. C. 2 a, c x’2+x3
F. C. 3 x3, b x1x’3+x’1x2x3

Table 4: Activation Conditions for Faults in Figure 3

For example, the SAT formulation for F.C.2 is created
by clauses for a (unspecified polarity) fault at node c
(similar to those in Table 3), and by additional clauses that
assert the activation condition (third column in Table 4):
Additional clauses: [l = x’2 + x3]:
 .))()((3232 llxlxxxl ++++

For leaving polarities unspecified, the clauses are removed:
Removed clauses: [s-a-0]: fcc . ♦

4. I/O PORT REPLACEMENT DETECTION

We now investigate conditions for detecting the
replacements external to a block. We model such faults by
Arithmetic Transform leading to their efficient detection.
4.1 Arithmetic Transform

Arithmetic Transform is a canonical polynomial
representation of multi-output Boolean functions

mn BBf →: . To describe multi-output functions with a

single polynomial, function outputs are “grouped together”
into word-level (W) quantities, e.g. integers, resulting in a

pseudo-Boolean function WBf n →: .

Definition 4: Arithmetic Transform (AT) of a pseudo-

Boolean function WBf n →: is a polynomial with

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

arithmetic “+” operation, word-level coefficients
niiic

L21

and binary inputs x1, x2, …, xn:

n

n
n

i
n

i

ii
iii

i i
xxxcfAT ∑∑ ∑=

== =

1

0
21

1

0

1

0

21
21

1 2

)(��
L

 (3)

that uniquely and exactly interpolates f. �
The transform coefficient vector }{

21 niiicC
L

= is

obtained by multiplying the vector f of word-level function
outputs with the transform matrix Tn, fTC n ∗= , where Tn

is defined recursively by arithmetic Davio expansion:

 1,
0

0
11

1 =

−

=
−−

− T
TT

T
T

nn

n
n . (4)

The following theorem, proven in [6], uses the properties
of the input space, considered as a Boolean lattice Bn, to
derive a test set among the top layers of the lattice. In Bn,
vectors belong to one of n+1 lattice layers, depending on
the number of ones in a vector - the top lattice layer has n
ones, etc.
Theorem 1: All errors resulting in up to t spectral
coefficients can be detected by testing vectors in

 1)1(log2 −+t top layers of the Boolean lattice. ♦

This vector generation scheme is sufficient for testing all
design errors with at most t AT polynomial coefficients.
We observed that for common benchmark and arithmetic
circuits, high fault detection is obtained using test vectors
among the constant number (up to 5) top lattice layers.

4.2 Detection of I/O Port Wire Switching Errors

I/O port wire replacement errors happen, when at least two
ports of the design are wrongly connected, see Figure 6.
There errors are often caused by either manual intervention
or the wrong connection declaration. A typical example is
when ports of one block are declared as Little Endian,
while ports of the other block are represented as Big
Endian. In the case of an I/O port wire replacement error, it
is easy to derive its error polynomial.

Figure 6: I/O Port Wire Replacement Errors

Definition 5: A single input port wire replacement error
(SIPWE) results in the erroneous connection of a single
circuit input port to the wrong wire, Figure 6. �

Example 6: Let us consider the error caused by
interchanging two input wires, k and l, to an N-bit adder, f.
AT of the original, fault-free adder is:

.2)(22)()(
1

0

1

0

1

0

i
i

N

i
i

N

i

i
i

N

i

i
i bababaATfAT +∑=∑+∑=+=

−

=

−

=

−

=

When the error f
~

of interchanging two input port wires k

and l (k < l) is introduced, the error polynomial is:

.2)(2)()()
~

()(l
kl

k
lk babafATfATeAT +++=−= ♦

The error polynomials are not needed explicitly to
obtain the number of lattice layers required for their unique
identification. Rather, the lower and upper bounds on the
sizes of the possible error polynomials are used. The lower
bound (switching only two inputs) is presented in Example
6. The upper bound, i.e. the case of wrongly connecting all
the inputs, still results in a small AT.

The same test vector set is applied to the faults within
the netlist. It detects not only the faults resulting in t
spectral coefficients, but also many faults resulting in
larger error spectra. Since the error spectra cannot be
simply bounded, unlike I/O wire faults, there is a number
of faults that are either hard to detect (and AT decoding
vector set will consequently not detect them) or redundant.
These faults are handled by our identification schemes.

5. EXPERIMENTAL RESULTS

The redundancy identification schemes have been
implemented on 440 MHz SUN Ultra10 workstation with
512 MB of main memory. We used UC Berkeley SIS SAT
solver and the BDD package for representing local don’t
care subsets. The proposed schemes were compared with
respect to their running times and the performance. The
exact redundancy identification finds all redundant errors
for the benchmarks considered. The approximation
performed almost as well, as shown in Table 5.

 DC BDD DCs Exact SAT Circuit
 Size Time[s] Cov[%] Time [s] Cov [%]

alu2 2239 0.97 100 0.34 100
alu4 2849 2.19 100 0.56 100
9symm 2884 0.54 100 0.88 100
cordic 926 0.34 100 0.5 100
C499 73120 11.36 95.6 6.16 96.2
C432 271463 15.52 100 5.4 100
C17 20 0.01 100 0.0 100
C1355 190077 307.22 97.2 18.25 97.6
C1908 120999 459.8 90.1 25.25 90.4
C6288 ∞ ∞ - 49.27 94.9
C880 36406 10.96 91.0 1.39 97.0

My_adder 4253 0.18 100 0.03 100

Table 5: AT Coverage and Exacution Time
Comparison between Approximate and Exact SAT

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

The number of possible wire replacement faults is very
large. To better expose the performance of the proposed
methods, we resort to modeling that allows us to discard
many easily detected faults and concentrate on those that
are more likely to be redundant.
Definition 6: We say that the wire interchange of two
wires w and e, driven by nodes N1 and N2, performing
functions f1 and f2, respectively, is the true fan in acyclic
(W.tfi) replacement if
 1. ew ≠1 and 21 ff ≠

 2. N1 is in the true fanin of N2.
 3. network is acyclic after the interchange. �

This definition regards the replacements as in Figure 2,
where the wire is substituted with a wire from its fanin
input cone, as shown by the shaded area.

While DCs perform worst with respect to their space
complexity, preprocessing can reduce the time
requirements of SAT. Table 6 and Table 7 show the fault
coverage of SIPWE faults for MCNC benchmarks and
arithmetic circuits. In the latter table, vectors among 4
layers were used.

 Fault Coverage [%]
 Circuit # Inputs

3 layers 4 layers 5 layers

C1355 41 71.8 100 100

C17 5 100 100 100

C1908 33 80.1 85.2 99.1

C3540 50 96.7 99.2 99.2

C432 36 100 100 100

C499 41 71.8 100 100

C6288 32 100 100 100

C880 60 85.0 85.0 97.1

alu2 10 100 100 100

alu4 14 100 100 100

apex7 49 89.4 95.2 99.8

count 35 79.8 99.9 99.9

My_adder 33 96.6 96.6 96.6

Table 6: SIPWE Coverage Experimental Results

6. CONCLUSIONS
In this paper, we proposed the methods for redundant

wire replacement identifications. The methods differ in the
level of approximation. While the exact SAT-based
solution is practical, we have shown that the consideration
of replacements that are within a single-cube distance from
the replaced gate provides almost complete redundancy
identification by the use of standard s-a-v methods. In the
latter, we use the CODC subsets of local don’t cares to
reduce the number of cases considered, and to provide
distance information. Further preprocessing to SAT
procedures that exploits the properties of the test set is

demonstrated. Both approaches can benefit by
improvements in underlying SAT and structure-based s-a-v
methods. The approximate method can completely avoid
the use of SAT solvers.

We have shown that the use of test sets obtained by
Arithmetic Transform decoding results in high coverage
vectors for wire replacements.

 Circuit Size DC SAT

Ripple Adder 12
16
24

72.8
72.8
73.9

72.8
73.4
77.9

Look-ahead
Adder

12
16
24

72.0
68.5
76.1

75.7
72.1
79.7

ALU
10
12

99.7
99.7

100
100

CLA
Divider

9x5
11x6
13x7

100
94.8
91.4

100
94.9
88.1

Array
Divider

9x5
11x6
13x7

100
100
100

100
100
100

Table 7: Wire Replacements in Arithmetic Circuits
References

[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic
Verification via Test Generation”, IEEE Transactions on
CAD, 7(1), pp.138-148, Jan.1988.

[2] D. van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge
and R. Brown, “High-Level Design Verification of
Microprocessors via Error Modeling”, ACM Trans. Design
Automation Electron. Systems, 3(4), pp. 581-599, Oct. 1998.

[3] S-C. Chang, L. P.P.P. van Ginneken and M. Marek-
Sadowska, “Circuit Optimization by Rewiring”, IEEE
Transactions on Computers, 49(9), pp. 962-970, 1999.

[4] L. Entrena and K-T. Cheng, “Combinational and Sequential
Logic Optimization by Redundancy Addition and Removal”,
IEEE Transactions on CAD, 14(7), pp. 909-916, Jul. 1995.

[5] T. Larrabee, “Test Pattern Generation using Boolean
Satisfiability”, IEEE Transactions on CAD of Integrated
Circuits and Systems, 11(1), pp. 4-15, Jan. 1992.

[6] K. Radecka and Z. Zilic, “Using Arithmetic Transform in
Verification by Error Modeling”, In Proc. IEEE VLSI Test
Symposium, pp. 271-277, 2000.

[7] K. Radecka and Z. Zilic, “Identifying Redundant Gate
Replacements in Verification by Error Modeling”, to appear
in Proc. International Test Conference, 2001.

[8] H. Savoj and R. Brayton, “The Use of Observability and
External Don't Cares for the Simplification of Multi-level
Logic Networks”, Proc. Intl. Conference on Computer
Aided Design, pp. 297-301, 1990.

[9] C-N. Sze and Y-L. Wu, “Improved Alternative Wiring
Scheme Applying Dominator Relationship”, Proc. of ASP-
DAC, pp. 473-478, 2001.

[10] A. Veneris, M. Abadir and I. Ting, “Design Rewiring Based
on Diagnosis Techniques”, Proc. ASP-DAC, pp. 479-484,
2001.

Proceedings of the 15th International Conference on VLSI Design (VLSID�02)
0-7695-1441-3/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

