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ABSTRACT 

We propose the redundancy identification of wire replacement 
faults. The solutions rely on the satisfiability (SAT) formulation 
of redundancy identification, augmented with the means to 
effectively use any single stuck-at-value redundancy 
identification in the approximate schemes. In the latter, we 
employ the novel use of don’t care approximations that detect 
many redundant faults and quickly identify those that can be 
detected by stuck-at value identifications. A test generation 
scheme that uses the error-correcting properties of Arithmetic 
Transform is incorporated into the overall verification 
procedure. The test set provides high fault coverage.  

1. INTRODUCTION 

Recently, there has been a lot of interest in using the 
automated test pattern generation (ATPG) based schemes 
in logic optimization, which explore the redundant wires 
[10]. Further, implementation verification techniques 
based on simulations, place special emphasis on wire 
replacement errors in a netlist. The wire error modeling 
and detection, as well as the redundant error identification, 
are used in such verifications and logic optimizations. 
Design errors are often the results of changes introduced 
manually or even during the automated synthesis [1]. The 
most common errors of that kind are gate or wire 
replacements which belong to the design error models 
proposed in [1] and [2]. A fault model is a necessity when 
verification is performed by simulations. It has been 
reported in [2] that by applying modern design flows, 
98.9% of all design errors of a common processor, and 
94.2% of errors in floating point units are caused by gate 
or wire replacement errors.  

A detecting capability and running time of the 
simulation-based verification is seriously impaired by 
redundant faults. Simulations alone cannot deal with that 
problem, unless applied exhaustively.  

In this paper we propose novel procedures for 
identifying redundant wire replacement faults. Safe 
approximations to local don’t cares are used to identify 
faults that are either likely to be redundant or detected by 
standard s-a-v methods. In Section 3 we construct an exact 
identification of replacement faults using an all-SAT 
formulation. In addition to identifying redundant wire 
replacements for the verification purposes, such 
information can be used to improve the process of circuit 

optimization. Our approach to redundant wire 
identification can be applied to such logic optimizations.  

Majority of rewiring techniques are based on s-a-v 
ATPG. However, as the rewiring faults differ from s-a-v 
faults, and the redundant wire detection requires that both 
s-a-0 and s-a-1 faults at that wire are redundant, each 
identification of such a redundant wire requires two runs of 
ATPG. Additionally, ATPG algorithms are optimized for 
quick deterministic vector generation, rather than for 
identifying the faults that are redundant.  

Similarly, verification by test vectors relies on full 
testability of all possible design faults considered. This 
application also critically depends on the ability to detect 
redundant faults from a fault model.  

2. WIRE REPLACEMENT FAULTS 

Wire replacements are used both in synthesis [3], [4], 
[9], [10] and verification, [1], [2] applications. Many 
recent advances in synthesis are due to the rewiring 
approach, where selected wires are chosen for the 
replacement, in the attempt to find a better implementation 
for logic at nodes considered. It is recognized [9] that the 
rewiring techniques critically depend on quick 
identification of redundant faults.  

Rewiring or insertion of design–for-testability (DFT) 
elements like scan, test points or Built-in Self Test (BIST) 
are post-synthesis steps, as they are performed on the 
originally synthesized netlist, and generally affect small 
areas of the design. They often require human interaction, 
and can potentially result in errors, such as wrong wire 
connections, missing/added gate or wire, etc. Hence, there 
is an obvious need to verify whether such errors were 
introduced to the final netlist. In the remainder of this 
paper we discuss the detection of wire replacement errors 
in combinational networks. We are interested only in the 
errors that do not create cycles, which are easy to detect.  

We can classify wire replacements into two categories. 
The first one deals with errors affecting I/O port 
connections. I/O ports in this context can be either primary 
I/O pins, or can represent ports of internal complex blocks 
(cores) such as adders in the datapath architecture. 
Detection of these errors is discussed in detail in Section 4. 
The second category describes errors causing one or more 
internal wires in the circuit to be wrongly connected to 
nodes. We distinguish two types of such replacements. 
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Definition 1: Single port wire errors (SPWEs) are the 
replacements affecting a single node in a netlist, such as 
added/missing wire and permuted wire at the input to a 
node, Figure 1.a. Internal wire interchange errors (IWIEs) 
are the replacements affecting multiple nodes in the netlist. 
IWIE errors include exchange of two nets, where the two 
single stem nets are swapped to drive the sink node 
originally driven by the other net, as in Figure 1.b.  � 

 
Figure 1: Wire Replacements: SPWE and IWIE 

Note that wire replacement errors, unlike gate 
replacements or s-a-v faults can change the design at 
different levels of abstraction. Wire replacement errors can 
affect multiple wires and change functionality of the nodes.  

A redundant replacement is a substitution that does not 
change the original function of the circuit. Unlike a s-a-v 
fault, which permanently ties a signal to either 0 or 1, the 
polarity of an error caused by a replacement fault depends 
on stimuli. To deal efficiently with such faults, we seek 
new redundant fault identification methods.  

2.1 Redundancy Detection by Don’t Cares 
Although single port wire errors (SPWEs) and Internal 

wire interchange errors (IWIEs) affect the wires, the fault 
effects are observed at nodes to which the erroneous wires 
fan in. Therefore, the redundancies are caused by don’t 
care (DC) conditions at such nodes. These are either 
observability don’t care (ODC) or controllability don’t 
cares (CDCs) inhibiting the error detection.  

Our first redundant fault identification consists of two 
steps, both of which can be performed in various degrees 
of approximation. First, we use the don’t care (DC) 
information in the network to screen out most of the 
redundant faults. The use of DC subsets guarantees that no 
irredundant fault will be declared as redundant. For 
selected remaining faults, in the second step, we apply the 
modification of single stuck-at-fault redundancy 
identifications. We employ a method based on the 
satisfiability (SAT) formulation of the problem. 
Information on replacements that are to be probed by  SAT  
is provided by DC care sets obtained in the first step. 
Definition 2: A local don’t care set at a given circuit node 
consists of controllability don’t cares (CDCs) and 

observability don’t cares (ODCs) associated with this 
node. A local care set (Carelocal) of a given node is the 
complement of the local don’t care (DC) set.       � 

Each replacement h that coincides with the original 
function g on a local care set, Carelocal, at a given node, 
creates a redundant fault.  

 
Figure 2: Internal Wire Interchange Error (IWIE) 

Lemma 1: Consider an interchange of two wires, Figure 
2. Let these wires be driven by nodes N1 and N2, 
performing functions f1 and f2, respectively.  By taking into 
account ON-sets of N1 and N2, i.e., f1

ON and f2
ON, and local 

care sets of N1 and N2, CareN1 and CareN2 (before the 
exchange) and Care’N1 and Care’N2 (after the exchange)  
the replacement is redundant if: 
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Proof: If the first relation holds, then the net cut at N1 is 
redundant, as f1 at N1 is being replaced with the equivalent 
function f2 at net N1. Consequently, if both equations are 
true, then cuts at nets N1 and N2, Figure 2, are both 
redundant, and the wire interchange is redundant.            ~ 

 
Figure 3: Circuit with IWIEs 

Example 1: Consider a circuit and IWIE errors in Figure 3, 
where nets b and c are replaced with their respective 
predecessor nets. The local DC sets at nodes b and c 
consist of observability DCs (ODCs). The original function 
f and Carelocal sets are shown in Table 1. When a stem has 
multiple branches, the additional index is added to the 
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branch, as with a_1, a_2 and x3_2. The functions at the nets 
a, b and c are given as well. Upon a replacement, these 
functions are interchanged, and we aim to detect the 
difference between the original and replaced functions, 
according to Lemma 1. ♦ 

Function         3231321 xxxxxxxf ′∗+′∗+∗∗=  

Careb 32 xxCODCare bb ′+=′=  

Carec 32321 xxxxxCODCare cc ′+′+=′=  

Carea_1 )xx(xCarea 3211
′+′=  

Carea_2 )xx(xCarea 2132
′+=  

Carex3_2 323232
xxxxCarex ′+′=  

fb 32321 xxxxxfb ∗′+′∗+=  

fc 32 xxfc ′+=  

fa 3232 xxxxfa ′+′=  

Table 1: Carelocal Sets for Figure 3 

2.1.1 Don’t Care Approximations 

If we have the exact don’t care sets, Lemma 1 provides 
us with the exact redundancy identification. Practical 
schemes use only the subset of DCs. ODC space 
requirements are the biggest, and we approximate them by 
compatible observability don’t cares (CODCs) [8]. The 
advantage of ODC subsets is that the replacements 
affecting multiple nodes do not change the CODC value. 
CODCs can hence be used for multiple wire replacements.  
Definition 3: An approximated don’t care set (DCapprox) 
associated with a given node is the set of local don’t cares 
where observability don’t cares (ODCs) are approximated 
with compatible observability don’t cares (CODCs), while 
other DCs are exact. Correspondingly, an approximated 
care set (Careapprox) of a given node is the complement of 
the approximated local don’t care set.                 � 

The approximated local don’t care set (DCapprox) is the 
subset of the exact local set DClocal at a given node 

localapprox DCDC ⊆ , 

while Careapprox is the superset of the exact local care set.   
Consider the following use of the Hamming distance 

Nd nn �}1,0{}1,0{: × between two Boolean functions. 

The distance is equal to the number of minterms (w) of the 
Boolean difference between the two intersections of 
functions with the local care set: 

))()((),( CarehCaregwhgd ONON
Care ∩⊕∩= .    ( 1 ) 

Symbol “⊕” denotes the Boolean difference between two 
sets, calculated by XOR-ing their characteristic functions.  
Care set represents either Carelocal or Careapprox for 
determining dlocal or dapprox, respectively. 

Example 2: Consider the three faulty circuits (F.C.1 
through F.C.3) from Figure 3. Additionally, let W denote 

the permutation of input wires to OR gate (node b). Table 
2 describes the effects of these wire replacement faults. 
The first row includes the Hamming distances between the 
correct and faulty gates with no DC set taken into account.  

 W F.C.1 F.C.2 F.C.3 

d  0 2 6 4 

     dCare  0 1, 2 2, 4 2, 3 

# vec  0 2 3 4 

Table 2: Hamming Distances (d) and Number of Vectors 
Detecting Error Gates for Circuit in Figure 3 

The Hamming distances of the intersection with local care 
sets, calculated at both affected nodes, are shown in the 
second row of Table 2. The number of test vectors (the last 
row) increases with the Hamming distance.  Replacement 
W is redundant, and no vector detects it. ♦ 

Distance dCare in Equation 1 is positive for redundant 
faults not detected by the use of Careapprox, as well as for 
irredundant replacements. Our next task is to distinguish 
these two cases. The distances obtained by the exact and 
approximate local DC sets are related as follows [7]. 
Lemma 2: The following relation is true for the Hamming 
distances dlocal and dapprox, for a single node replacement 
between function g and its fault h, calculated with the use 
of local and approximated DC sets, respectively: 

( ) ( )hgdhgd approxlocal ,, ≤ . 

The distance information is used for assessing the 
likelihood that a fault will be redundant without applying a 
complete redundancy identification scheme. Further 
identifications can be parameterized by nonzero distance: 

.))(),((),( ε<∩∩= CarehCaregdhgd ONON
Care    ( 2  ) 

The small distance replacements possess the additional 
properties, useful in detecting redundant replacements. The 
distance-1 replacements (i.e., ε  = 2), can be detected by s-
a-v identifications, as the fault will be of one polarity only.  

2.2 Using SAT for Redundancy Identification 

A satisfiability (SAT) solver is used for our redundancy 
identifications [5].   To test for a s-a-v fault in a circuit, a 
Conjunctive Normal Form (CNF) is constructed. This 
product of sums (clauses) is equal to one for all solutions; 
therefore the satisfying assignment is a test vector. If there 
is no solution, i.e., the fault is redundant, then the CNF 
expression is unsatisfiable.  The SAT formulation for a 
single s-a-v fault redundancy consists of several types of 
clauses. Good circuit clauses represent the correct 
operation of a circuit. Faulty circuit clauses describe 
effects of a single s-a-v fault on the downstream network 
nodes. Active clauses are introduced to give the activation 
conditions of a fault. Finally, the fault site and goal clauses 
describe the observation and detection of the fault.  
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Example 3: The following clauses are generated for a s-a-0 
fault at node b of the correct circuit in Figure 3.a. The SAT 
variables are associated with nodes in the network.  Those 
with no subscripts are the good clause variables, such as x, 
the faulty circuit variables at the same node have the 
subscript f, as in xf, while the activation variables have the 
subscript a. The conditions for which the individual clauses 
are created are placed in square brackets, Table 3. An 
assignment x1 = 1, x2 = x3 = 0 is a test vector sought.     ♦ 

Good 
Circuit 
Clauses 

[OR]: ),)()(( 11 abxbbax ++++  

[NAND]: ),)()(( 33 cxcacax ++++  

[AND]:  ),)()(( dcdbdcb ++++  

[XOR]: 
))()()(( 32323232 axxaxxaxxaxx ++++++++  

Faulty 
Circuit  

[AND]:  ))()(( cbddcdb ff ++++  

Active 
Clauses 

[Active⇒(Good≠Faulty)]: 
),)(( fafa bbbbbb ++++  

[Active⇒Outputa]: )( aa db +  

Fault 
Location 

[Node b s-a-0]: fa bbb  

Goal [Active Output]: da 

Table 3: SAT Clauses for Node b s-a-0 (Figure 3.a) 

This approach can be time consuming if applied to all 
faults. Next, we show how our DC-based algorithm can be 
used to filter out many cases of replacement faults. 

2.2.1 Approximate Redundancy Identification 

We can derive a SAT formulation for replacements 
not filtered by don’t cares (DCs) using Lemma 2. The 
distance between the original and the replacement gate, 
obtained by approximate DC set, can be passed to SAT.  
This proximity information can represent additional 
criteria for creating further approximations to the problem.  

By considering only the single-cube distance 
replacements, as in Equation 2, an efficient SAT 
formulation can be obtained. We first create an s-a-v SAT 
instance corresponding to the polarity of the single-value 
faults, according to Lemma 2. It is sufficient to add to  
CNF the 1-clauses (clauses with one literal) to restrict gate 
inputs to a single failing cube.   
Example 4: To obtain a SAT instance for replacing the 
OR gate from Figure 3 with an XOR gate, clauses are 
added to restrict the inputs to their (single-cube) 
assignments that differentiate the gate functions. The 
following 1-clauses are added to those for s-a-0 fault at 
node b (Example 3). 

Additional clauses: [Distinguishing OR → XOR]: x1a.♦ 
The approximate identification algorithm is shown in 

Algorithm 1. After intersecting the original and replaced 
gates with the approximate care sets, their Boolean 
differences (⊕) are obtained. If the differences are empty, 
then the fault is redundant and is not simulated (line 5). 
Otherwise, if the difference is a single cube with faults of 
one polarity, a 1-Cube distance check is performed by s-a-
v identifications, augmented with the distinguishing single-
cube input assignment (line 12 or 15). If redundancy is not 
detected, the fault is assumed irredundant and is simulated.  

3. EXACT REDUNDANCY IDENTIFICATION 

The approximate solution has the advantage of reusing 
fast stuck-at fault methodologies, while possibly missing 
some redundant faults. Next, we present an all-SAT 
formulation that is exact. The SAT formulation uses the 
good circuit, faulty circuit and active clauses that are the 
same as in the standard single stuck-at SAT. However, 
fault site clauses will be augmented by an activating 
condition. The condition for activating a fault where 
function g is replaced by a function h is g ≠ h, regardless 
of the fault. We hence create an auxiliary node equal to l = 
g ⊕ h. Then, the fault location clause will assert  l = 1. 
Figure 4 depicts the SAT formulation that is applicable for 
any faults affecting two nodes in a netlist.  

In the case of internal wire interchange errors (IWIEs), 
when multiple nodes are affected, the same inequality is 
introduced for each node affected. The conditions at each 
node are OR-ed, i.e., the additional OR gate is added to 
assert that the difference in the faulty and fault-free circuits 

1. Generate CODC Approx.  of the  network 
2. for each fault (g → h){ 
3.  
4.     Obtain: (h ∩ Careapprox), (g ∩ Careapprox),  
                     l  = (h ∩ Careapprox) ⊕ (g ∩ Careapprox)  
5.     if (h ∩ Careapprox = = g ∩ Careapprox) 
6.         {  /* l = = ∅ */ 
7.            break; 
8.         } 
9.     if (d(h ∩ Careapprox, g ∩ Careapprox) = 1) 
10.          { /* l = 1, 1-Cube approx. */ 
11.              if (h ∩ Careapprox  ≥  g ∩ Careapprox) 
12.                    if (detect_s-a-0_with_cube(l)) 
13.                         break; 
14.             else if (h ∩ Careapprox  ≤  g ∩ Careapprox) 
15.                        if (detect_s-a-1_with_cube(l)) 
16.                            break; 
17.           } 
18.    simulate_fault_n_lattice_layers (g, network)} 
    
Algorithm 1: Approximate Redundancy Identification 
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has to be present in at least one of the nodes affected, as 
shown in Figure 4.b.  Further optimizations are applied for 
replacements that do not create combinational cycles. 

 
Figure 4: Exact SAT Formulation 

Lemma 3: Consider an internal wire interchange error 
(IWIE) at nets g and h, applied to acyclic combinational 
netlist that results in a faulty netlist that is still acyclic and 
combinational. The activating condition for a fault is to 
XOR the logic functions g and h of the two wires that are 
replaced. Then, instead of OR-ing the two XOR 
differences, considering only one difference is sufficient.  
Proof: If there is no path between g and h, the two 
differences are the same, and the lemma is proven. Assume 
without loss of generality that the node g is downstream 
from node h in acyclic combinational netlist. Then, the 
replacement at net g, will be activated by condition 

l1 = g ⊕ h, 
since the function g is replaced by h. The second 
replacement, i.e., at net h, will in general affect all the 
downstream nodes, including g, changing it to a function 
g1. Then, the condition for activating this wire replacement 
would be 

l2 = g1 ⊕ h. 
However, notice that if g has changed, a combinational 

loop was created, and the circuit is cyclic, contradicting 
our assumption. Hence, the node g, will not change i.e., g 
= g1, and conditions at both nets affected will be g ⊕ h. 
Then, the overall activation condition is:  

l1 + l2 = (g ⊕ h) + (g ⊕ h) =  (g ⊕ h). 
Therefore, one XOR-ing of the nodes affected is sufficient 
to describe the activating conditions.     ~ 

 Figure 5 depicts the application of Lemma 3 to the 
condition for IWIE faults that result in an acyclic netlist.   
Example 5: Consider again faults in Figure 3. For exact 
SAT formulations of these three faults, the activation 
condition are created. According to Lemma 3, the original 
functions at the affected node pairs (the second column in 

Table 4) are XOR-ed with each other. The resulting 
conditions are shown in the third column of Table 4. 

 
Figure 5: Simplification for Acyclic IWIE Faults 

The overall SAT formulation consists of two parts.  In 
addition to the clauses created for the stuck-at-value fault 
at one of the nodes affected, new clauses are added to 
describe the activation condition.  

Faulty   
Circuit 

Nodes 
compared 

Activation 
Condition 

F. C. 1 a, b x1⊕x2⊕x3 
F. C. 2 a, c x’2+x3 
F. C. 3 x3, b x1x’3+x’1x2x3 

Table 4: Activation Conditions for Faults in Figure 3 

For example, the SAT formulation for F.C.2 is created 
by clauses for a (unspecified polarity) fault at node c 
(similar to those in Table 3), and by additional clauses that 
assert the activation condition (third column in Table 4):  
Additional clauses:  [l = x’2 + x3]:  
                             .))()(( 3232 llxlxxxl ++++  

For leaving polarities unspecified, the clauses are removed:  
Removed clauses: [s-a-0]: fcc .                                     ♦ 

4. I/O PORT REPLACEMENT DETECTION 

We now investigate conditions for detecting the 
replacements external to a block. We model such faults by 
Arithmetic Transform leading to their efficient detection. 
4.1 Arithmetic Transform 

Arithmetic Transform is a canonical polynomial 
representation of multi-output Boolean functions 

mn BBf →: . To describe multi-output functions with a 

single polynomial, function outputs are “grouped together” 
into word-level (W) quantities, e.g. integers, resulting in a 

pseudo-Boolean function WBf n →: . 

Definition 4: Arithmetic Transform (AT) of a pseudo-

Boolean function WBf n →:  is a polynomial with 
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arithmetic “+” operation, word-level coefficients 
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obtained by multiplying the vector f of word-level function 
outputs with the transform matrix Tn, fTC n ∗= , where Tn 

is defined recursively by arithmetic Davio expansion:  
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The following theorem, proven in [6], uses the properties 
of the input space, considered as a Boolean lattice Bn, to 
derive a test set among the top layers of the lattice. In Bn, 
vectors belong to one of n+1 lattice layers, depending on 
the number of ones in a vector - the top lattice layer has n 
ones, etc.  
Theorem 1:  All errors resulting in up to t spectral 
coefficients can be detected by testing vectors in 

  1)1(log2 −+t  top layers of the Boolean lattice. ♦ 

This vector generation scheme is sufficient for testing all 
design errors with at most t AT polynomial coefficients. 
We observed that for common benchmark and arithmetic 
circuits, high fault detection is obtained using test vectors 
among the constant number (up to 5) top lattice layers. 

4.2 Detection of I/O Port Wire Switching Errors 

I/O port wire replacement errors happen, when at least two 
ports of the design are wrongly connected, see Figure 6. 
There errors are often caused by either manual intervention 
or the wrong connection declaration. A typical example is 
when ports of one block are declared as Little Endian, 
while ports of the other block are represented as Big 
Endian. In the case of an I/O port wire replacement error, it 
is easy to derive its error polynomial.  

 
Figure 6: I/O Port Wire Replacement Errors 

Definition 5: A single input port wire replacement error 
(SIPWE) results in the erroneous connection of a single 
circuit input port to the wrong wire, Figure 6. � 

Example 6: Let us consider the error caused by 
interchanging two input wires, k and l, to an N-bit adder, f. 
AT of the original, fault-free adder is: 
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When the error f
~

of interchanging two input port wires k 

and l  (k < l) is introduced, the error polynomial is: 

.2)(2)()()
~

()( l
kl

k
lk babafATfATeAT +++=−= ♦ 

The error polynomials are not needed explicitly to 
obtain the number of lattice layers required for their unique 
identification. Rather, the lower and upper bounds on the 
sizes of the possible error polynomials are used. The lower 
bound (switching only two inputs) is presented in Example 
6. The upper bound, i.e. the case of wrongly connecting all 
the inputs, still results in a small AT.   

The same test vector set is applied to the faults within 
the netlist. It detects not only the faults resulting in t 
spectral coefficients, but also many faults resulting in 
larger error spectra. Since the error spectra cannot be 
simply bounded, unlike I/O wire faults, there is a number 
of faults that are either hard to detect (and AT decoding 
vector set will consequently not detect them) or redundant. 
These faults are handled by our identification schemes. 

5. EXPERIMENTAL RESULTS 

The redundancy identification schemes have been 
implemented on 440 MHz SUN Ultra10 workstation with 
512 MB of main memory. We used UC Berkeley SIS SAT 
solver and the BDD package for representing local don’t 
care subsets. The proposed schemes were compared with 
respect to their running times and the performance. The 
exact redundancy identification finds all redundant errors 
for the benchmarks considered. The approximation 
performed almost as well, as shown in Table 5.  

      DC BDD  DCs    Exact SAT   Circuit 
   Size Time[s] Cov[%] Time [s] Cov [%] 

alu2  2239  0.97 100 0.34 100 
alu4  2849  2.19 100 0.56 100 
9symm  2884  0.54 100 0.88 100 
cordic  926  0.34 100 0.5 100 
C499  73120  11.36 95.6 6.16 96.2 
C432  271463  15.52 100 5.4 100 
C17  20  0.01 100 0.0 100 
C1355  190077  307.22 97.2 18.25 97.6 
C1908  120999  459.8 90.1 25.25 90.4 
C6288  ∞   ∞  - 49.27 94.9 
C880  36406  10.96 91.0 1.39 97.0 

My_adder  4253  0.18 100 0.03 100 

Table 5: AT Coverage and Exacution Time 
Comparison between Approximate and Exact SAT 
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The number of possible wire replacement faults is very 
large. To better expose the performance of the proposed 
methods, we resort to modeling that allows us to discard 
many easily detected faults and concentrate on those that 
are more likely to be redundant.  
Definition 6:  We say that the wire interchange of two 
wires w and e, driven by nodes N1 and N2, performing 
functions f1 and f2, respectively, is the true fan in acyclic 
(W.tfi) replacement if 
 1. ew ≠1 and 21 ff ≠  

 2. N1 is in the  true fanin of N2. 
 3. network is acyclic after the interchange.      � 

This definition regards the replacements as in Figure 2, 
where the wire is substituted with a wire from its fanin 
input cone, as shown by the shaded area. 

While DCs perform worst with respect to their space 
complexity, preprocessing can reduce the time 
requirements of SAT.  Table 6 and Table 7 show the fault 
coverage of SIPWE faults for MCNC benchmarks and 
arithmetic circuits. In the latter table, vectors among 4 
layers were used.  

        Fault Coverage [%] 
   Circuit #  Inputs 

3 layers 4 layers 5 layers 

C1355 41 71.8 100 100 

C17 5 100 100 100 

C1908 33 80.1 85.2 99.1 

C3540 50 96.7 99.2 99.2 

C432 36 100 100 100 

C499 41 71.8 100 100 

C6288 32 100 100 100 

C880 60 85.0 85.0 97.1 

alu2 10 100 100 100 

alu4 14 100 100 100 

apex7 49 89.4 95.2 99.8 

count 35 79.8 99.9 99.9 

My_adder 33 96.6 96.6 96.6 

Table 6: SIPWE Coverage Experimental Results 

6. CONCLUSIONS  
In this paper, we proposed the methods for redundant 

wire replacement identifications. The methods differ in the 
level of approximation. While the exact SAT-based 
solution is practical, we have shown that the consideration 
of replacements that are within a single-cube distance from 
the replaced gate provides almost complete redundancy 
identification by the use of standard s-a-v methods. In the 
latter, we use the CODC subsets of local don’t cares to 
reduce the number of cases considered, and to provide 
distance information. Further preprocessing to SAT 
procedures that exploits the properties of the test set is 

demonstrated. Both approaches can benefit by 
improvements in underlying SAT and structure-based s-a-v 
methods. The approximate method can completely avoid 
the use of SAT solvers. 

We have shown that the use of test sets obtained by 
Arithmetic Transform decoding results in high coverage 
vectors for wire replacements. 

    Circuit  Size   DC  SAT 

Ripple Adder 12 
16 
24 

72.8 
72.8 
73.9 

72.8 
73.4 
77.9 

Look-ahead 
Adder 

12 
16 
24 

72.0 
68.5 
76.1 

75.7 
72.1 
79.7 

ALU 
10 
12 

99.7 
99.7 

100 
100 

CLA 
Divider 

9x5 
11x6 
13x7 

100 
94.8 
91.4 

100 
94.9 
88.1 

Array 
Divider 

9x5 
11x6 
13x7 

100 
100 
100 

100 
100 
100 

Table 7: Wire Replacements in Arithmetic Circuits 
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