
IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 9, SEPTEMBER 1998 971

Using Decision Diagrams
to Design ULMs for FPGAs

Zeljko Zilic and Zvonko G. Vranesic

Abstract—Many modern Field Programmable Logic Arrays (FPGAs) use lookup table (LUT) logic blocks which can be programmed
to realize any function of a fixed number of inputs. It is possible to employ logic blocks that realize only a subset of all functions,
while the rest can be obtained by permuting and negating the inputs. Such blocks, known as Universal Logic Modules (ULMs), have
already been considered for application in FPGAs; in this paper, we propose a new class of ULMs which is more useful in the FPGA
environment. Methodology for systematic development of such blocks is presented, based on the BDD description of logic functions.
We give an explicit construction of a three-input LUT replacement that requires only five programming bits, which is the optimum for
such ULMs. A realistic size four-input LUT replacement is obtained which uses 13 programming bits.

Index Terms—FPGAs, ULMs, BDDs, classification of logic functions, synthesis of logic functions.

——————————���F���——————————

1 INTRODUCTION

HE first commercially available Field-Programmable
Gate Arrays (FPGAs) in 1985 had an array of three-

input logic blocks, where each block could realize any
function of three variables using an 8-bit RAM. Such a
block is a lookup-table with three inputs (LUT.3). A decade
or two before that, there was a significant amount of theo-
retical research on Universal Logic Modules (ULMs) [7],
[17], [21], which are logic blocks capable of realizing all
functions of a fixed number of variables assuming that
permutations and negations of variables are provided out-
side these blocks. Some of the established FPGA families
from Actel, Xilinx, and Pilkington use blocks derived from
such a concept of ULMs. However, more systematic re-
search on the use of ULM circuits as logic blocks in FPGAs
appeared only recently [15], [23], [24], [16]. In this paper, we
propose a new type of ULMs for use in SRAM-based
FPGAs. Practical designs for three- and four-input LUT
(LUT.3 and LUT.4) replacements are presented, together
with the methodology to systematically derive such blocks.

ULMs are traditionally defined as blocks with m general
purpose inputs that can realize any function of up to n in-
puts, n < m, under the assumption that permutations and
negations of signals are generated cost-free outside the
logic block [21]. While the inversions are, in general, not
free in FPGAs, as will be shown in Section 5, the permuta-
tions of inputs are free for some routing architectures: In
Altera’s 8k and 10k series FPGAs [2], all possible input sig-
nals can be connected to all the input pins of a logic block.
Such architectures with fully connected inputs are considered

in [5] for routing structures in hierarchical FPGAs [1]. The
ULM blocks achieve their functionality by bridging some
inputs and/or assigning them to a constant; these are as-
sumed to be costless operations. This concept is illustrated
in Fig. 1a. Classical ULM research was based on this defini-
tion of ULMs. Lower and upper bounds are known for m as
a function of n, and they asymptotically approach each
other. To realize all n-input functions, the total number of
inputs m needed is on the order of 2n/log(n). Several meth-
ods have been proposed for constructing such ULMs [7],
[17], [21].

Recent research on ULMs has been focused on investi-
gating the trade-off between the functionality of logic
blocks and their usefulness in real applications. The re-
search presented in [15] and [23] attempted to find a subset
of functions that a ULM can realize so that it behaves as
close as possible to the LUT. These papers deal with blocks
that have functionality comparable to LUT.3 [15] and LUT.4
[23], but they are not functionally complete.1 The block in
[15] has four inputs and realizes 10 out of 14 nonequivalent
three-input functions, while the block in [23] requires eight
inputs to realize almost all four-input functions.

In this paper, we propose a more practical type of ULMs.
It is known that adding pins to logic blocks in realistic
FPGAs is very costly [18]. Since a total of m = O(2n/log(n))
inputs are needed for realization of an n input function in a
standard ULM, an unreasonable amount of routing re-
sources may be needed if such blocks are used.2 In addition
to providing the access to all m input pins, the routing net-
work must provide resources for bridging the input pins.
There are O(m2) bridging connections possible for each
block. These are the reasons why, in [15], the total number
of inputs is limited to four, as opposed to eight as in [23].
We propose a class of ULM circuits that avoids this problem
and limits the number of input pins to n by using separate

1. The block in [15] is named “semi-ULM” to express the fact that it is not
functionally complete.

2. It was noticed early [21] that the standard ULMs are not very practical
because of the large number of input pins needed.

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� Z. Zilic is with the Department of Electrical and Computer Engineering,
McGill University, McConnell Engineering Building, 3480 University
Street, Montreal, Quebec, Canada H3A 2A7.

•� Z.G. Vranesic is with the Department of Electrical and Computer Engi-
neering, University of Toronto, 10 King’s College Road, Toronto, Ontario,
Canada M5S 3G4. E-mail: {zeljko, zvonko}@eecg.toronto.edu.

Manuscript received 17 Mar. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 104677.

T

972 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 9, SEPTEMBER 1998

programming bits. Like LUTs, these ULMs are programmed
to perform a particular function. As in classical ULMs, the
functions obtained by permuting inputs and negating in-
puts (and, possibly, outputs) are considered to be equiva-
lent. Such ULMs can serve as LUT replacements that re-
quire fewer programming bits. Fig. 1 illustrates the differ-
ence between these two approaches for a ULM.n that can
realize all n-variable functions.

Since the programming bits are loaded, often serially, in
SRAM-based FPGAs, there are no additional inputs re-
quired, other than the usual function inputs, which would
compete for valuable routing resources. When compared
with standard LUTs, our blocks need less time and storage
area to reconfigure. This is especially important for emerg-
ing architectures in which easy reconfigurability of FPGAs
is essential [3], [14], [22]. The logic block presented in [22]
contains memory storage for four “contexts,” which are the
programs for the logic block that can be used interchangea-
bly. In this case, any saving in the number of programming
bits is multiplied by four.

We, therefore, aim to reduce the length of the description of
Boolean functions and to develop logic blocks which can
use the reduced descriptions as their programs. We show
that, for large blocks, it is impossible to obtain a signifi-
cantly more succinct representation than the one used in a
RAM-based LUT. However, for smaller (but practically use-
ful) blocks, savings achieved in the number of program-
ming bits needed can be significant, and we explicitly con-
struct ULMs that reach the theoretical minimum.

The rest of the paper is organized as follows. Section 2
gives an overview of the method used, together with the
bounds on the number of bits required in the general case.
Sections 3 and 4 provide the explicit designs of ULM.3 and
ULM.4 using the proposed methodology. Section 5 gives
insight into practical issues related to the use of such ULMs,
as well as some extensions of the model.

2 REALIZATION OF ULMS

We now describe a procedure for obtaining a class of ULMs
with the functionality comparable to LUTs. We exploit the
fact that only a subset of all n-variable functions is sufficient
to represent them all if inversions and permutations of sig-
nals are available. Further, if there are C such functions,
they can be encoded by B = Ñlog2(C)á < 2n bits. This alone is
not attractive if the ULM circuit is too complex or too slow

to be of practical use. In this paper, we propose such cir-
cuits which are inexpensive relative to the LUTs.

2.1 Equivalence Classes of Switching Functions
The fact that many functions are equivalent under permu-
tation or inversion of inputs and inversion of outputs al-
lows us to group all functions into equivalence classes. The
equivalence under all three of these operations is com-
monly called npn-equivalence [13]. In FPGAs, we are pri-
marily interested in the restricted notion of np-equivalence,
which allows permutations and inversions of inputs only.
The output inversions and the npn-class will be considered
here primarily as a shortcut in developing the main results.

The equivalence classes of switching functions have been
investigated in early studies of switching functions [12].
Using enumeration techniques of Polya theory, a closed
form expression can be derived for the number of equiva-
lence classes, as a function of n, the number of variables.
For our purposes, it is sufficient to derive a lower bound on
the number of npn-equivalence classes:

C n
n

n

n0 5 �
* *

2

2 2

2

!
. (1)

This bound is obtained as follows: There are at most n! * 2
n * 2

different permutations and negations of inputs and out-
puts, which defines an upper bound on the class size. The
number of classes is then larger than the ratio of the num-

ber of all possible functions (22n
) and this bound on the

class size. The exact number of equivalence classes is larger
than this estimate, especially for small n. For example, for
n = 3, there are 14 such classes, while, for n = 4, the number
of equivalence classes is 222.

Our concept of the ULM assumes that a number of pro-
gramming bits are provided that specify which equivalence
class is to be realized by the block. For this model, we can
derive an estimate on the number of programming bits
needed, B = Ñlog2(C)á. After applying the Stirling approxi-
mation [11] for the factorial function and taking a logarithm
of (1), we obtain:

B(n) � 2n - n log(n) - (n + 1) + n log(e) - 1/2 log(2p n),

or

B(n) � 2n - n log(n) - O(n).

 (a) (b)

Fig. 1. ULM alternatives. (a) Conventional ULM. (b) Our ULM.

ZILIC AND VRANESIC: USING DECISION DIAGRAMS TO DESIGN ULMS FOR FPGAS 973

This bound rapidly approaches the size of the original
lookup table 2n. Hence, for large n, this type of ULMs does
not offer much savings in the number of programming bits.

However, for small n, which is of most practical interest,
substantial savings can be obtained. For n = 3, the total
number of bits needed to encode functions realized by a
ULM is four (as opposed to eight in LUT.3), while, for n = 4
and n = 5, the minimal number of programming bits B is
eight and 20, respectively. For any number of inputs n, up
to C(n) classes of functions have to be provided, for which it
is sufficient to have B(n) programming bits. For np-
equivalence type of device, one programming bit must be
added, which can invert the polarity of the output. Table 1
gives the number of bits required for the ULM.3 through
ULM.5 and compares them with the number of bits needed
in the corresponding LUT.

Although the saving in the number of programming bits
looks encouraging, the implementation of such ULMs may
be much larger and slower than that of LUTs. We now de-
rive ULMs whose implementations are comparable to those
of LUTs.

2.2 Realization of ULMs Using BDDs
Each equivalence class can be represented by one function,
which is called a class prototype or a representative in the litera-
ture. To generate all functions of n variables in a ULM, it is
sufficient to have a block that realizes only the representatives.

We devise effective ULMs by constructing a flexible
“supercircuit” that can implement all representative func-
tions by using special programmed switches provided in
that circuit. Our realization uses the structure of BDDs (Bi-
nary Decision Diagrams) [6] to realize a complete set of rep-
resentative functions. Additional switches, which select the
function to be realized, are used to reconfigure the BDD
structure. The BDDs are chosen because they are a canoni-
cal representation of binary functions which can be used in
physical implementation. To realize a function given by a
BDD, it is sufficient to replace each node by a multiplexer.

The procedure for designing optimal ULMs consists of:

•� enumerating all classes of functions,
•� realizing each class representative by a BDD,
•� creating a superset structure, called a Super BDD,

from the union of all BDD representatives,
•� providing the flexibility in the Super BDD by adding

routing resources,
•� minimizing the number of routing paths and switches

in the Super BDD,
•� minimizing the number of programming bits, and
•� optimizing the circuits that use the programming bits

to configure the desired function.

To enumerate the function classes for our purposes, it is
sufficient to consider only the functions that depend on
exactly n variables. The proof that these functions are suffi-
cient is as follows: Assume without loss of generality that a
desired function f depends on n - 1 variables, x1, x2, ¤, xn-1.
Then, the logical AND function: xnf depends on exactly n
variables. Since all n-variable functions are represented, it
follows that we can realize the function f by assigning the
value 1 to xn. Hence, all other functions depending on the
smaller number of variables can be implemented as well.

The step of realizing the class representatives consists of
a straightforward implementation of the BDD construction
algorithm. The creation of the Super BDD structure is ex-
plained in the following two sections, including the simpli-
fication of such a structure. In the latter step, we exploit the
freedom in selecting any class representative which simpli-
fies the final structure. While we know of no approach bet-
ter than the search through the class representatives, we
notice that using the lexicographically first (based on the
function output) class representative, as in [10], a good ini-
tial Super BDD is obtained. The final two optimization
steps can be achieved by the standard input encoding tech-
niques [26]. Based on this approach, we explicitly design
three- and four-input logic blocks.

3 REALIZATION OF ULM.3
It is sufficient to enumerate only the npn-equivalent func-
tions, because the BDDs describing both a representative of
such class and its complement have the same structure with
only the terminal nodes being reversed. For n = 3, there are
14 equivalence classes, of which 10 are functions of exactly
three variables. Table 2 shows these classes and the number
of functions they represent.

For each representative three-variable function, a BDD
can have up to five nonterminal nodes. The union of these
classes will, therefore, have at most five of these nodes, plus
an interconnection structure and programming switches
needed to program the ULM.3. All 10 representative BDDs
are shown in Fig. 2. The input (control) variables are or-
dered as: x1, x2, x3; we say that the nodes controlled by vari-
able xi belong to level i. The left outgoing edge, 0-edge, of

TABLE 1
NUMBER OF BITS NEEDED TO ENCODE ALL FUNCTIONS

OF n VARIABLES

n 3 4 5

npn classes 14 222 616,126
Bits - npn ULM 4 8 20
Bits - np ULM 5 9 21

Bits - LUT 8 16 32

TABLE 2
EQUIVALENCE CLASSES FOR FUNCTIONS OF THREE VARIABLES

No. Class representative Functions

1 x1x2x3 16

2 x x x x x x1 2 3 1 2 3+ 8

3 x1x2 + x1x3 48

4 x x x x x1 2 1 2 3+ 48

5 x x x x x x x x x1 2 3 1 2 3 1 2 3+ + 16

6 x x x x x x x x x x x x1 2 3 1 2 3 1 2 3 1 2 3+ + + 2

7 x1x2 + x1x3 + x2x3 8

8 x x x x1 3 2 3+ 48

9 x x x x x x1 2 3 1 2 3+ 24

10 x x x x x x x1 2 1 3 1 2 3+ + 12

974 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 9, SEPTEMBER 1998

each node is taken when the input variable is 0, which is
indicated by a dashed line. The two successors are referred
to as 0- and 1-successor. The values of terminal nodes are
not specified because of the possible inversion of outputs
under the (considered) npn-equivalence model; it is as-
sumed that, in the canonical case, the left terminal node is
zero.

3.1 Super BDD as a ULM
We can combine the BDDs to create the Super BDD (SBDD.3)
in Fig. 3 that is capable of realizing all 10 class representa-
tive functions of three variables. This union structure has
five nonterminal nodes, which we label as in the sixth BDD
in Fig. 2.

The SBDD.3 is obtained from the representative BDDs by
the following transformations: By enumerating the outgo-
ing edges from each node, a set of possible interconnections
is obtained. Sets of outgoing edges are reduced by consid-
ering all possible polarities of input variables. At the last
stage of optimization, we allow one extension to canonic
BDDs, which leads to simpler representation: Polarity of the
selection variable at node 2 can be changed independently
from the selection variable at node 3. The required polarity
change is controlled by the switch S4 in Fig. 3. Other
switches in this BDD are used to define the multiplexed
connections to outgoing edges. Switch S7 changes the po-
larity of terminal nodes, i.e., it inverts the function.

The design in Fig. 3 requires six switches if npn-
equivalence is assumed. The seventh switch, S7, is needed
for the np-equivalence, in which case the terminal nodes
can have two possible sets of values. The SBDD.3 can im-
plement the functions of two or one variables by assigning
some inputs to a constant.

The SBDD.3 can be used as a ULM. Using one bit per
switch, the number of programming bits is seven, which
gives a saving of one bit compared to LUT.3.

3.2 Encoding of Programming Bits
It is possible to shorten the function descriptions for the
proposed ULM by encoding all possible configurations of
switches more compactly. To optimize the encoding of

Fig. 2. All representative BDDs for three-variable functions.

Fig. 3. Super BDD (SBDD.3).

ZILIC AND VRANESIC: USING DECISION DIAGRAMS TO DESIGN ULMS FOR FPGAS 975

programming bit patterns, we enumerate all possible
switch assignments for each representative function. The
programming bit settings for each function are listed in
Table 3. The left path of a programming switch is selected if
the corresponding bit is equal to 0. An exception is switch
S4, which changes the polarity of node 2 in the BDD. If this
bit is one, then the 0-successor of node 2 is selected when
the input variable x2 is 1. The last column in Table 3 indi-
cates if any variable is complemented at the input to the
circuit. For function 9, either x2 or x3 should be comple-
mented, but not both.

The desired optimization can be achieved by using more
compact input encoding. Since there are 10 programming
combinations, four bits are sufficient to encode all of them
uniquely. However, the objective is to use the simplest logic
circuits for this compact encoding. To achieve a simple re-
alization, we use the functional composition and reordering
of some of the BDDs in Fig. 2, rather than the standard in-
put encoding approaches [26].

Switches 1 through 4 in Table 3 can be encoded sepa-
rately, because the functions can be decomposed. Since
there are six combinations of these switches in Table 3, three
encoding bits are necessary for these four switches, and five
bits are needed for the whole circuit. However, the optimal
ULM.3 should use only four bits in total, as shown in Sec-
tion 2.1. To obtain the optimal length encoding, we can
have at most four programming combinations for these
four bits. To achieve a further reduction, we consider all
input permutations for the representative functions. Only
five functions can be replaced by reordering the variables,
because the other five functions are symmetrical (indicated
by the bold typeface in Table 3). Table 4 lists the program-
ming combinations for the permuted representatives that
were used to optimize the SBDD.3. The decoder circuit can
be simplified if the two functions in Table 4 replace the cor-
responding functions in Table 3. Function 10 should be re-
placed with the permutation which has all programming
bits set to one. This permutation has x1 and x2 interchanged,
and it implements the function x x x x x x x1 2 2 3 1 2 3

+ + . With

this function the inversion of the BDD, node 2 may or may
not be applied, because the variable x3 can be independ-
ently inverted in the BDD. Second, function 8 is replaced by

an implementation that has variables x2 and x3 inter-
changed, which leads to the programming vector 100101.
The two replacement BDDs are shown in Fig. 4. With these
replacements, there is a total of four different combinations
of the programmable switches S1 through S4. These combi-
nations are given in Table 5. An efficient encoding that sat-
isfies the constraints in the table is given by:

S1 = B0 + B1

S2 = S3 = B0 ¿ B1

S4 = B1.

TABLE 3
PROGRAMMING BITS

FOR THREE-VARIABLE REPRESENTATIVE FUNCTIONS

Function Programming Switch Inverted
Number 1 2 3 4 5 6 Variable

1 0 x x x 1 0 x3
2 1 0 0 1 1 0 x3

3 0 x x x 0 1
4 1 0 0 1 1 1
5 1 0 0 0 0 0
6 1 1 1 1 0 0 x3
7 1 0 0 0 0 1
8 1 0 1 0 0 1 x2 and x3
9 0 x x x 0 0 one of x2, x3
10 1 0 1 1 0 1

TABLE 4
PROGRAMMING BITS

FOR PERMUTED REPRESENTATIVE FUNCTIONS

Function Programming Switch Inverted
Number 1 2 3 4 5 6 Variable

8 1 0 0 1 0 1 x2
10 1 1 1 x 1 1

TABLE 5
ENCODING FOR THE FIRST FOUR SWITCHES

B0 B1 S1 S2 S3 S4

0 0 0 x x x
0 1 1 0 0 1
1 0 1 0 0 0
1 1 1 1 1 1

TABLE 6
OPTIMIZED PROGRAMMING BITS

No. B0 B1 S5 S6 Inverted

1 0 0 1 0 x3
2 0 1 1 0 x3
3 0 0 0 1
4 0 1 1 1
5 1 0 0 0
6 1 1 0 0 x3
7 1 0 0 1
8 0 1 0 1 x2
9 0 0 0 0

10 1 1 1 1

Fig. 4. Two replacement BDDs.

976 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 9, SEPTEMBER 1998

This allows a simple implementation of the decoder us-
ing only two two-input gates. (Note also that a simple po-
larity change in switches and/or programming bits B0 and
B1 allows us to use simpler NAND and NOR circuits.) The
programming bits needed after the minimization is per-
formed are shown in Table 6.

3.3 Implementation Issues
The proposed ULM.3 can be implemented in a straightfor-
ward way. In addition to the SBDD.3, the decoder and the
programming bit memory are needed. The decoder consists
of two two-input gates, while the programming bits can be
kept in a standard SRAM memory. Fig. 5 shows the overall
structure of the ULM.3.

The implementation of ULM.3 can follow the layout of
the SBDD.3, which has physically a fairly rectangular
shape. Fig. 6 compares its layout with the LUT.3 logic block.
Switches in the ULM.3 correspond to those in SBDD.3. We
targeted the pass-gate CMOS implementation for most of
the logic, as in many LUT implementations [8].

The ULM.3 implementation has advantages with respect
to the area. First, only three multiplexers (outlined in bold)
in ULM.3 must have the complete functionality; all others
perform simpler logic functions, which allows us to de-
crease the area required without any impact on the speed.
Moreover, our ULM avoids a constant overhead of one
buffer that each SRAM memory must have when used in
LUT configurations [8]. Since there is a possibility of
bidirectional current flow when the input to LUT changes,

Fig. 5. ULM.3 implemented as SBDD.3 and a decoder.

 (a) (b)

Fig. 6. Implementation of ULM.3 and LUT.3. (a) ULM.3 and its critical path. (b) LUT.3 and its critical path.

ZILIC AND VRANESIC: USING DECISION DIAGRAMS TO DESIGN ULMS FOR FPGAS 977

the contents of SRAMs can be erased and an inverter must
be added to isolate the SRAM cells. In ULM.3, the memory
controls only the gates of transistors and there is no current
flow toward SRAMs. Finally, the tree-like structure, which,
in standard LUT architectures can cause an area overhead
in the physical layout, is not present in this block.

The ULM.3 implementation also has some advantages
when the delay is considered. Paths of input signals can be
kept shorter, which limits the propagation delay through
the block. Fig. 6 shows the critical paths for the two circuits,
from input x3 to output f.

Both LUT.3 and ULM.3 in Fig. 6 have been simulated in
Spice using 0.8 mm BNR BATMOS technology [4]. With
small topology transistors, both blocks (output buffers were
not considered) work equally fast. Even though our ULM.3
block uses one more level of logic than LUT.3, the time
critical signal, control variable x3, does not control any pass
transistors; instead, this signal propagates through the
channels of MOS transistors which are set (opened or
closed) long before the signal reaches the transistor. The
polarity inversion, which is shown in Fig. 6 as an XOR gate
at the output of the circuit, is, in actual implementation,
obtained by inverting the terminal nodes; such an inversion
does not increase the critical path of the signal. The com-
parison is summarized in Table 7.

One other variation is possible; the block can have the
function output available in both its true and comple-
mented form. It would then be left for the routing resources
to select the proper polarity (or both). In this case, only four
programming bits would be needed for the block, but
adding one more output pin is expensive.

4 LARGER BLOCKS—ULM.4
The same procedure can be used to design ULMs for larger
logic blocks, but the complexity of the process increases
rapidly. We illustrate the procedure of (computer aided)
search for an effective logic block, using the example of
ULM.4. It is theoretically possible to derive a four-input
block that uses a minimal number of programming bits
(eight for npn-equivalent and nine for np-equivalent ULMs).
However, since the minimal-length encoding may be too
expensive to implement, we investigated the trade-offs
between the encoding length and the circuit complexity by
using nonoptimal encodings as well.

There are 222 npn-equivalence classes of four-variable
functions; 208 of them depend on exactly four variables. These
classes are enumerated in [10]. We used this enumeration as
an input to a program that generates BDDs for all representa-

tive functions. We made these BDDs mutually comparable by
using a unique node labeling. The next step was to analyze the
connectivity pattern and find the outgoing edges from each
node in the BDD. Then, a possible Super BDD structure was
constructed, which had a number of programmable switches.
The remaining steps consisted of minimizing the number of
switches, the number of programming bits, and the logic
needed to perform the encoding function for the switches.

4.1 Unifying Representative BDDS
The first step in the procedure for developing the ULM is
easy to automate. All class representatives in [10] are sorted
according to the output they produce. There are 208 such
functions; we will refer to them as f1 to f208.

The maximum number of nodes in individual BDDs
dictates how many nodes there should be in the SBDD.4.
Theoretically, the largest BDD representing a four-variable
function should have at most nine nodes, excluding the
terminal nodes. Starting from the root (level 1) node, the
edges can branch as in the full decision tree, except for the
fact that there can be only two level-4 nodes. There are 15
BDDs that have this maximal number of nodes.

Unique labeling of nodes is necessary for analyzing the
BDDs in a unified way. It is easy to distinguish between two
level-2 nodes: they are either 0- or 1-successors of the root
node. Also, the two terminal and two level-4 nodes are unique.
To label the remaining, level-3 nodes, we use the following
scheme. We assign numbers 1 and 2 to terminal 0 and 1 nodes,
respectively. Then, a node v is labeled by combining the labels
of its 0- and 1-successors using the expression

label(v) = 2 * label(v.0) + label(v.1). (2)

Fig. 7 shows an example of this BDD labeling. The terminal
nodes are labeled as 1 and 2, respectively, while all other
labels are obtained using the function label. Note that nodes 4
and 5 correspond to the functions x and x , respectively.

This labeling is almost unique. There are 4
2

124 9 = possi-

ble combinations of two different successors of level-3
nodes and only two pairs of successor nodes with the same

TABLE 7
COMPARISON BETWEEN LUT.3 AND ULM.3

LUT.3 ULM.3 Note

Memory (bits) 8 5 4 for dual output
Datapath Mux 7 3 1 invertible
Program Mux 0 5 can be small
Decoder 0 1 two 2-input gates
Program Inv. 0 2 S4, S7
Transistors 78 70 5 transistor RAM
Delay 1.38 ns 1.31 ns small width transistors

Fig. 7. Example BDD labels.

978 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 9, SEPTEMBER 1998

label. Number 9 can be obtained as 9 = 2 * 2 + 5 = 2 * 4 + 1,
hence the number 9 could label two different nodes, the one
with successors (2, 5) and another with successors (4, 1). To
make the labeling unique, we assign the label 15 to the sec-
ond of these nodes while keeping the label 9 for the first
node, as in Fig. 7.

To optimize the interconnect, we allow that some level-3
nodes can have both outgoing edges pointing to the same
node. (Note that this node would not exist in standard
BDDs.) When the successor of such node is at level 4 (node 4
or 5), we label the level-3 node as T4 or T5. An example of
node T4 is shown in Fig. 7. Note that, when computing a
label for a node at level 2 (e.g., node 17 in the figure), the
value of T4 is 4.

The interconnect patterns can be analyzed with the
above unique labeling. For each node v, the set of succes-
sors S(v) is recorded. Since we want to minimize the total
interconnect, we first examine if the successor sets can be
minimized. We found that, since there are many functions,
only a few edges can be eliminated by permuting the vari-
ables in some of the functions.

Analysis of the structure of the given representative
functions shows much regularity. For example, there is no
edge 0 (dashed edge) between the root and the level-3
nodes. The goal is to exploit the regularity in the prototype
functions to simplify the structure of the Super BDD.

4.2 Generating Super BDD (SBDD.4)
The number of nodes in the SBDD.4 was determined in the
previous step, and it remains to determine the interconnec-
tions. The first step in this process consists of assigning the
node labels to the physical nodes in the SBDD.4. There are
12 possible labels for the level-3 nodes, but only four such
nodes are present in the SBDD.4. Therefore, these nodes

must be capable of realizing several functions. The func-
tions should be assigned to these nodes to minimize the
total number of switches.

Fig. 8 shows an outline of one possible SBDD.4. The
functions to be realized by level-3 nodes are enumerated
inside the oval and the circuits that implement these func-
tions are shown in more detail in the associated dotted
boxes. The two level-4 nodes, 4 and 5 (functions x and x)
are used as primitives and we did not expand them further.
The two terminal nodes, 0 and 1, are indicated inside the
boxes.

The total number of switches to control the SBDD.4 is 17,
one more than the number of programming bits for LUT.4.
One additional bit (a1 in Fig. 8) was eliminated in the final
optimization. Several iterations were made in permuting
the variables, to minimize the number of switches. By ex-
changing variables x1 and x2 in functions f185 and f207, vari-
ables x1 and x3 in f205, f206, and ordering the first three vari-
ables as x2, x3, x1 in f201, we eliminated two switches, a1 and
d2, from the SBDD.4. Elimination of d2 was possible because
all four functions needed in L3.4 node can be realized if the
left edge always points to node 4. These two optimization
steps decreased the number of switches to 15.

The encoding of the switches was analyzed and grouped
with respect to the configuration of the first four switches.
All functions are enumerated in Table 8. All possible func-
tions assigned to the four L3 nodes are given in columns.
While nodes 2 and 3 (called L3.2 and L3.3) have to realize
all possible functions, the other two L3 nodes have to real-
ize just a few, which leads to a saving in the number of
switches. Thus, the SBDD.4 can be simplified as shown in
Fig. 9. This implementation requires 15 programming
switches and, hence, 15 programming bits.

Fig. 8. Outline of SBDD.4.

ZILIC AND VRANESIC: USING DECISION DIAGRAMS TO DESIGN ULMS FOR FPGAS 979

4.3 Input Encoding for Programming Bits
To reduce the number of programming bits, we can encode
the possible switch settings. To achieve this, we used the
input encoding algorithm in NOVA, which is included in
the SIS [20] package. Since the minimal-length encoding is
expected to be expensive, we considered several other en-
coding strategies.

The four switches S1 through S4 can be encoded using
three bits for five possible configurations, corresponding to
groups G1 to G5, as shown in Table 9. This leads to a simple
decoder:

S1 = B3

S2 = B1

S3 = B2 ¿ B3

S4 = B2 + B1.

Fourteen programming bits are needed in this arrangement.
Note that group G5 in Table 8 has exactly one function in it
(the four-input XOR), which costs a programming switch,
S3. The edge emanating from this switch is marked as
“XOR” in Fig. 9.

Further reduction in the number of programming bits

can be achieved through more careful encoding of functions
in each of the existing five groups. Notice that this encoding
does not affect the speed of the circuit. All additional cir-
cuits are placed between the memory cells and switches,
and they are not in the path of the signal.

We were able to remove two more bits in the encoding of
the function with less than 10 gates required for all the de-
coding circuitry in the ULM.4. The encoding of functions is
based on sharing the bits among the sub-blocks and en-
coding the XOR function as part of group G4. We omit the
details of this encoding. The threshold of 10 gates was se-
lected for the decoding circuitry because, with this over-
head, our ULM.4 is still smaller than LUT.4. Thus, we can
realize a block that uses 12 programming bits with no extra

TABLE 8
ENCODING GROUPS

G S1S2S3S4 L3.1 L3.2 L3.3 L3.4 #

G1 0xxx x 1, 4, 6, 10, 13 2, 6, 8, 10-15 x 16

G2 10x0 4, 6 T5, T4, 2, 4-8, 10-15 T5, T4, 2, 1, 4-15 x 93

G3 10x1 x 2, 10, 12-15 T5, T4, 2, 1, 4-15 10, 13 59

G4 1101 4, 6 T5, 8, 10-15 T5, 4, 5, 6, 8-15 8, 10, 13, 14 39

G5 1111 x 14 13 14 1

Fig. 9. Optimized SBDD.4.

TABLE 9
ENCODING FOR FIRST FOUR SWITCHES

G B1 B2 B3 S1 S2 S3 S4

G1 0 0 0 0 x x x

G2 0 0 1 1 0 x 0

G3 0 1 1 1 0 x 1

G4 1 0 1 1 1 0 1

G5 1 1 1 1 1 1 1

980 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 9, SEPTEMBER 1998

expense in the hardware. To go further, to the theoretical
limit of eight bits, one must rely on the general-purpose in-
put encoding programs, combined with pre-encoding. We
tried several encoding alternatives, but the circuits that we
obtained in this way were too expensive to be used in realis-
tic blocks. It is an open question if there exists a solution that
uses less than 12 bits with a reasonable amount of decoding
circuitry. Note that all encodings in this section are given for
an npn-equivalent/dual-output class of ULMs, and that one
more bit should be added for np-equivalent circuits.

4.4 Larger Blocks
The optimization steps required to produce these blocks
become costly as the size of the block increases. A simple
alternative is to construct ULMs from a smaller size ULM
and LUT, as shown if Fig. 10. This would produce a realis-
tic-size ULM.5 which requires 29 programming bits.

5 OTHER ISSUES

5.1 Technology Mapping Using ULMs
The ULM blocks presented provide the same functionality
as lookup tables, but with a restriction on the ordering and
polarity of variables. For recognizing the order and polarity
of inputs and outputs of each block, we have implemented
an algorithm based on Generalized Reed-Muller form
matching, as in [25].

Assuming that the interconnection resources in an FPGA
allow arbitrary permutations of inputs to logic blocks, the only
remaining constraint is the polarity of input variables to each
block. There can be a polarity disagreement when both polari-
ties of a signal are needed. Then, some of the ULM-based
blocks must be replicated. The study in [15] found, using the
MCNC benchmarks, that their ULM needs both polarities for
only 6.6 percent of the nodes. These results do not automati-
cally extend to our block of the same granularity (ULM.3) be-
cause that study was done using a block with incomplete
functionality and some of the class representatives used differ
in the polarity. However, since nodes tend to have smaller
fanout when the granularity of the logic block increases, the
results for our larger blocks (ULM.4) cannot be worse.

5.2 Functionally Incomplete Blocks
The motivation of work in [15] and [23] was to investigate
the construction of functionally incomplete blocks. Their
blocks implemented 10 of 14 and 201 of 208 representative
functions, respectively. It is interesting to note that using
standard approaches for designing a functionally complete
ULM.3, the best solution requires five input pins [21]. The
only reason why four pins were sufficient in [15] is that the
block was incomplete. The price of such complete LUT.3
replacement is obviously too high. Since our ULM.3 is
complete and requires a minimum number of program-
ming bits with no area or delay overhead compared to
LUT.3, there is no need to consider incomplete blocks for
three-variable functions.

The SBDD.4 construction given here is useful in consid-
ering incomplete blocks as well. It is obvious from our
ULM.4 that eliminating the 4-input XOR function (f208)
would remove one switch and one programming bit in the
block. Another bit can be saved by considering the node
L3.4 in Fig. 9, for which there are four possible functions.
Analysis shows that one switch can be eliminated by ex-
cluding functions f185 and f202 to f206. Hence, the logic block
based on our ULM.4 that implements all but these seven
functions requires 12 programming bits, with the decoding
circuits consisting of only two two-input gates. For com-
parison, the block in [23] realizes the same number of func-
tions, but eight input pins are required.

One more bit can be removed by excluding two more
functions, f201 and f207, but at a price of one more two-input
decoding gate. This incomplete ULM circuit would require
11 bits for a dual-output block and 12 bits for a single-
output np-equivalent block and it would realize 199 of 208
class representatives.

These considerations can lead to useful larger blocks as
well. By excluding larger sets of functions, compact ULM
circuits can be devised. A similar study appeared in [24],
which investigated universal logic modules for a class of
series-parallel functions which are important with respect
to synthesizability. The study presented in [9] evaluated
functional capability of some commercial architectures.

5.3 Using Other Graph-Based Representations—
FDD Case

The methodology for constructing ULMs presented here
can be used in conjunction with several other Boolean
function representations. We consider Functional Decision
Diagrams (FDDs), which are the BDD representations of the
Reed-Muller form [19]. Compared to BDDs whose nodes
can be realized by multiplexers, each node of an FDD can
be realized by a Boolean function of the type

a bx.

Enumeration of all FDD class representative implemen-
tations of n = 3 and n = 4 reveals that the FDD implementa-
tions are simpler overall. Fig. 11 illustrates this fact for n = 3.
While the output negation of a function results in a BDD of
the same shape (but reversed terminal nodes), the same op-
eration produces two different FDDs, of which the simpler
one can be taken as a class representative for a given class.

Fig. 10. Construction of larger blocks.

ZILIC AND VRANESIC: USING DECISION DIAGRAMS TO DESIGN ULMS FOR FPGAS 981

6 CONCLUDING REMARKS

We presented a class of FPGA logic blocks based on the
concept of ULMs, which are functionally complete if the
permutations and negations of inputs are provided outside
the block. As in SRAM-based FPGAs, we use separate pro-
gramming bits, which is of advantage in practical FPGAs.
Previously considered ULMs require costly additional in-
puts to the logic blocks.

We also presented a methodology for designing such
blocks, using decision diagrams and showed detailed de-
signs of replacements for three- and four-input lookup tables.
In the case of ULM.3, five programming bits are needed for a
block slightly smaller than LUT.3. For ULM.4, several alter-
natives with different trade-offs between the number of pro-
gramming bits and the complexity of the circuit were consid-
ered. A circuit that requires 13 bits was devised such that it is
smaller than LUT.4. An especially important problem in the
construction of such ULMs is the input encoding problem,
and we used the domain-specific methods which outperform
the standard approaches. Furthermore, while the known
ULM circuits considered for application in FPGAs [15], [23]
are functionally incomplete, our construction offers the com-
plete functionality at a reasonable cost.

The proposed blocks are particularly interesting for
FPGAs that will cater to the emerging area of reconfigu-
rable computing.

ACKNOWLEDGMENT

An early version of this paper appeared in the Proceedings
of the ACM FPGA ’96 Conference.

REFERENCES

[1]� A.A. Aggarwal and D.M. Lewis, “Routing Architectures for Hier-
archical Field Programmable Gate Arrays,” Proc. Int’l Conf. Com-
puter Design, pp. 475-478, 1994.

[2]� Altera Corp., Data Book. San Jose, Calif., 1995.
[3]� Atmel Corp., Configurable Logic Design and Application Book. San

Jose, Calif., 1995.
[4]� Bell Northern Research, Design Rules for CMC 0.8-micron BiCMOS, a

Version of BATMOS. Ottawa, Canada, 1993.
[5]� V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-

Efficiency vs. Input Sharing and Size,” Proc. CICC ‘97, Santa Clara,
Calif., pp. 551-554, Apr. 1997.

[6]� R.E. Bryant, “Graph-Based Methods for Boolean Function Manipu-
lation,” IEEE Trans. Computers, vol. 37, no. 8, pp. 677-691, Aug. 1986.

[7]� X. Chen and X. Wu, “Derivation of Universal Logic Modules, for n
� 3, by Algebraic Means,” IEE Proc., Pt. E, vol. 128, no. 5, pp. 205-
211, Sept. 1981.

Fig. 11. Comparison of BDDs and FDDs for n = 3.

982 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 9, SEPTEMBER 1998

[8]� P. Chow, S.O. Seo, J. Rose, K. Chung, I. Rahardja, and G. Paez,
“Architecture and Circuit-Level Design of an SRAM-Based Field-
Programmable Gate Array,” IEEE Trans. VLSI, to appear.

[9]� J. Cong and Y.-H. Hwang, “Boolean Matching for Complex PLBs
in LUT-based FPGAs with Application to Architecture Evalua-
tion,” Proc. Int’l Symp. FPGAs, FPGA ’98, pp. 27-34., Feb. 1998.

[10]� J.N. Culliney, M.H. Young, T. Nakagava, and S. Muroga, “Results
of the Synthesis of Optimal Networks of AND and OR Gates for
Four-Variable Switching Functions,” IEEE Trans. Computers, vol. 27,
no. 1, pp. 76-85, Jan. 1979.

[11]� R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics.
Addison-Wesley, 1994.

[12]� M. Harrison, “Counting Theorems and their Applications to Clas-
sification of Switching Functions,” Recent Developments in Switch-
ing Theory, A. Mukhopadhyay, ed., pp. 86-121. Academic Press,
1971.

[13]� S.L. Hurst, D.M. Miller, and J.C. Muzio, Spectral Techniques in Digi-
tal Logic. London: Academic Press, 1985.

[14]� D. Jones and D. Lewis, “A Time Multiplexed FPGA Architecture
for Logic Emulation,” Proc. Third Int’l Symp. FPGAs, FPGA ’95 ,
pp. 121-126, Monterey Bay, Calif., Feb. 1995.

[15]� C.C. Lin, M. Marek–Sadowska, and D. Gatlin, “Universal Logic
Gate for FPGA Design,” Proc. ICCAD ’94, pp. 164-168, San Jose,
Calif., Oct. 1994.

[16]� C.C. Lin, M. Marek–Sadowska, and D. Gatlin, “On Designing
Universal Logic Blocks and Their Applications for FPGA Design,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 27, no. 5, pp. 519-527, May 1997.

[17]� F.P. Preparata and D.E. Muller, “Generation of Near-Optimum
Universal Boolean Functions,” J. Computer and System Sciences,
vol. 4, pp. 93-102, Apr. 1970.

[18]� J. Rose, R.J. Francis, D. Lewis, and P. Chow, “Architecture of Field-
Programmable Gate Arrays: The Effect of Logic Block Functional-
ity on Area Efficiency,” IEEE J. Solid-State Circuits, vol. 25, no. 5,
pp. 1,217-1,225, Oct. 1990.

[19]� Representations of Discrete Functions, T. Sasao and M. Fujita, eds.
Boston: Kluwer Academic, 1996.

[20]� E.M. Sentovich et al., “SIS: A System for Sequential Circuit Syn-
thesis,” Memorandum No. UCB/ERL M92/41, Univ. of California
Berkeley, May 1992.

[21]� H. Stone, “Universal Logic Modules,” Recent Developments in
Switching Theory, A. Mukhopadhyay, ed., pp. 230-254. Academic
Press, 1971.

[22]� E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon, “A First Gen-
eration DPGA Implementation,” Proc. Third Canadian Workshop
Field Programmable Devices, FPD ’95, pp. 138-143, Montreal, May
1995.

[23]� S. Thakur and D.F. Wong, “On Designing ULM-Based FPGA
Logic Modules,” Proc. Third Int’l Symp. FPGAs, pp. 3-9, Monterey,
Calif., Feb. 1995.

[24]� S. Thakur and D.F. Wong, “Universal Logic Modules for Series-
Parallel Functions,” Proc. Fourth Int’l Symp. FPGAs, pp. 31-37,
Monterey, Calif., Feb. 1996.

[25]� C.C. Tsai and M. Marek–Sadowska, “Boolean Matching Using
Generalized Reed-Muller Forms,” Proc. Design Automation Conf.
’94, pp. 339-344, San Jose, Calif., June 1994.

[26]� S. Yang and M.J. Cieselski, “Optimum and Suboptimum Algo-
rithms for Input Encoding and Its Relationship to Logic Minimi-
zation,” IEEE Trans. Computer–Aided Design, vol. 10, no. 1, pp. 4-
12, Jan. 1991.

Zeljko Zilic received his PhD degree from the
University of Toronto, Canada, in 1997. He
worked for Lucent Technologies in 1997-1998.
He is now an assistant professor at McGill Uni-
versity, Montreal, Quebec, Canada. Dr. Zilic has
been involved in the circuit design of two original
local area networks, one shared-memory multi-
processor, and one FPGA architecture. He con-
sulted for eight companies, published more than
30 papers, and has four patents pending. His
current research interests include deep-submicron

VLSI design methodologies, distributed shared memory machines, and
interpolation algorithms.

Zvonko G. Vranesic received the BASc, MASc,
and PhD degrees in electrical engineering from
the University of Toronto, Canada, in 1963, 1966,
and 1968, respectively. From 1963 to 1965, he
worked for Northern Electric Co. Ltd., Bramalea,
Ontario, Canada. In 1968, he joined the faculty
of the Departments of Electrical Engineering and
Computer Science at the University of Toronto,
where he is now a professor. During the aca-
demic years 1977-1978 and 1984-1985, he was
a senior visitor in the Computer Laboratory at the

University of Cambridge, England, and in the Institut de Programma-
tion at the University of Paris, France.

Dr. Vranesic’s research interests include computer architecture,
VLSI systems, local area networks, and many-valued switching sys-
tems. He is the coauthor of three books and has published more than
100 scientific papers. He was the chairman of the Third International
Symposium on Multiple-Valued Logic in 1973 and of the 18th Interna-
tional Symposium on Computer Architecture in 1991.

