
Design Verification by Test Vectors and
Arithmetic Transform Universal Test Set

Katarzyna Radecka, Member, IEEE, and Zeljko Zilic, Member, IEEE

Abstract—In this paper, we investigate methodology for simulation-based verification under a fault model. Since it is currently not

feasible to describe a comprehensive explicit model of design errors, we propose an implicit fault model. The model is based on the

Arithmetic Transform (AT) spectral representation of faults. The verification of circuits under the small errors in spectral domain is then

performed by the Universal Test Set (UTS) approach to test vector generation. The major result in this paper shows that, for errors

whose AT has at most t nonzero coefficients, there exist the UTS test vector set of size Oðnlog t
2 Þ. Consequently, verification confidence

can be parameterized by the size of the error t, where at most Oðnlog t
2 Þ verification vectors are simulated to verify the absence of faults

belonging to such an implicitly defined fault class. The experimental confirmation of the feasibility of verification using such UTS is

presented, together with the relations between the Arithmetic and Walsh-Hadamard spectra that bound the AT error spectrum and

show that a class of small error circuits has small error spectrum. The proposed approach has the advantage of compatibility with

formal verification and testing methods.

Index Terms—Verification, error modeling, spectral methods, arithmetic transform, Walsh-Hadamard transform, Reed-Muller

transform, Universal Test Set.

�

1 INTRODUCTION

MODERNmicroprocessors, embedded and signal proces-
sors, as well as communication integrated circuits

utilize various arithmetic circuits in their datapaths. The
implementations of such datapaths vary in area, delay, and
power constraints. Hence, a broad spectrum of hardware
realizations can be found, from custom to those that are
modified from the standard library elements. Their design,
testing, and verification pose a major challenge.

Verification of arithmetic circuits has exposed limits of
the early formal verification methods based on Decision
Diagrams (DDs). Such solutions initially used Reduced
Ordered Binary Decision Diagrams (ROBDDs) that were
applied to verify in polynomial time circuits like adders, but
are of exponential size for multipliers [5]. Numerous
extensions to ROBDDs were proposed that made the
verification of arithmetic circuits more efficient. The most
relevant are word-level diagrams, like Binary Moment
Diagrams, *BMDs [6]. The most inclusive class of such
diagrams is that of Word Level Decision Diagrams
(WLDDs) [28]. However, the common limitation of any
WLDDs is their inability to represent dividers in poly-
nomial size.

WLDDs have been used for equivalence checking, which
is a procedure that verifies a function implementation

against its specification. This approach is analogous to
testing the function behavior for each input combination.
However, we will explore the case when nonexhaustive
tests can be provably performed for a set of well-defined
design errors. Then, one could approach the verification
problem by devising a set of test vectors that target all these
faults. Further, the effort in developing verification vectors
could be directed toward detecting a source of an error [15],
as well as providing stimuli for manufacturing testing. All
that is not possible to achieve by formal verifications alone,
which are additionally known not to scale well.

In this paper, we present new results on simulation-
based verification by error modeling. The existing design
error models, e.g., from [8], attempt to explicitly capture
design failures at the gate level. Since there is no established
design error model yet, unlike in the manufacturing fault
testing, we consider an implicit error model, in a scheme that
provides a bridge between formal and simulation-based
verifications. Traditional simulation-based verification
methods can only assess the quality of test vectors by
actual simulations under explicit fault models. This paper
provides the provable bounds on the quality of simulation-
based schemes using the characteristics of the faults, instead
of only resorting to simulations. For representing errors and
test vector generation we use Arithmetic Transform (AT),
which is exactly the underlying representation used in
WLDDs. We provide the theoretical bounds and present the
experimental demonstration of verification using AT as
gate-level design errors are bounded in terms of their AT
representation size. Finally, we show that such test vector
generation can be also applied successfully to explicit
design faults [8], considered recently for verification by
error modeling.

In this paper, we assume the combinational model of
circuits under verification; we do not address the FSM

628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

. K. Radecka is with the Department of Electrical and Computer
Engineering, Concordia University, 1455 de Maisonneuve West, S-H-
961, Montreal, Quebec H3G 1M8, Canada.
E-mail: kasiar@ece.concordia.ca.

. Z. Zelic is with the Microelectronic and Computer Systems Laboratory,
Department of Electrical and Computer Engineering, McGill University,
3480 University Street, Montreal, Quebec H3A 2A7, Canada.
E-mail: zeljko@ece.mcgill.ca.

Manuscript received 23 Apr. 2002; revised 30 Jan. 2003; accepted 29 Oct.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 116391.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

verification.Note,however, that this andother combinational
circuit verification procedures can successfully tackle se-
quential circuits. The keyobservation is that internal registers
can, similarly to scan-based testing, serve as pseudoprimary
I/Os. Hence, values of registers within the circuit can be
observed and set at any individual simulation run.

The paper is organized as follows: In Section 2, we
present the simulation-based verification scenario under
error model assumption. Then, in Section 3, we describe a
transform-based scheme that will allow us to use the
universal testing and diagnosis approach. The main result is
given by Theorem 1 in Section 4.2. The theoretical
substantiation of the proposed approach, based on the
spectrum comparison between AT and Walsh-Hadamard
Transform, is elaborated in Section 5. Experiments on
various arithmetic circuits and benchmarks are included
to demonstrate the use of our approach for explicit design
faults. The appendices contain key proofs.

2 VERIFICATION BY SIMULATIONS

Implementation verification can be carried out either by
formal or simulation-based approaches. While there are
many advances in formal verification, simulation-based
methods are still predominant in practice. It is now widely
accepted that neither formal nor simulation methods can
alone successfully verify wide classes of circuits [7]. Ideally,
we would want to treat these two approaches as comple-
mentary methods. However, as they rely on vastly different
data structures, it is not simple to merge them into one
verification flow. We propose a new simulation-based
verification scheme that addresses the problems of incom-
patibility of data structures through the utilization of
Arithmetic Transform, which is the same representation
used in formal verification of datapaths by word-level
decision diagrams [28].

Traditionally, simulation-based verification methods fall
within one of the following categories: code coverage,
functional testing, mutation testing, and error modeling
techniques. The code coverage methods closely follow the
hardware description language (HDL) representation of a
circuit and attempt to exercise all statements, execution
paths, and individual expressions. Verification vectors are
generated to guarantee satisfactory coverage for any of the
above cases. The functional testing is an older and some-
what more vaguely defined coverage method where test
vectors exercise “typical functions.” For example, in a
system accessing a RAM memory block, typical functions
tested would be those of a read and a write operation. Test
suites are produced either manually or semi-automatically.
Among other simulation-based verification schemes, a
recent trend lies in employing the traditional software
testing methods. Mutation testing is one such method that
randomly, yet systematically, changes the source code text
by using a model of faulty code elements [30]. The
underlying assumptions behind mutation testing are that
the design is almost correct and that vectors that can detect
simple errors detect complex ones as well. Behavioral level
descriptions are predominantly in a form of hardware
description languages like VHDL or Verilog. Therefore, any
potential error can be classified and treated as a software

error. Hence, methods like mutation testing could be very

useful in verification at that stage [30].

2.1 Verification by Error Modeling

Verification of digital circuits via error modeling [2], [3],

similarly to mutation and manufacturing testing, uses the

techniques that inject faults and seek the test vectors.

However, unlike mutation testing, this method deals with

the circuit at the gate level, which differs substantially from

the behavioral circuit description.
Common to all verification methods is the need to find a

source of an error such that it can be easily removed.

Therefore, fault detection is not only critical, but so is

diagnosis and correction. Formal verification methods such

as equivalence checking are known to be of no assistance in

diagnosis, leading to substantial difficulties in finding the

error source once the implementation has been proven

incorrect [15]. Similarly, most simulation-based verification

schemes in practice employ some sort of random test

generation, which does not give any diagnosis information,

in addition to not providing any confidence in the

verification coverage. In our approach, we provide the test

vector generation that is provably sufficient for coverage,

diagnosis and error correction for a given class of errors.

2.1.1 Design Error Models

Errors injected at a netlist level can be seen as netlist module

replacements and are somewhat related to manufacturing

testing. Although there are not widely accepted standards

for such design errors, in-depth studies resulted in

classifications proposed in [2], [3], and [8]. A study of

microprocessors designed in academia during a period of

few years [9] shows that a large majority of gate-level

design failures consists of erroneous replacements of a gate

or wire in a network with another gate or wire, respectively.

In particular, it was shown that, by applying modern design

flows, 98.9 percent of all design errors in the DLX processor

and 94.2 percent of errors in PUMA floating-point units fall

within this class. Additionally, the authors in [1] reported

that 97.8 percent of design errors that occur during the

manual interventions belong to an error model of gate and

wire replacements from [2].
According to error models proposed in [2], [3], and [8],

the common design faults belong to one of the following

categories: Bus Order Error (BOE), Bus Source Error (BSE),

Bus Driver Error (BDE), Bus Single Stuck Line (SSL) Error,

and Module Substitution Error (MSE). The first four classes

correspond to errors in ordering (BOE), driving (BSE, BDE),

and a logic value (SSL) on a bus (defined as one or more

signal wires). The MSE refers to erroneously substituting a

module by another module with the same number of inputs

and outputs. This class includes gate replacement errors as

well as extra/missing inverters. In this paper, we follow

closely the error classification from [2] and [3]. We

additionally arrange the above faults into the classes of

gate replacements and wire replacements, respectively.

RADECKA AND ZILIC: DESIGN VERIFICATION BY TEST VECTORS AND ARITHMETIC TRANSFORM UNIVERSAL TEST SET 629

3 ARITHMETIC TRANSFORM AND IMPLICIT ERROR

MODEL

Arithmetic Transform (AT), also known as integer-valued

Reed-Muller (RM) polynomial [13], extends the RM expan-

sion to pseudo-Boolean functions, which have non-Boolean

(e.g., integer valued) outputs, while the inputs remain

Boolean. RM Transform of a Boolean function f is obtained

by applying Davio expansion around each input variable x,

y, etc., as follows:

f ¼ f x¼0j þ xðf x¼1j � f x¼0j Þ: ð1Þ

In the case of RMexpansion, the arithmetic is performed over

finite field GF2, i.e., modulo 2; consequently, “+” and “-“

denote the XOR operation. In our case, AT is obtained by

using instead the word-level (e.g., integer) addition in (1).
Arithmetic Transform of a pseudo-Boolean function f is

calculated by applying the expansion from (1) to each

variable, leading to a polynomial:

f ¼
X1
i0¼0

X1
i1¼0

� � �
X1
in�1¼0

ci0i1���in�1
xi0
0 x

i1
1 � � �xin�1

n�1: ð2Þ

AT expresses a function using the set of linearly indepen-

dent functions defined as:

xi0
0 x

i1
1 � � �xin�1

n�1; where x
ij
j ¼ xj; ij ¼ 1;

1; ij ¼ 0;

�
; j ¼ 0; . . . ; n� 1:

Coefficients ci0i1���in�1
are calculated as the inner product of

function f and the basis vector xi0
0 x

i1
1 � � �xin�1

n�1 over real

numbers (however, the arithmetic is most often restricted to

integers).
Integer coefficients ci0i1���in�1

are called the arithmetic

spectrum. Each spectral coefficient multiplies an orthogonal

basis function. Basis functions are often related to discrete

Fourier Transform, such as those in Walsh-Hadamard

Transform (WHT). In the case of AT, the basis consists of

monomials and the transform is simply treated as a

polynomial.
In this paper, we consider the application of AT to

verification of datapath circuits. To quickly obtain arith-

metic spectrum for such circuits, we use an auxiliary

valuation function V ðxÞ equal to a value that a binary-

represented number takes. Table 1 contains valuations of

frequently used integer and fractional data types.

As an example, we consider the Arithmetic Transform of

an adder. Here, the numerical value of the sum of two n-bit

unsigned numbers x and y is determined as:

V ðxþ yÞ ¼
Xn�1

i¼0

ðxi þ yiÞ2i:

Comparing with (2), we notice that this is a polynomial with

integer coefficients representing a multiple-output function

of arguments xi and yi, where i ¼ 0; . . . ; n� 1. As a result,

AT of the addition operation has 2n nonzero coefficients.

Similarly, the subtraction is obtained by replacing the

arithmetic “+” with a “-“ sign. For a sign-extended

encoding, the operation is:

V ðx� yÞ ¼
Xn�2

i¼0

ðxi � yiÞ2i � 2xn�1

Xn�2

i¼0

xi2
i þ 2yn�1

Xn�2

i¼0

yi2
i:

The other basic elements of datapath, e.g., multipliers, can

also be represented in a straightforward way by using Oðn2Þ
spectral coefficients:

V x � yð Þ ¼
Xn�1

i¼0

xi2
i �
Xn�1

i¼0

yi2
i:

This expression leads to n2 spectral coefficients after the

sums are multiplied out. In practice, this number can be

reduced to 2n by keeping the polynomial in the above

factored form. We note that multipliers are kept in factored

form in representation by *BMDs [6] and related WLDDs.
The extension to the more complex arithmetic expres-

sions is straightforward. A multiple-output Boolean func-

tion is described by a single polynomial, i.e., its arithmetic

spectrum. For example, the arithmetic spectrum of xþ yz is

a simple expression:

V ðxþ yzÞ ¼
Xn�1

i¼0

xi2
i þ
Xn�1

i¼0

yi2
i �
Xn�1

i¼0

zi2
i:

For example, any FIR filter with m coefficients a1a2 � � � am
and mn-bit integer inputs x1x2 � � �xm can be represented

using mn spectral coefficients:

V ða1x1 þ a2x2 þ � � � þ amxmÞ ¼Xn�1

i¼0

ða1x1i þ a2x2i þ � � � þ amxmiÞ2i:

The application of AT to alternative data types results in the

spectrum of size comparable to that for the unsigned integer

encoding.

3.1 Calculation of Arithmetic Transform

Although we will not require the exact identification of the

faulty AT, we use its derivation in the analysis to follow. AT

of an arbitrary pseudo-Boolean function can be formed

through multiplying the vector of function values by the

transform matrix Tn, defined recursively as:

Tn ¼ Tn�1 0
�Tn�1 Tn�1

� �
; T0 ¼ 1: ð3Þ

630 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

TABLE 1
Valuation Functions for Common Word Encodings

This matrix has 22n entries—the transform, obtained by
multiplying Tn with the vector of values, consequently
requires Oð22nÞ operations. There exist much faster ways of
determining AT, including the interpolation algorithm that
is quadratic in the number of interpolated points [32].

Computationally efficient is Fast Arithmetic Transform
implementation which, in Oðn2n�1Þ time and Oð2nÞ space,
employs recursively the expansion from (1). This approach
can be used in conjunction with decision diagrams for
reducing the execution time and producing graph descrip-
tions such as *BMDs. The arithmetic spectrum can also be
generated as a polynomial interpolated from the values that
a function takes [32].

Yet another way of generating the arithmetic spectrum is
derived by considering pseudo-Boolean functions f :
2n 7!½0::2m � 1� by means of the Boolean lattice B ¼ 2n. To
form the lattice structure, the partial order relation � is
defined on Boolean vectors (points in the lattice 2n) as
follows: For vectors x and y, we say that y � x if the
coordinates of x that are “0” are the subset of 0-coordinates
of y, for example, � 1010. Incomparable vectors exist, such
as 1010 and 0110. Vectors with i ones belong to the same ith
layer in the lattice. For n-variable functions, the ith layer
contains n

i

� �
vectors.

Arithmetic Transform can also be obtained by traversing
the lattice in the increasing order of points. Following the
quadratic time interpolation algorithm in [32], at each
point x, the spectral coefficient cx is calculated by subtract-
ing all the preceding coefficients from the function value at
x, starting from the bottom value f? ¼ f00���0:

cx ¼ fx �
X
y�x

cy; c? ¼ f?: ð4Þ

Consider, for example, transforming the adder function
aþ b, for the 2-bit unsigned inputs: a ¼ a1a0 and b ¼ b1b0.
Each point in the lattice corresponds to an assignment of
inputs in the order of variables: a1a0b1b0. The spectral
coefficients are generated by applying (4) to function values
in an increasing lattice order, i.e., c0000 ¼ f0000 ¼ 0þ 0 ¼ 0,
c0001 ¼ f0001 � c0000 ¼ 0þ 1� 0 ¼ 1,

c0010 ¼ f0010 � c0000 ¼ 0þ 2� 0 ¼ 2;

c0100 ¼ 1, and c1000 ¼ 2. All other coefficients are 0, as
inscribed on Fig. 1, where nonzero coefficients are high-
lighted. The resulting polynomial is:

AT ðfÞ ¼ ða0 þ b0Þ þ ða1 þ b1Þ � 2:

By extending this construction to n-variable functions, it is
easy to see that, for unsigned arithmetic functions, all
nonzero coefficients of AT are in layer 1 (for adders) or
layer 2 (multipliers) of the lattice.

In the proposed verification scenario, an arithmetic
spectrum is used as a specification of an arithmetic
operation. The form of an AT polynomial for a given
arithmetic operation is known and depends only on the
data type used. The knowledge of the shape of a canonical
representation (in our case, a polynomial) is typically used
in formal verification to check whether the circuit is correct.
Contrary to this, we use the shape of error polynomials to
verify the absence of an error by a minimum amount of
vector simulations.

3.2 Implicit Error Model

In verification by error modeling, a set of test vectors is
required to check that a circuit contains no error from the
model. A circuit can be treated as a black box, by which a
description of a design error can be obtained by subtracting
responses of an erroneous circuit from corresponding
responses of its (correct) specification. This is an implicit
error model given by the Arithmetic Transform of a
difference between the correct and faulty circuits. We next
derive efficient fault detection methods for errors whose AT
has at most t nonzero coefficients.

Since, in our implicit error model, a fault is treated as a
quantity added to the circuit output, the behavior ~ff of the
faulty circuit is represented as a sum of the correct output
and the error function e, i.e., ~ff ¼ f þ e. As AT is linear, the
relation:

AT ð~ffÞ ¼ AT ðf þ eÞ ¼ AT ðfÞ þAT ðeÞ

is satisfied. The size of the error is the number of nonzero
coefficients of the error e, i.e., AT ðeÞ.

Although the polynomial e for each such error can be
obtained by simulating the faulty and correct circuits and
subtracting their outputs, we emphasize that this verifica-
tion scheme and the analysis to follow do not require the
complete explicit identification of an error. Consequently,
AT transformation algorithm does not need to be invoked.
We rather relate the implicit class of small AT spectrum
errors to the explicit model from Section 2.1.1 and then
derive the conditions for detecting such faults.

3.2.1 Arithmetic Transform of Basic Design Errors

We now express the design error classes from [8] in terms of
their spectral representations. Most of these categories can
be described as errors with few spectral AT coefficients. The
basic error types identified in [8] are the bus errors: Bus
Order Error (BOE), Bus Source Error (BSE), Bus Driver Error
(BDE), Bus Single Stuck Line (SSL), and Error and Module
Substitution Error (MSE). For a single bus in isolation, the
error spectrum is compact for most of the above classes, as
shown next.

Bus Order Error. This group includes a common design
error of incorrectly ordering bits in a bus. For example, if
the signals xl and xk of the bus x, x ¼ x0x1 . . .xn�1 have
been interchanged, the transform of this bus considered in
isolation is:

RADECKA AND ZILIC: DESIGN VERIFICATION BY TEST VECTORS AND ARITHMETIC TRANSFORM UNIVERSAL TEST SET 631

Fig. 1. Lattice Structure 24—Transform of Adder.

AT ð~ffÞ ¼
Xn�1

i¼0

ðxi � 2iÞ þ xk � 2l � xk � 2k þ xl � 2k � xl � 2l:

If the correct circuit transform was AT ðfÞ, the transform of

the faulty one is:

AT ð~ffÞ ¼ AT ðfÞ þ xk � 2l � xk � 2k þ xl � 2k � xl � 2l:

The error polynomial has four nonzero spectral coeffi-

cients. In general, any permutation of signals of an n-bit bus

will have the error transform with at most 2n spectral

coefficients.
Bus Source Error.This class represents errorswhich cause

the replacement of the intended source xk with the source rk.

Arithmetic Transformof the error isAT ðeÞ ¼ rk � 2l � xk � 2k.
Bus Driver Error. This kind of error corresponds to a bus

being driven by two sources. It manifests itself in a way

dependent on the implementation technology. For example,

if a bus line is realizing a “wired-OR,” then, by connecting an

additional source rk to a line xk, the resulting signal is xk _ rk.

Using integer arithmetic, the logical OR is obtained as

xk _ rk ¼ xk þ rk � xk � rk. This identity leads to the follow-

ing AT of the additive error AT ðeÞ ¼ ðrk � xk � rkÞ � 2k.
Module Substitution Error. A module is substituted

by another module with the same number of inputs and

outputs. Depending on the circuits replaced and their

position in a logic network, various transforms can be

obtained. In a simple example, where an AND gate

producing xk ¼ i1 ^ i2 is replaced by an OR gate generat-

ing xk ¼ i1 _ i2, the error is represented as AT ðeÞ ¼
ði1 þ i2 � 2 � i1i2Þ � 2k as the two transforms are AT ði1 ^
i2Þ ¼ i1 � i2 and AT ði1 _ i2Þ ¼ i1 þ i2 � i1 � i2. By consider-

ing single gates, the gate replacement error model is

included in this class.
Bus Single Stuck Line. The error in which an n-bit bus is

stuck at a constant value (0 or 1) is manifested as the

additive error for which Arithmetic Transform has

OðnÞ nonzero spectral coefficients. For this SSL error, the

transform is:

AT ð~ffÞ ¼
Xn�1

i¼0

xi � 2i �
Xn�1

k¼0

xk � 2k ¼ AT ðfÞ �
Xn�1

k¼0

xk � 2k:

Hence, the error transform is equal to

AT ðeÞ ¼ �
Xn�1

k¼0

xk � 2k:

In the case of a bus stuck-at-1, the error transform has
nþ 1 nonzero coefficients:

AT ðeÞ ¼
Xn�1

k¼0

ð2k � xk � 2kÞ:

Any combination of the SSL errors would have the error
transform that is linear in the number of lines that are stuck.

Single Stuck-At Faults. In contrast to the above, the
single stuck-at faults are directly used in the testing of a
circuit. The effects of these faults cannot be described by a
single formula. For example, the distribution of spectra of
all single stuck-at faults in a 4� 4 Carry Save Adder (CSA)
multiplier is shown in Fig. 2. The x-axis corresponds to the
faulty node; nodes are in the reverse topological order.

This figure indicates that there are a number of faults
that result in a substantial error spectrum. However,
regardless of the spectra size of the stuck-at faults, we
demonstrate through experiments that these faults are
easily detectable by the vector sets for small spectral errors.

4 DETECTING SMALL AT ERRORS

The implicit error model that we study consists of all faults
for which the number of nonzero AT coefficients is smaller
than some assumed bound. The size of a test vector set is
based on the number of spectral coefficients of an error
(spectral error size). If there are only few coefficients, then
errors are small and a test vector set detecting them is small,
as we prove in this section. The assumption of a “small”
error is partly motivated by the examples in Section 3.2.1 of
the common design error classes from [8], where we have
shown that most of these errors are represented by
polynomials of small number of terms. Next, we investigate

632 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

Fig. 2. Spectrum size distribution of stuck-at faults in 4� 4 multiplier.

the existence and use of a Universal Test Set for errors

parameterized by the size of the error AT.

4.1 Universal Test Set

The concept of aUniversal Test Set (UTS) primarily refers to a

test set that can summarily detect a complete well-defined

class of errors. In practice, the application of the UTS notion

can take several forms.Dependingon the circumstances,UTS

is used to either detect all faults (usually stuck-at) in a specific

class of circuit implementations [18] or test for all possible

faults in an unknown circuit implementation [14], [19]. In our

case, we developUTS that detects the class of all faults whose

AT spectrum size is smaller than a given bound.
The natural extension of the above concept is that of the

Universal Diagnosis Set (UDS), which is the set of test vectors

that can uniquely identify all faults of bounded AT size.

Similarly, one defines theUniversal Correction Set (UCS) as a

set of vectors that allow correcting of the faulty circuit.

4.2 AT-Based Universal Test Set

To derive the test set, recall that AT of a pseudo-Boolean

function can be obtained by multiplying the function values

by the transform matrix Tn, (3). For n ¼ 3, matrix T3 is:

T3 ¼

1 0 0 0 0 0 0 0
�1 1 0 0 0 0 0 0
�1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0

�1 0 0 0 1 0 0 0
1 �1 0 0 �1 1 0 0
1 0 �1 0 �1 0 1 0

�1 1 1 �1 1 �1 �1 1

2
66666666664

3
77777777775
: ð5Þ

The columns of matrix Tn correspond to combinations of

function inputswhich canbeconsideredas test vectors. Inour

case, this constitutes UDS for detecting design errors. Hence,

obtaining a test set amounts to choosing a number of columns

from Tn. The primary goal is to have such a selection that is

suitable for reconstructing the function under the presence of

an error by a minimal number of test vectors.
We notice that the polynomial representing a given

function can be found by inverting the matrix Tn. The

structure of this matrix is identical to that of the RM error

correcting code check matrix [26], albeit with integer

(considered as a subset of real numbers) arithmetic, rather

than that over finite field GF2. We show that the

redundancy incorporated in the matrix allows us to find a

minimal test, diagnosis, and correction set for the case of a

bounded spectrum error.
To derive conditions for finding UDS, we use an

auxiliary error check matrix Hr that consists of the rows of

T�1
n corresponding to the vectors in the top rþ 1 lattice

layers. This matrix has 2n columns; the number of rows is

equal to the number of points in these to rþ 1 lattice layers.
Lemma 3 in Appendix A states that the matrix Hr has at

least 2rþ1 � 1 independent columns. We need this informa-

tion to prove the error correcting capability of UDS. The

following theorem is used to derive the test set for the case

of errors of bounded spectrum.

Theorem 1. Consider an error superimposed to an n-variable

function. Any error whose AT has at most t spectral

coefficients can be uniquely identified by examining

V ¼
Xlog2ðtþ1Þd e�1

i¼0

n
i

� �

points (vectors) in log2ðtþ 1Þd e � 1 upper layers of the lattice.

Proof. By selecting all the points from the upper

log2ðtþ 1Þd e � 1 lattice layers, we obtain a reduced

matrix H log2ðtþ1Þd e�1 of size V � 2n. It is sufficient to

check that each 2t columns of this matrix are

independent to detect and correct any error polyno-

mial with up to t terms. According to Lemma 3 in

Appendix A, the minimal number of independent

rows is: 2 log2ðtþ1Þd e�1þ1 � 1 � 2t. Therefore, any polyno-

mial with up to t terms is uniquely identified. tu

Similar to Fig. 1, where bottom lattice layers (0 and 1)

suffice to encode arithmetic circuits by AT, the top Oðlog2 tÞ
layers are needed to detect and correct a t term error AT.

For test vector generation, matrices Tn and Hr do not need

to be explicitly constructed as they were needed only for

proving Theorem 1.
A proof of the similar theorem for detecting faults by

binary RM Transform is found in [11] and [26]. A nonbinary

input generalization had been proven in [12] for a multiple-

valued RM Transform and the finite field arithmetic. Note

that the RM Transform is of exponential size even for

adders, while the corresponding AT is of polynomial size,

hence our result is more practical. Also, Theorem 1

generalizes results in [11] to nonbinary outputs and word-

level arithmetic.
Note that Theorem 1 provides an upper bound on the

number of points to be simulated for unique identification

of the class of t-term AT polynomial errors. For fault

diagnosis and correction purposes, Theorem 1 guarantees

that an error superimposed on a correct circuit will be

exactly identified by a minimum number of test vectors. In

actual circuits, faults that involve many more spectral

coefficients will be detected if the only goal is error

detection. A stronger statement related to error detection

alone is given next.

Corollary 1. Any error whose AT has at most t spectral

coefficients can be uniquely identified by examining vectors in

log2ðtþ 1Þd e � 2 layers of the lattice.

Proof. The number of independent rows is t, which is

sufficient for detecting whether the linear system is

inconsistent, but is insufficient for correction. tu

4.3 AT-Based Test and Correction Procedure for
Implicit Errors

The properties just proven suffice in deriving the verifica-

tion test procedure for detecting a t-term error. It is

sufficient, by Corollary 1, to simulate a circuit under

verification with Oðnlog t
2 Þ vectors, which constitute the

UTS for t term faults. The procedure is given in Algorithm 1.

RADECKA AND ZILIC: DESIGN VERIFICATION BY TEST VECTORS AND ARITHMETIC TRANSFORM UNIVERSAL TEST SET 633

The number of required simulation runs is hence
polylogarithmic in t, which itself is a parameter in range
ð0; 2nÞ. The verification procedure is then parameterized by

the value that t takes. Unsurprisingly, in the extreme case of
verifying for up to 2n term errors, the complexity equals
that of the verification by exhaustive simulation, i.e., Oð2nÞ.

In the same way, Theorem 1 provides us with both a

UDS and UCS vector set for error detection and correction
of a faulty function ~ff . The simulation of the UCS set alone
allows us to exactly identify the error e. Then, in order to

correct the faulty circuit, it is sufficient to construct a circuit
implementing the error function e and subtract it from the
faulty circuit ~ff , Fig. 3.

The error size t is critical in establishing the confidence in

the overall procedure. It also impacts the amount of
computational resources. Hence, the need for determining
this parameter, in general, depends on the required level of

confidence in verification result, as well as other parameters
like the availability of simulation resources. The desired
confidence can vary throughout the design process. Some-

times, quick regression checks may assume small errors,
while, at some other steps, a more thorough design check
might be useful. The remainder of this paper provides

insight in selecting the error size parameter t, based on the
actual design errors and the consideration of the error
circuit structure. First, in Section 5, we provide arguments

for reasoning that, when the injected error is small as a
circuit, the error spectrum will be bounded. Second, in
Section 6, we consider the actual fault detecting capability
for explicit faults through experiments.

5 BOUNDING ERROR SPECTRUM THROUGH

WALSH-HADAMARD TRANSFORM

To extend the study in Section 3.2.1, of how the implicit

errors relate to superimposed error circuits e (Fig. 3), we
now consider errors represented as classes of circuits, rather
than polynomials, superimposed on the correct design

implementation. Such erroneous “additions” to the fault-
free circuit are likely to be “small”; otherwise, they would
easily be detected in the design process. A more formal
definition of small circuits should avoid dependency on the

design implementation (e.g., Sum of Products versus
Product of Sums) and gates used (e.g., OR versus XOR).
In theory, the class of “constant depth circuits” is often used

to represent small circuits [21]. Such circuits do not increase
gate depth as the number of inputs increases. Results in [21]
show that the Walsh-Hadamard (WHT) spectrum of the

class of constant depth circuits is small and concentrated in
low order coefficients. In this section, we show that the
spectra of AT and the version of WHT are in direct

proportional relation; hence, the assumption of small AT
spectrum can be extended to constant depth circuits.

Walsh-Hadamard Transform is defined by the transform

matrix similar to (3):

T’
n ¼ T’

n�1 T’
n�1

T’
n�1 �T’

n�1

� �
; T’

0 ¼ 1: ð6Þ

The negation of rows (or columns) of matrix T’
n leads to

the alternative orthogonal transform that belongs to the
same family of Walsh transforms [16]. We refer to this

transform as negated Walsh Transform (nWT). Such negation
preserves the sums of absolute values of spectral coeffi-

cients and their squares (energy density spectrum). To

facilitate the comparison, we define T�
n by inverting half of

the rows of the transform matrix T’
n :

T�
n ¼ T�

n�1 T�
n�1

�T�
n�1 T�

n�1

" #
; T�

0 ¼ 1: ð7Þ

Let us consider the case of n ¼ 3. The following trans-

form matrix is obtained:

T�
3 ¼

1 1 1 1 1 1 1 1
�1 1 �1 1 �1 1 �1 1
�1 �1 1 1 �1 �1 1 1
1 �1 �1 1 1 �1 �1 1

�1 �1 �1 �1 1 1 1 1
1 �1 1 �1 �1 1 �1 1
1 1 �1 �1 �1 �1 1 1

�1 1 1 �1 1 �1 �1 1

2
66666666664

3
77777777775
:

Matrix T’
3 has the entries in rows 2, 3, 5, and 8 inverted.

To derive a relation between the nWT and arithmetic
spectra, we evaluate the difference between negated Walsh

and Arithmetic Transforms, referred to as An. For n ¼ 3, we

have:

A3 ¼ T�
3 � TAT

3 ¼

0 1 1 1 1 1 1 1
0 0 �1 1 �1 1 �1 1
0 �1 0 1 �1 �1 1 1
0 0 0 0 1 �1 �1 1
0 �1 �1 �1 0 1 1 1
0 0 1 �1 0 0 �1 1
0 1 0 �1 0 �1 0 1
0 0 0 0 0 0 0 0

2
66666666664

3
77777777775
:

In general, the recursive structure of this matrix is described

by the following lemma:

Lemma 1. The recursive form of matrix An is:

T�
n � TAT

n ¼ An ¼ An�1 T�
n�1

�An�1 An�1

� �
; A1 ¼ 0:

634 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

Fig. 3. Design error correction by Arithmetic Transform UCS.

Proof (by induction). It is sufficient to prove that

An þ TAT
n ¼ T�

n .
Induction Base: For k ¼ 3, we have just shown that

A3 þ TAT
3 ¼ T�

3 .
Induction Step: Assume that the claim is true for n ¼ k.

Then, for kþ 1, the definition is:

Akþ1 þ TAT
kþ1 ¼

Ak T�
k

�Ak Ak

" #
þ

TAT
k 0

�TAT
k TAT

k

" #

¼
T�
k T�

k

�T�
k T�

k

" #
¼ T�

kþ1:

ut

5.1 Spectrum Comparison

Using the recursively defined difference between the two

transforms, we now compare the sums of the spectral

coefficients,
P2n�1

i¼0 c�i and
P2n�1

i¼0 cAT
i . The first sum is

calculated as:

X2n�1

i¼0

c�i ¼
X2n�1

i¼0

X2n�1

j¼0

T�
ijfj

 !
:

By changing the order of summation, the inner sum is

calculated by adding columns of the nWT Transform

matrix:

SðT�Þ ¼
X2n�1

i¼0

c�i ¼
X2n�1

j¼0

fj
X2n�1

i¼0

T�
ij

 !
:

The same transformation is used to obtain
P2n�1

i¼0 cAT
i and

X2n�1

i¼0

ðc�i �cAT
i Þ and

X2n�1

i¼0

ðc�i þcAT
i Þ:

The sums are obtained by matrices An ¼ T�
n � TAT

n ,

Bn ¼ T�
n þ TAT

n , and the following theorem.

Theorem 2. The sum SðT�Þ of all spectral coefficients of the

nWT obtained using T�
n is always 2n times larger than the sum

of all Arithmetic Transform coefficients.

The proof is presented in Appendix B, together with an

auxiliary characterization of matrices An and Bn. Theorem 2

shows that there is a direct proportional relation between

AT and WHT spectra sums. This result indicates that the

sum of spectral coefficients of constant depth circuits

remains bounded in the AT domain. More specifically, an

error circuit having a small WHT spectrum also has a small

AT spectrum and, hence, could be tested by our AT-based

method using a small number of lattice layers.

5.2 Spectra Distribution and Partial Spectra
Comparison

In order to complete the spectrum comparison, it is

important not only to know the total sums of spectral

coefficients, but also their distribution. For example, in [21],

the authors present the characterization of small depth

circuits by their concentration in low-order spectral

coefficients. To investigate the distributions of two spectra,

we relate their partial spectra, i.e., subsets of spectral
coefficients.

Relations similar to that in Theorem 2 can be proven for

partial spectra. We say that the upper half of the spectrum is

obtained by restricting a variable (say x0) to 1 and denote

such partial spectra as
P

c�
��
x0

and
P

cAT
��
x0
. By considering

the upper halves of spectral coefficients, and applying the

same comparison as in Appendix B, we obtain:

X2n�1

i¼2n�1

ðc�i �cATi Þ ¼ ð2n�1 � 1Þ � ðf2n�1 � f2n�1�1Þ

X2n�1

i¼2n�1

ðc�i þcATi Þ ¼ ð2n�1 þ 1Þ � ðf2n�1 � f2n�1�1Þ;

leading to:

X
c�i jx0¼

2n

2

X
cATi jx0 :

Note that the multiplicative factor 2n � 1 is halved relative
to the one used in the total spectra comparison in
Theorem 2. When the same restriction is applied to several
input variables, this multiplicative factor reduces exponen-
tially in the number of variables assigned. Extending the
argument above easily proves the following theorem.

Theorem 3. The upper part of the AT spectrum corresponding to
the assignment of i variables to 1 is 2n�i times smaller than
that of the nWT spectrum:X

c�i jx0x1���xi�1
¼ 2n�i

X
cATi jx0x1���xi�1

:

In the border case, i.e., when all variables are assigned to
one, the last coefficient c11...1 is the same for both of these
transforms, as can be verified by inspecting the transform
matrices.

The partial spectra comparisons show that the
AT spectrum of a function has higher content of high-order
coefficients, while the sum of all spectral coefficients is in
direct proportional relation to the nWT. In other words,
functions that have small AT spectrum also have small
WHT spectrum that is more concentrated in low-order
coefficients. This property is characteristic for constant
depth circuits, so the AT of a superimposed small error
circuit will be small as well.

6 EXPERIMENTAL RESULTS

So far we have presented theoretical results justifying the
assumption of a small AT error in verification through
simulations. While Section 2.1.1 proves that it is sufficient to
simulate OðnlogtÞ vectors to detect t-term AT errors, the
experiments are required to find values for t that result in
high coverage for concrete design errors. We omit delibera-
tion diagnosis and error correction procedures, which are
equivalent to the decoding of the integer-valued RM error-
correcting codes. Please note that the considered implicit
small AT error model represents a large number of the
explicit gate and wire errors. In practice, where the
simulations used for verification purpose take much of
the overall time, considering the implicit error model can

RADECKA AND ZILIC: DESIGN VERIFICATION BY TEST VECTORS AND ARITHMETIC TRANSFORM UNIVERSAL TEST SET 635

save many simulation cycles. Further, we can parameterize

the simulation effort by the size of the error polynomial

and, finally, such a simulation effort can be easily

parallelized.
To find the error size t sufficient for representing explicit

gate and wire replacement errors, we have to resort to

experiments. Stuck-at faults are briefly addressed for

comparison purposes. Our experimental setup consists of

arithmetic and MCNC circuits synthesized into generic

Synopsys gate library—GTECH. We built fault simulation

andour redundant fault identification on theUCBerkeley SIS

program. Experiments were run on an Apple PowerMac G2

with two 1.25GHz PowerPC processors and 512MB of

main memory, under MAC OS X v10.2 operating system.
The first set of experiments compares gate replacement

faults with stuck-at-value faults. Table 2 reports the coverage

of single stuck-at faults and replacement faults with AND,
OR, and XOR gates for MCNC benchmarks. For fair
comparison and to expose the scope of redundant faults,
the experiments were performed on the fault list with no
redundant errors removed. Due to the redundancies that
cause exhaustive simulations, only small circuits were
tried. To present the effectiveness of our UDS vectors, we
gradually increase the number of lattice layers used for
stuck-at fault detection. The results reveal that four layers,
i.e., log t ¼ 4, are sufficient for fault coverage over
95 percent. Hence, all remaining experiments will involve
simulation of at most Oðn4Þ vectors, for a given number of
circuit inputs n.

Experiments also indicate that there are many more
redundant single gate and wire replacement faults than in
the case of single stuck-at faults. Hence, efficient methods
for identifying redundant gate and wire replacement faults
are crucial in obtaining a meaningful coverage. We have
shown in [24] and [25] that the problem differs substantially
from the case of stuck-at faults (e.g., [17]) and that the
effective redundant fault identification can be obtained by
combining several methods. Since redundant faults are
caused by don’t care (DC) conditions in a circuit, we apply
Compatible Observability Don’t Care (CODC) approxima-
tions [27] for quick identification of most of the redundant
faults. Then, we construct a satisfiability formulation [20]
for the remaining faults that the CODC approximation finds
likely to be redundant. We also produced the exact SAT-
only method for redundant wire and gate fault identifica-
tion [24], [25].

The results for arithmetic circuits are summarized in
Table 3. Dividers were chosen because their Decision
Diagrams (even WLDDs) are of exponential size [28].
Reported are two sets of results: First, we replace each gate
with all input-compatible gates from the library and,
second, we replace each wire by another irredundant wire
in netlist. We conclude that high coverage is obtained for
both gate and wire replacement faults when redundancy
identification is employed. In columns “Faults,” we
reported the total number of irredundant faults simulated.
Columns “Sims” contain the total number of simulation
runs. For each fault, we simulate vectors from UTS in the

636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

TABLE 2
Coverage of s-a-v and Selected Gate Replacement Faults

with Lattice Layers

TABLE 3
Arithmetic Circuit Coverage with UTS (Four Top Lattice Layers)

decreasing lattice order until first fault detection. Columns
“Vec.” report vectors that would suffice for the given
coverage if simulated alone. They are obtained by counting
the number of distinct vectors that for first time detect a
fault. Note that this number could be reduced through
standard vector compaction methods.

The coverage with the four top layers for MCNC circuits
with all gate and wire replacement faults is recorded in
Table 4 and Table 5, respectively. Experiments again show
that high fault coverage is obtained by using the small error
spectrum assumption in UTS test pattern generation. These
two tables also report the time and space needed to
construct BDDs (needed in one of our redundancy
identifications). This data is useful for comparing the cost
of our method with equivalence checking by BDDs.
Columns “Redund. Id” indicate the times required for
and coverage with our exact SAT-based redundancy
identification. Finally, the last three columns report the
number of all faults simulated, total number of simulation
runs for coverage by exact identification, as well as the total
number of vectors that suffice for the given coverage, as in
Table 3. Time spent in simulations depends on the circuit
simulation speed, but note that this task is amenable to
massive parallelization as both the circuits and the vectors
are known in advance. The reported number of simulations
is that needed with a naive serial simulator and any fault
simulator would significantly reduce the actual number of
simulation runs.

6.1 Improvements—Neighborhood Subspace
Points

Although only up to four lattice layers (plus vector 11 ...1)
were needed for good coverage, we considered the
alternative schemes that use a subset of the considered
lattice points. The UDS approach of generating test vectors
was enhanced by a test set reduction scheme in which the
tests are still independent of the circuit implementation. We

use additional information from the AT specification, rather

than the circuit structure.
While the original test vectors exhaustively cover the

four top lattice layers, we also considered exhaustively

covering only the neighbor variables among these lattice

layers. For example, in adders, each expression ðai þ biÞ2i of
the adder AT specification joins together the neighbor

variables in a polynomial term that is multiplied by the

same constant 2i. Additionally, a carry out bit propagates

from the ith to the (i + 1)th stage. We then deem the

neighboring inputs to be ai, bi, aiþ1, and biþ1, Fig. 4, and

insure that only such four bits are simulated exhaustively

among the four top lattice layers.
In [23], it was shown by experiments that almost no

coverage for arithmetic circuits is sacrificed compared to

original UDS. While testing with all the vectors belonging to

the top four layers requires Oðn4Þ points, the subset that is

exhaustive only for all the neighbor variable combinations

contains only Oðn2Þ vectors. The savings are equivalent to

using two layers less in the test set.

7 CONCLUSIONS AND FUTURE WORK

We proposed a vector-based verification of datapath

circuits using Arithmetic Transform and the concept of

implicit error modeling. We have shown that this approach

can be applied to derive effective test sets for several classes

of design errors and has inherent diagnosis and error

correction capabilities. By employing AT, the whole

approach is compatible with commonly used formal

verification representations. Further, the verification pro-

cess can be combined with the test pattern generation by

reusing verification vectors for detecting manufacturing

faults or vice versa. Additionally, as the deep submicron

faults might need a fault model that is closer to gate

replacements than to stuck-at model [1], dealing with gate

RADECKA AND ZILIC: DESIGN VERIFICATION BY TEST VECTORS AND ARITHMETIC TRANSFORM UNIVERSAL TEST SET 637

TABLE 4
Fault Coverage, Running Times for Redundancy Identifications,

and Simulation Statistics for Gate Replacement Faults on
MCNC Benchmarks

TABLE 5
Fault Coverage, Running Times for Redundancy Identifications,

and Simulation Statistics for Wire Replacement Faults on
MCNC Benchmarks

and wire replacements might become a necessity in
manufacturing fault testing.

The compact circuit representations and the capability of
relating the common errors to the bounds on the vector set
size are achieved by using the arithmetic spectrum. This
provides confidence in restricting an otherwise exhaustive
test set, without sacrificing the fault detection capability.
The improvements to the basic concept include the use of
the high-level information on the input variable depen-
dences, through neighbor window variables, as outlined in
Section 6.1. More work in that direction could practically
reduce the complexity of the approach. Finally, a good
diagnostics method based on the spectral reconstruction
could be developed as well.

APPENDIX A

CHECK MATRIX HR—AUXILIARY LEMMA AND

PRELIMINARIES

We prove in this appendix the error correcting properties of
Arithmetic Transform and matrix Hr, introduced in
Section 4.2. The check matrix Hr is obtained from the
inverse AT transform matrix by selecting the evaluation
points belonging to the rþ 1 top lattice layers, where the
inverse is:

T�1
n ¼ T�1

n�1 0
T�1
n�1 T�1

n�1

� �
:

By multiplying T � T�1 ¼ I, one can verify the correctness
of the definition of T�1.

We first consider an example of n ¼ 3 and two top layers,
i.e., the points taken are 111, 011, 101, and 110. The check
matrix H1 is then obtained from T�1

3 as:

H1 ¼

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

2
664

3
775:

By considering columns 4, 6, 7, and 8, we observe that the
maximal number of independent columns, i.e., matrix rank,
is 4. Notice that not every four columns are independent,
such as columns 5, 6, 7, and 8. However, any three columns
are independent, thus the minimum number of independent

columns is three. The structure of the matrix is such [26] that
the minimum number can be found by inspecting the last
(tailing) three columns, i.e., 5, 6, and 7.

By taking one more, rþ 2th, lattice layer, the correspond-
ing rank of Hrþ1 is always equal to the number of rows,
whereas the minimal number of independent columns is
claimed to be 2rþ2 � 1. This statement can be inspected by
considering the 2rþ2 � 1 columns, corresponding to the
points considered. For example, adding one more layer to
H1 results in a matrix:

H2 ¼

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

2
666666664

3
777777775
:

Here, the minimal number of independent columns is
seven. In general, this number increases every time a new
layer is added and is equal to the largest subspace contained
in the tailing columns. The fact that the diagonal entries of the
matrix Hr are one ensures that the tailing columns are
sufficient to consider as the columns ahead cannot be linearly
dependent on any tailing column. By inspecting H1 and H2,
one can notice that the number of tailing columns considered
is 2kþ1, for k layers, and that the first of these 2kþ1 tailing
columns is dependent on the rest. Hence, when a layer is
added toHk, a new 2kþ1 vectors are added to the independent
set of columns. We are now ready to prove the lemma
independent of the number of variables n.

Lemma 2. Matrix Hr has at least 2
rþ1 � 1 independent columns.

Proof. By induction.
Base step: we showed that, for k ¼ 2, the minimal

number of independent columns is 2kþ1 � 1.
Induction step: for kþ 1 layers, the minimal number of

independent columns is equal to those for k layers, to
which new 2kþ1 columns are added. Then, the number of
independent columns is:

2kþa � 1þ 2kþ1 ¼ 2kþ2 � 1 ¼ 2ðkþ1Þþ1 � 1:

ut

APPENDIX B

AUXILIARY RESULTS IN RELATING AT AND WHT

Lemma 3. The following relations hold:

1. The sum of column entries of An ¼ T�
n � TAT

n is 2n �
1 for the ð2n � 1Þth column, and 0 otherwise.

2. The sum of column entries of Bn ¼ T�
n þ TAT

n is 2n þ
1 for the ð2n � 1Þth column, and 0 otherwise.

Proof.

1. The sum of columns in An is generated by
observing (as from matrix A3, without loss of
generality) that the number of positive and
negative entries are the same in all columns,

638 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

Fig. 4. Exhaustive coverage of vector subspace of size four.

except in the last one, where there are 2n � 1 ones
in the column.

2. The sum of columns in Bn is obtained by using
Case 1 and the identity:

Bn ¼ An þ 2TAT
n :

Then, the sums of the elements in the columns
can be calculated by summing the matrices An

and Bn matrices independently. Observe from
TAT
3 that the sum of columns is 1 for the last

column and 0 otherwise. The sum of the entries in
the last column of Bn is 2n � 1þ 2 � 1 ¼ 2n þ 1. tu

Theorem 2. The sum SðT�Þ of all spectral coefficients of Walsh-
Hadamard Transform T�

n is always 2n times larger than the
sum of all Arithmetic Transform coefficients.

Proof. Using Lemma 3, just proven, the sum SðAnÞ, where
An ¼ T�

n � TAT
n , reduces to:

SðAnÞ ¼
X2n�1

j¼0

fj
X2n�1

i¼0

ðT�
ij � TAT

ij Þ ¼
X2n�2

j¼0

fj
X2n�1

i¼0

ðT�
ij � TAT

ij Þþ

f2n�1

X2n�1

i¼0

ðT�
ij � TAT

ij Þ ¼ 0þ ð2n � 1Þ � f2n�1:

Likewise, SðBnÞ ¼ ð2n þ 1Þ � f2n�1 and the following
relations hold between SðAnÞ and SðBnÞ (subscripts are
the matrix entry indices):

X2n�1

i¼0

ðc�i �cAT
i Þ ¼

X2n�1

i¼0

X2n�1

i¼0

Aijfj ¼ ð2n � 1Þ � f2n�1

X2n�1

i¼0

ðc�i þcAT
i Þ ¼

X2n�1

i¼0

X2n�1

i¼0

Bijfj ¼ ð2n þ 1Þ � f2n�1;

which can be solved as a system of linear equations in
sums of c�i s and cAT

i s:

X2n�1

i¼0

c�i ¼ 2n � f2n�1 and
X2n�1

i¼0

cAT
i ¼ f2n�1

and, finally, the sums of spectral coefficients relate as:

X2n�1

i¼0

c�i ¼ 2n�
X2n�1

i¼0

cAT
i :

ut

REFERENCES

[1] E.J. Aas, K. Klingsheim, and T. Steen, “Quantifying Design
Quality: A Model and Design Experiments,” Proc. EURO-ASIC,
pp. 172-177, 1992.

[2] M.S. Abadir, J. Ferguson, and T. Kirkland, “Logic Verification via
Test Generation,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 1, pp. 138-148, Jan. 1988.

[3] H. Al-Assad and J.P. Hayes, “Design Verification via Simulation
and Automatic Test Pattern Generation,” Proc. Int’l Conf.
Computer-Aided Design, pp. 174-180, 1995.

[4] D. Brand, “Verification of Large Synthesized Designs,” Proc. Int’l
Conf. Computer-Aided Design, pp. 534-537, 1993.

[5] R. Bryant, “On the Complexity of VLSI Implementations and
Graph Representations of Boolean Functions with Applications to
Integer Multiplication,” IEEE Trans. Computers, vol. 40, no. 2,
pp. 205-213, Feb. 1991.

[6] R.E. Bryant and Y.-A. Chen, “Verification of Arithmetic Functions
with Binary Moment Diagrams,” Proc. 32nd Design Automation
Conf., pp. 535-541, 1995.

[7] J.R. Burch and V. Singhal, “Tight Integration of Combinational
Verification Methods,” Proc. Int’l Conf. Computer-Aided Design,
pp. 570-576, 1998.

[8] D. van Campenhout, H. Al-Asaad, J.P. Hayes, T. Mudge, and R.B.
Brown, “High-Level Design Verification of Microprocessors via
Error Modeling,” ACM Trans. Design Automation of Electronic
Systems, vol. 3, no. 4, pp. 581-599, Oct. 1998.

[9] D. van Campenhout, T. Mudge, and J.P. Hayes, “Collection and
Analysis of Microprocessor Design Errors,” IEEE Design and Test
of Computers, vol. 33, no. 4, pp. 51-60, Oct.-Dec. 2000.

[10] K.T. Cheng, S. Dey, M. Rodgers, and K. Roy, “Test Challenges for
Deep Sub-Micron Technologies,” Proc. Design Automation Conf.,
pp. 142-149, 2000.

[11] T. Damarla and M. Karpovsky, “Fault Detection in Combinational
Networks by Reed-Muller Transform,” IEEE Trans. Computers,
vol. 38, no. 6, pp. 788-797, June 1989.

[12] T. Damarla, “Generalized Transforms for Multiple Valued
Circuits and Their Fault Detection,” IEEE Trans. Computers,
vol. 41, no. 9, pp. 1101-1109, Sept. 1992.

[13] B.J. Falkowski, “A Note on the Polynomial Form of Boolean
Functions and Related Topics,” IEEE Trans. Computers, vol. 48,
no. 8, pp. 860-864, Aug. 1999.

[14] G. Gupta and N. Jha, “A Universal Test Set for CMOS Circuits,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 7, no. 5, pp. 590-597, May 1988.

[15] S.Y. Huang and K.T. Cheng, Formal Equivalence Checking and
Design Debugging. Kluwer Academic, 1998.

[16] S. Hurst, D.M. Miller, and J.C. Muzio, Spectral Techniques in Digital
Logic. London: Academic Press, 1985.

[17] M.A. Iyer and M. Abramovici, “FIRE: A Fault-Independent
Combinational Redundancy Identification Algorithm,” IEEE
Trans. VLSI Systems, vol. 4, no. 2, pp. 295-301, June 1996.

[18] U. Kalay, D. Hall, and M. Perkowski, “A Minimal Universal Test
Set for Self-Test of EXOR-Sum-of-Products Circuits,” IEEE Trans.
Computers, vol. 49, no. 3, pp. 267-276, Mar. 2000.

[19] H. Kim and J.P. Hayes, “Realization-Independent ATPG for
Designs with Unimplemented Blocks,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 2,
pp. 290-306, Feb. 2001.

[20] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiabil-
ity,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4-15, Jan. 1992.

[21] N. Linial, Y. Mansour, and N. Nisan, “Constant Depth Circuits,
Fourier Transform and Learnability,” J. ACM, vol. 40, no. 3,
pp. 607-620, July 1993.

[22] R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J.A. Abraham, and
D.S. Fussell, “An Efficient Filter-Based Approach for Combina-
tional Verification,” IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 18, no. 11, pp. 1542-1557, Nov.
1999.

[23] K. Radecka and Z. Zilic, “Using Arithmetic Transform for
Verification of Datapath Circuits via Error Modeling,” Proc VLSI
Test Symp., pp. 271-277, May 2000.

[24] K. Radecka and Z. Zilic, “Identifying Redundant Wires for
Synthesis and Verification,” Proc. IEEE Asian Design Automation
Conf. (ASP-DAC), pp. 517-523, Jan. 2002.

[25] K. Radecka and Z. Zilic, “Identifying Redundant Gate Replace-
ments in Verification by Error Modeling,” Proc. IEEE Int’l Test
Conf. (ITC), pp. 803-812, Oct. 2001.

[26] R.M. Roth and G.M. Benedek, “Interpolation and Approximation
of Sparse Multivariate Polynomials over GF(2),” SIAM J. Comput-
ing, vol. 20, no. 2, pp. 291-314, Apr. 1991.

[27] H. Savoj and R. Brayton, “The Use of Observability and External
Don’t Cares for the Simplification of Multi-Level Logic Net-
works,” Proc. Int’l Conf. Computer-Aided Design, pp. 297-301, 1990.

[28] C. Scholl, B. Becker, and T.M. Weis, “Word-Level Decision
Diagrams, WLCDs and Division,” Proc. IEEE Int’l Conf. Compu-
ter-Aided Design, pp. 672-677, Nov. 1998.

RADECKA AND ZILIC: DESIGN VERIFICATION BY TEST VECTORS AND ARITHMETIC TRANSFORM UNIVERSAL TEST SET 639

[29] S.W. Tung and J.Y. Jou, “Verification Pattern Generation for Core-
Based Design Using Port Order Fault Model,” Proc. Asian Test
Symp., pp. 402-407, 1998.

[30] P. Vado, Y. Savaria, Y. Zoccarato, and C. Robach, “A Methodology
for Validating Digital Circuits with Mutation Testing,” Proc. Int’l
Symp. Circuits and Systems, pp. 343-346, May 2000.

[31] A. Veneris and M. Abadir, “Design Error Diagnosis and
Correction via Test Vector Simulation,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 18, no. 12,
pp. 1803-1816, 1999.

[32] Z. Zilic and Z.G. Vranesic, “A Deterministic Multivariate
Interpolation Algorithm for Small Finite Fields,” IEEE Trans.
Computers, vol. 51, no. 9, pp. 1100-1105, Sept. 2002.

Katarzyna Radecka received the PhD degree
from McGill University, Montreal, Canada, in
2003. She received the MEng degree and BEng
degree (Honors) from the same university in
1997 and 1995. From 1996 to 1998, she worked
for Lucent Technologies in Allentown, Pennsyl-
vania. Currently, she is an assistant professor at
Concordia University in Montreal, Canada. Her
interests include verification and testing of digital
hardware, as well as reversible and quantum

computing. She coauthored the book Verification by Error Modeling
(Kluwer, 2003). She is a member of the IEEE.

Zeljko Zilic received the PhD degree from the
University of Toronto in 1997. From 1997 to
1998, he worked at Lucent Technologies.
Currently, he is an assistant professor at McGill
University, Montreal, Canada, and the director of
McGill’s Microelectronics and Computer Sys-
tems Laboratory. He holds a chercheur strate-
gique research chair from the Province of
Quebec. He received the Myril B. Reed Best
Paper Award from the IEEE International Mid-

west Symposium on Circuits and Systems in 2001 for work on substrate
coupling and its suppression. He holds four patents in the area of clock
and power management. He coauthored the book Verification by Error
Modeling (Kluwer, 2003). He is a member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

640 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 5, MAY 2004

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

