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Abstract: The measurement of human respiratory signals is crucial in cyberbiological 

systems. A disordered breathing pattern can be the first symptom of different physiological, 

mechanical, or psychological dysfunctions. Therefore, a real-time monitoring of the respiration 

patterns, as well as respiration rate is a critical need in medical applications. There are several 

methods for respiration rate measurement. However, despite their accuracy, these methods 

are expensive and could not be integrated in a body sensor network. In this work, we 

present a real-time cloud-based platform for both monitoring the respiration rate and breath 

pattern classification, remotely. The proposed system is designed particularly for patients 

with breathing problems (e.g., respiratory complications after surgery) or sleep disorders. 

Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE) and 

cloud-computing model. We also suggest a procedure to improve the accuracy of 

respiration rate for patients at rest positions. The overall error in the respiration rate 

calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Five 

types of respiration disorders, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot’s 

breathing are classified based on hierarchical Support Vector Machine (SVM) with seven 

different features. We have evaluated the performance of the proposed classification while 

it is individualized to every subject (case 1) as well as considering all subjects (case 2). 

Since the selection of kernel function is a key factor to decide SVM’s performance, in this 

paper three different kernel functions are evaluated. The experiments are conducted with 

11 subjects and the average accuracy of 94.52% for case 1 and the accuracy of 81.29% for 

case 2 are achieved based on Radial Basis Function (RBF). Finally, a performance 
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evaluation has been done for normal and impaired subjects considering sensitivity, 

specificity and G-mean parameters of different kernel functions. 

Keywords: respiration rate; breath analysis; accelerometer sensor; Support Vector 

Machine; breath disorder 

 

1. Introduction 

Different studies show the importance of monitoring and analyzing the respiration signals in fields 

such as medicine and physiology [1–4]. Today about 7% of the population of developed countries 

suffer from Chronic Obstructive Pulmonary Disease (COPD), and it is a growing problem in 

developing countries. For example, an estimated of 3.7 million people live with COPD in UK, 

predicted to increase by one-third by 2030, costing £1.2 billion/y [3]. Moreover, professionals in 

breathing and sleep centers are demanded to assist people with shortness of breath, cardiovascular 

problems, such as hypertension, atherosclerosis, stroke, heart failure, cardiac arrhythmias, and sudden 

infant death syndrome (SISD). Therefore, a real-time monitoring of the respiration rhythm plays an 

important role in both diagnosis and treatment of different disorders. Remote monitoring also helps in 

prevention and early diagnosis of adult diseases, such as obesity, diabetic ketoacidosis (DKA), brain 

disorders as well as abnormal breathing of newborns at home. There are different conventional 

methods for respiration rate measurement including spirometer, body volume changes, nasal 

thermocouples, impedance plethysmography, inductance pneumography, strain gauge measurements 

of thoracic circumference, whole-body plethysmography [4], pneumatic respiration transducers, the 

fiber-optic sensor method [5], the Doppler radar [6], and electrocardiogram (ECG)-based derived 

respiration measurements [7–9]. However, in spite of their accuracy, these methods are expensive and 

inflexible, which may bring discomfort to the patients and physicians. 

One recent development is the use of motion sensors to detect the small movements of the chest 

wall that occur during expansion and contraction of the lungs. In preliminary trials on hospital patients, 

it has been shown that with proper signal processing; this approach can produce results that match 

closely the measurements of nasal cannula pressure [10]. In [11] an accelerometer and pressure sensors 

are mounted on the body to obtain the respiratory rate. In this work the data was collected by the data 

acquisition card, and then the processing has been done in Labview software. A validation of 

respiratory signal derived from suprasternal, notch acceleration has been investigated by [12] for 

different body positions. In this paper, the spirometry and strain gauge respirometers (SGR) signals 

were filtered through an 8th order Butterworth bandpass filter with cut-off frequencies 0.1 Hz and  

1 Hz. In order to remove noise from accelerometer data, they used an 8th order Butterworth low-pass 

filter with a cut-off frequency of 1 Hz. The precision of each sample was 8 bits while the sampling rate 

was 2000 Hz. The authors show that the respiration rate from the accelerometer has 1.55% error with 

respect to the spirometer. Their data storage and processing is performed on a computer with their 

custom build LabVIEW Virtual Instrument. In [13] the respiratory component is also extracted from 

the accelerometer mounted on the suprasternal notch of subjects. The vibrations are recorded with a 

transducer electronic data sheets (TEDS) lightweight piezoelectric accelerometer. The results 
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demonstrate the feasibility of implementing an accelerometry-based portable device for respiration 

recording. The data acquisition is done with a compact system and data was stored in a laptop. 

Recently, [14] proposed a fusion method for accelerometer and gyroscope signals to calculate the 

respiration rate. They considered two types of exercises and the respiration rate errors are calculated as 

4.6% and 9.54% for the treadmill and leg press, respectively. 

In addition to obtaining an accurate respiration rate, several methods have been also suggested for 

identification of respiration disorders, such as sleep apnea. In fact, statistical features of different 

signals, such as nasal air flow, the thorax and abdomen effort signals, Electroencephalography (EEG), 

and ECG are mostly used in the detection. In [15] various feature sets are analyzed and a combination 

of classifiers are used based on the arterial oxygen saturation signal (SpO2) and the ECG in order to 

evaluate sleep quality and apnea detection. The Bagging with REP Tree classifier achieved 79.75% 

and 85.89% of sensitivity and specificity respectively, while the overall accuracy obtained 84.40%.  

In [16] the authors applied the wavelet transforms and an artificial neural network (ANN) algorithm to 

the EEG signal in order to identify sleep apnea episodes. Recently, [17] proposed a method which used 

Melfrequency cepstral coefficients (MFCC) as features extracted from respiratory sounds. They 

applied support vector machine classifier to distinguish normal, obstruction pathology airway and 

parenchymal pathology. They achieve an average classification accuracy of 90.77%.  

Indeed, there are several methods for classification of normal and sleep apnea breathing patterns. 

However, in this paper five different types of respiration disorders either with or without apnea are 

considered and remotely classified using hierarchical SVM, based on the best extracted features from 

accelerometer sensors data. SVM introduced by Vapnik [18] in 1995, is a set of related supervised 

learning methods used for classification, regression and ranking. SVM classifiers are trained by a 

learning method from optimization theory which makes a learning bias obtained from statistical 

learning theory [18–20]. Nonlinear problems in SVM are solved by mapping the n-dimensional input 

space into a high dimensional feature space in which a linear classifier is constructed which acts as a 

nonlinear classifier in input space [19]. In this work, different types of SVM classifiers are evaluated 

on five different breathing disorders, and finally the accuracy, sensitivity, specificity and G-mean 

parameters are calculated for distinguishing of healthy and unhealthy subjects. 

The advanced low-cost and energy efficient data transport architectures for body sensor networks 

allow the doctors and physicians monitor their patient remotely with serious focus and effect on 

successful results in healthcare [21]. Therefore, in this paper we address a primary advance in this 

capability through development of a platform. It delivers required accuracy, continuous monitoring at 

low cost, and cloud computing for breathing disorders classification. Indeed, in each breathing cycle 

the volume of the thoracic cavity is changed, resulted from the displacements of the rib cage 

and diaphragm. Hence, we employ an accelerometer sensor mounted on the subject’s chest to capture 

the movement of the rib cage while also providing more comfort compared to other locations, such as 

suprasternal notch. The previous approaches are primarily based on the use of offline data loggers and 

on-board signal processing. However, in our system we use cloud computing which can offer 

significant advantages over traditional methods, including increased on-line accessibility, scalability, 

automatic failover and fast automated recovery from failures.  
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The accelerometer data is transmitted via Bluetooth Low Energy (BLE) to PC/smartphones and 

then it is sent to the cloud to be processed and saved, immediately. The algorithms and models run on 

the backend and feed the application with relevant data in a reasonable amount of time. It is worth 

mentioning that in case of network disconnection, the data is saved in the intermediate interface. 

Therefore, the physicians can track the patients wherever they are with devices such as smartphones, 

tablets or the web regardless of their proximity to the patients. Moreover, in this study the accuracy of 

respiration rate compared to previous works [14], [12] has been improved in view of rest conditions as 

well as providing a classification for different breath problems. The overall proposed system is 

represented in Figure 1. Respiration rate analysis and classification methods are explained in details in 

the next sections. 

Figure 1. Overall view of the proposed cloud-based respiration monitoring platform.  

 

In Section 2, a new method is used to accurately calculate the respiration rate. In Section 3, the 

hierarchical SVM has been applied on respiration signals which derived from the accelerometer to 

classify different types of the respiration patterns. Experimental results are presented and discussed in 

Section 4. In Section 5, normal and impaired respirations classification is investigated. Finally, Section 

6 concludes the paper.  

2. Respiration Rate Analysis 

In this section, we describe a procedure to estimate the respiration rate at rest positions. Figure 2 

shows the signal processing methods applied on the accelerometer sensor data to be validated with a 

reference i.e., SPR-BTA spirometer.  

In order to make sure that the sensors’ readings are accurate enough to be processed, we calibrate 

our accelerometer sensor using least square method proposed by [22]. Due to inherent deficiency or 

aging problems in cyber-biological systems, sensors calibration is suggested. Calibration, which is 

defined as the process of mapping raw sensor readings into corrected values, can be used to compensate 

the systematic offset and gain [23]. Generally, calibration of sensors requires experience and special 

accurate tools; however, a straightforward method to calibrate an accelerometer is performed at 6 

stationary positions [22]. We need to collect a few seconds of accelerometer raw data at each position. 

Then the least square method is applied to obtain the 12 accelerometer calibration parameters. The 

calibration procedure is simple, and needs to be executed once. 
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Figure 2. Signal processing of respiration rate analysis.  

 

The calibration procedure can be briefly explained as: 

                             

                 

                 

                 

                 

  (1) 

      (2) 

where: 

 Vector   is accelerator sensor raw data collected at 6 stationary positions 

 Vector   is the known normalized Earth gravity vector. 

 Matrix   is the 12 calibration parameters that is determined as below: 

                (3) 

In our experiments, the accelerometer sensor is mounted on the subject’s chest for respiration rate 

analysis. The raw sensor data is filtered through a 10th order Butterworth low pass filter with cut of 

frequency 1 Hz; and spirometer signal is smoothed with window size 30. Figure 3a, depicts a part of 

respiration signals from sensor and spirometer for the normal breathing pattern of a 30 years old man. 

As can be seen, even though two signals seem similar, there is an unwanted cumulative error [14] over 

time that affected their synchronization. We found out that this type of error on signals occurs when 

two signals have different sampling frequency. Although, the sampling rates of accelerometer and 

spirometer are both set to 50 Hz, due to architecture of the inertial measurement unit (IMU), there 

might be a small difference between the sampling rate and measured frequency. So, to compare the 

respiration rate, it is essential to ensure that both signals have identical frequencies. For this purpose 

after rational fraction estimation, we resample our data by an anti-aliasing low pass FIR filter during 
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the resampling process. In our experiments, the sampling rate of the accelerometer sensor was set to  

50 Hz, however; the data was logged with about 52.5 Hz (measured frequency). With resampling 

process explained above, we could compensate the time lead about 0.05 per second (Figure 3). It is 

worth noting that for resampling process the system automatically checks the number of samples in 

each analysis window to find the measured frequency of the sensor. Then, to find the best starting 

point between accelerometer and spirometer, the peak of their cross correlation is obtained while also 

used for synchronization of two respiration signals. Now, the respiration rate can be computed based 

on the number of local maxima in the breath signals per minute.  

Figure 3. (a) The cumulative error of accelerometer and spirometer signals over time 

before resampling (b) Two signals after resampling procedure. 

 

3. Respiration Pattern Classification 

The main preprocessing steps for breath patterns classifications are calibration, filtering and 

resampling explained in Section 2. Once the data are processed, they must be collated and labeled 

based on the different classes such as Normal, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and 

Biot’s respiration patterns. Then a hierarchical structure is built for modeling the classification 

problem. This is a tree like structure describing the patterns we are trying to classify. At each level of 

the tree, a SVM classifier is used based on the extracted features and data are separated into one of the 

branches. Once we reach a leaf node, a final classification is made. The classification structure is 

shown in Section 4 in more details. 

 

1.08 sec 1.26sec 

(a) 
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3.1. Feature Extraction 

Features can be thought of as statistically unique elements of the sensor data, which are used to 

differentiate diverse classes or states. In the proposed system, classes are the different respiration 

patterns inferred from various types of breath disorders such as Normal, Bradapnea, Tachypnea, 

Kaussmal and two types of constraint breathing, such as Cheyn-stokes and Biot’s respiration patterns. 

Features such as energy, mean, maximum, standard deviation, inter-axes correlation and number of 

local maxima are calculated on both three axes         of the accelerometer and the magnitude of 

them                . The features are listed in Table 1. The    corresponding to the signal, 

and   is number of samples. Besides, we extract the Approximate Entropy (ApEn) from the 

accelerometer signals as one of the main feature in our classifier explained in the next subsection. 

Indeed, there are a vast number of diverse features providing freedom in selection that best suit each 

application. A window of a fixed length (10 s) shifted in increments of 2 s was experimentally 

selected. We asked the subjects to pause breathing for at least 3 s to simulate the apnea in Cheyn-

stokes and Biot’s breathing patterns (in our experiments, no subject paused breathing more than about 

5 s). The best features are extracted based on the obtained accuracy resulted from the training set. 

Approximate Entropy (ApEn) Feature 

ApEn is a technique introduced by Pincus [24] to quantify the regularity/irregularity of a signal. It 

has been applied to describe changes in physical activity measures as well as other movement tasks [25]. 

ApEn has two user-specified parameters:   , a positive integer, indicates the length of compared 

window, and   is the tolerance range. It is worth mentioning that, although   and   are critical in 

determining the outcome of ApEn, there is no established consensus for choosing these parameters in 

short data sets, especially for biological data [25]. In our experiments we set   and   to 5 and 0.15, 

respectively.  

Table 1. The features for SVM classification. 

Features Description 

Mean    
 

 
   

 
    , where    corresponds to the samples,         

Standard Deviation SD = 
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from two axes,         

Energy      
  

    , where    corresponding to the samples,         

Approximate Entropy 

            
 

     
     

          
   

 

   
     

         
    , n is the 

number of samples in time series   ,   is the tolerance range and   is the length of 

compared window and   is the correlation integral [26] 

Maximum Max (      the maximum value of   in window size w. 
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For an   sample time series              , given   , form vector sequences   
  through  

      
  as: 

  
                                            (4) 

For each         , let   
     be           times the number of vectors   

  within   

of   
  which means [26]:  

  
                                                     (5) 

                
         

                      (6) 

ApEn is obtained from the Equation (7) as follow [24]: 

             
   

                (7) 

                     
    

     

   

 (8) 

The ApEn calculation returns a nonnegative number where higher value shows irregularity of the 

signal and more regularity resulted from the lower ApEn. Note that, ApEn can be used for small data 

samples even in real time [24] which makes it suitable for our cloud-based monitoring platform. 

3.2. Hierarchical Support Vector Machine Classification 

A support vector machine is based on constructing one or a set of hyperplane in a high dimensional 

space, which can be used for classification purposes. SVM constructs linear functions from a set of 

labeled training dataset. The linear separator is constructed considering maximum distance from the 

hyper plane to a fraction of the data points, named support vectors [19] and shown in Figure 4. SVM is 

designed for binary-classification problems with   training samples. Each sample is indicated by 

        where                 For a given data set: 

        ,        ,            ,       (7) 

where    is either 1 or −1, indicating the class to which     belongs, and    is a d-dimensional real 

vector. The notation    refers to the Cartesian product of   copies of  , which is a d-dimensional 

vector space over the field of the real numbers.  

The decision boundary of a linear classifier can be written as follows: 

            (8) 

where   is a weight vector and   is a bias. There are many linear separators; however the SVM aims 

to obtain the maximum-margin hyperplane from any data point. Indeed, this distance from the decision 

boundary to the closest data point determines the margin of the classifier. The linear classifier is 

defined as: 

                      (9) 



Sensors 2014, 14 11212 

 

 

Designing linear separator is to find the best   and   which maximize the geometric margin 

         , considering     
           for all                . This can be reformulated as a 

minimization problem as follow: 

   
   

 
 

 
        (10) 

          
                    

Indeed, this problem is a convex quadratic optimization with quadratic function subject to linear 

constraints which can transformed into the Lagrangian dual with the Karush-Kuhn-Tucker (KKT) 

conditions. Lagrange multiplier    is linked with every inequality of the linear constrains in the primal 

problem as follow: 
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Usually only a small parts of     are not zero, the corresponding samples are support vectors. 

Optimal classification function is:  

                               

   

     

    
       (12) 

    presents the number of the support vectors. In order to improve linear separability, the original 

input space is mapped into a high dimensional space which is known as feature space. In this case the 

decision function of the classifier becomes: 

              

   

     

       
                         (13) 

A kernel function               
       gives the inner product value of    and    in the 

feature space. Therefore the final function becomes:  

              

   

     

              (14) 

Three types of kernels are evaluated in this paper which are: 

 Linear kernel:            
   , 

 Polynomial kernel with degree 3:             
       , 

 Radial basis function (RBF) kernel:                
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The SVM performance depends on the choice of the kernel function to transform data from input 

space to a higher dimensional feature space. There are no defined rules for choosing the kernel type, 

except satisfactory performance by simulation study [19]. Figure 4 depicts the whole system flow of 

breath disorder recognition architecture. 

Figure 4. Respiration disorder classification procedure using different kernel functions in 

hierarchical SVM classifier. 

 

4. Experimental Results and Data Analysis 

In this section, we provide experimental results on 12-bit resolution data derived from SensorTag [27] 

with three-axis low-power KXTJ9 accelerometer sensor (Figure 5a). The data is transmitted via 

CC2541 BLE, a new standard that allows Bluetooth equipment to run for long time on a single coin 

cell battery. It is worth noting that our node is fully radio type approved for US, Europe, Japan and 

Canada. The received sensors data are stored in the cloud in order to real-time or further analysis. The 

SPR-BTA spirometer signal is used as our reference measures the oral breathing only (Figure 5b), so a 

nose clip was used to prevent nasal breathing during recordings. The Go!Link USB sensor interface is 

used as the data logger of our spirometer. 

4.1. Test Setup 

The participants of this study were five males and six females aged 4 to 48 with Mean ± SD,  

26.54 ± 11.9026. They were instructed how to perform each breath exercise before their recording 

sessions. The experimental trials lasted for about 45 min per subject. We asked the subjects to perform 

Normal, Bradapnea, Tachypnea, and Cheyn-stokes patterns, each for 2 min (6000 samples) and the 
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other two types for 1 min with a 3 min rest interval. For simulating apnea in Cheyn-stokes and Biot’s 

breathing exercises, we requested the participants to pause breathing for at least 3 s. The sensor was 

mounted on the subject’s chest in the middle of sternum region (Figure 5c) and secured by a soft and 

elastic strap which is easy to attach and comfortable to wear. In the trial session, the subjects were in 

the lying position; however, the rest positions or activities in which rib cage is stationary could be 

considered. 

Figure 5. (a) Sensory node (b) Spirometer (c) Hardware module being worn. 

 

(a) (b) (c) 

4.2. Accelerometer Driven Respiration Validation 

In this section, first the correlation between the spirometer and accelerometer signal is calculated on 

11 different subjects with various ages, each for five types of breathing disorders. Next, the respiratory 

rate which recognized as important indicators of physical health or the exacerbation of medical 

conditions is calculated. In our test, the subjects are asked to perform six breathing patterns  

i.e., Normal, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot’s.  

Bradapnea is regular in rhythm but slower than normal in rate. Tachypnea is the condition of rapid 

breathing, with respiration rate higher than 20 respirations per minute (rpm). Tachypnea may occur 

due to physiological or pathological problems [28]. Cheyn-stokes breathing pattern determined by 

gradually increasing, then decreasing the lung volume with a period of apnea. People suffering from 

central sleep apnea syndrome (CSAS) have the same breathing pattern at sleep [29]. Kussmaul which 

is defined as a rapid, deep and laboured breathing type usually occurs in diabetics in diabetic 

ketoacidosis [30].  

Biot’s breathing is characterized by periods of rapid respirations followed by regular periods of 

apnea. There are different reasons which causes Biot’s breathing, such as damage to the medulla 

oblongata by stroke (CVA) or trauma, or pressure on the medulla due to uncal or tenorial herniation 

and prolonged opioid abuse [30]. Figure 6 shows samples of all normalized patterns extracted from 

spirometery and accelerometer.  

The correlation of spirometer and accelerometer signals of all subjects for each breath pattern is 

shown in Figure 7. For example, in Normal pattern we have 22-minute data for 11 subjects and the 

correlation of the accelerometer and spirometer signals is achieved 0.83. According to Figure 7, the 

mean of the obtained correlations of all breathing patterns is 0.84 which shows a very close 

correspondence of the sensor and spirometer data. 
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Figure 6. (a) Accelerometer driven respiration and spirometer signals for Normal 

breathing, (b) Bradapnea, (c) Tachypnea, (d) Cheyn-stokes, (e) Kussmaul and (f) Biot’s 

breathing patterns. 

 

Figure 7. Average correlation between spirometer and accelerometer signals and the 

standard deviations for five different disorders. 

 

According to the procedure explained in section 2, the average respiration rates are extracted from 

the 10-second windows for 11 subjects and 6 breath conditions. The overall error in respiration rate 

calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Thus, we could 

obtain better accuracy for respiration rate compared to [12], dual straingauge respirometers [31], and [14] 

in lying position using a single accelerometer. The details of the experiments are brought in Table 2. 

The average volume of air that was inhaled/exhaled per breath for each subject is also listed in Table 3. 
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It confirms that the subjects were not over emphasizing the breathing movements. For instance, it can 

be seen that standard deviation in Cheyn-stokes breath is more than other types, meaning that subjects 

were correctly changed the air volumes in this exercise.  

Table 2. Respiration rate measurements with both accelerometer and spirometer for 

different subjects.  

Subject 

ID 
Gender/Age 

Respiration Rate with Accelerometer (rpm) Respiration Rate with Spirometer (rpm) 

Normal Bradapnea Tachypnea 

Cheyn-

stokes 

Kussmaul Biot’s Normal Bradapnea Tachypnea 

Cheyn-

stokes 

Kussmaul Biot’s 

1 M/48 13.01 7.45 46.73 37.03 17.44 33.70 13.87 7.46 46.58 36.80 17.21 33.79 

2 F/37 26.66 19.18 104.89 68.80 47.43 38.86 26.52 19.10 104.16 69.44 47.24 39.01 

3 M/30 15.82 6.34 108.69 61.64 55.14 36.36 15.85 6.39 108.69 61.50 54.64 36.43 

4 M/29 25.90 8.52 53.09 44.52 69.35 27.80 26.01 8.47 52.79 44.29 69.75 27.66 

5 F/28 24.27 17.42 30.00 34.96 50.00 76.92 24.23 17.52 29.97 34.88 49.88 77.41 

6 F/28 23.62 19.82 25.02 36.23 50.00 33.70 23.78 19.60 24.97 36.40 49.83 33.63 

7 F/28 24.56 9.63 74.62 51.72 51.72 34.70 24.50 9.70 74.25 51.42 51.28 34.66 

8 F/27 25.90 11.78 53.95 37.50 39.78 45.80 25.64 11.75 53.83 37.40 39.57 45.91 

9 F/24 16.42 14.45 113.92 26.93 48.61 33.18 16.23 14.63 113.92 26.78 48.83 33.11 

10 M/9 20.17 NA 89.28 NA NA NA 20.54 NA 89.82 NA NA NA 

11 M/4 31.25 28.51 NA NA NA NA 30.98 28.41 NA NA NA NA 

Respiration per minute (rpm). Two kids were asked to perform only two breathing patterns out of Normal, 

Bradapnea and Tachypnea types. NA (Not Applicable) here means that the kids did not perform the trials.  

Table 3. The average volume of air (liter) inhaled/exhaled per breath for each subject. 

Subjects ID Normal Bradapnea Tachypnea Cheyn-stokes Kussmaul Biot’s 

1 0.58 ± 0.0036 0.72 ± 0.0249 1.22 ± 9.58E-04 2.78 ± 0.4120 3.20 ± 0.0030 2.78 ± 0.0030 

2 0.67 ± 0.0088 1.15 ± 9.33E-04 0.53 ± 6.67E-05 1.32 ± 0.2660 2.22 ± 0.0048 2.25 ± 0.0048 

3 0.54 ± 0.0015 1.54 ± 0.0021 0.53 ± 6.25E-04 0.88 ± 0.3938 1.34 ± 0.0044 1.70 ± 0.0044 

4 0.64 ± 3.00E-04 3.12 ± 0.0171 0.41 ± 0.0014 1.38 ± 0.1649 2.85 ± 0.0033 3.50 ± 0.0033 

5 0.80 ± 0.0023 0.93 ± 0.0013 1.51 ± 0.0065 1.27 ± 0.2107 1.83 ± 0.0028 1.36 ± 0.0028 

6 0.72 ± 0.0016 1.50 ± 0.0017 0.46 ± 1.00E-04 1.00 ± 0.2632 1.22 ± 0.0013 1.03 ± 0.0013 

7 0.40 ± 2.33E-04 0.71± 0.0016 0.65 ± 4.33E-04 1.02 ± 0.0544 1.31 ± 0.0018 1.59 ± 0.0018 

8 0.64 ± 0.0025 1.71 ± 0.0305 0.58 ± 0.0028 1.15 ± 0.2871 1.42 ± 2.33E-04 1.78 ± 2.33E-04 

9 0.59 ± 0.0019 0.79 ± 0.0032 0.83 ± 0.0043 0.93 ± 0.0780 2.39 ± 0.0036 2.51 ± 0.0036 

10 0.54 ± 0.0018 NA 0.38 ± 9.67E-04 NA NA NA 

11 0.30 ± 4.67E-04 0.27 ± 5.67E-04 NA NA NA NA 

4.3. Results and Performance Evaluation of Hierarchical SVM Classification  

The proposed classification method is performed by using a cloud-computing and the results are 

sent to our monitoring platform. We categorized breathing data into six classes based on the features 

evaluations. Considering the proposed tree structure in Figure 8, first, the data are automatically 

separated into G11 and G12 groups, employing the assigned labels in ―Labelling‖ section (see  

Figure 4) and then are passed in to the second and third levels. 
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Table 4. Five samples of all features combinations and training accuracies for different branches of the proposed classification for case 1. 

Branch #1 Branch #2 Branch #3 Branch #4 Branch #5 

                                                                 

               98                 100             100             100 SD         100 

               96         ApEn(  ) 100            100              100             100 

               96                    100            100               100        ApEn(  ) 100 

             94              98 ApEn(  ) ApEn(  ) 100       ApEn(  ) 100       Max(y) 97 

             94             97               95              92       Max(Mag) 94 

     is the energy of a signal,         refers to the correlation of the signals,        shows the maximum of the signal,       and    correspond to     and   after 

removing the DC levels.       and     are the normalized values of the accelerometer data. P(.) is the number of local maxima derived from corresponding signal. 

Table 5. The best selected features combinations and training accuracies for different branches of the proposed classification for case 2. 

Branch #1 Branch #2 Branch #3 Branch #4 Branch #5 

                                                                 

                92 Max(y)         94                98                  99 Max(y) Max(Mag) 99 
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We have evaluated the performance of the proposed classification while it is individualized to every 

subject (case 1) as well as considering all subjects (case 2). Five samples of extracted features and 

accuracies in training phase for an individual subject are listed in Table 4 and the highlighted row 

corresponds to the best selected features. Table 5 also provides the best extracted features in terms of 

training accuracy while the system is trained with all subjects’ data. The accuracies in both tables are 

achieved while the training set is the same as validation set. All simulations were carried out using the 

Radial Basis kernel Function (RBF) with σ = 1 and A in Tables 4 and 5 denotes the training accuracy 

calculated by our SVM classifier for each branch. We used linear and non-linear SVM classifiers on 

each level of our tree structure while training the system with randomly chosen 70% of the data. The 

performance evaluation is done by testing the remaining 30% of the data. 

In Figure 8,     represents the     group and     is the     feature of the     branch. Figure 9a shows 

the energy along axes y of the accelerometer versus the correlation of dimension x and y.  

Figure 8. Tree structure of proposed hierarchical SVM classifier. 

 

The ApEn is applied on the normalized data while energy performs on x, y and z dimension after 

removing DC levels. Figure 9 shows the nonlinear trend plots for the different features in all branches 

of our classification structure while only a single system was trained with all subjects’ signals (case 2).  

There are totally 168 and 42 training trials for     and     for training subject’s data individually. 

The numbers of trials for training all subjects’ data are 1680 and 378, respectively. We calculate all 

combinations of defined features in each branch and then select the one with the best SVM  

training accuracy.  

The processing window for testing data was experimentally selected to be 10 s in order to include at 

least one complete cycle including pause period (Apnea) for Cheyn-stokes and Biot’s breathing 

patterns. As we mentioned before, the window is shifted in increments of 2 s. The average 

classification accuracy of 94.50% was obtained for RBF kernel function for 11 subjects while the 

proposed classification is individualized to every subject. In this case, the system is effectively tuned to 

every individual and the subjects can either perform training at home or during periodic visits to breath 

specialist or a physician. The classification performance of 81.29% was also attained when only a 

single system was trained with all subjects’ data.  
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Figure 9. Selected features for (a) The first branch (b) Second branch, (c) Third branch, 

(d) Forth branch (e) and fifth branch of our classification structure with the nonlinear trend 

of Radial Basis Function kernel function considering all subjects’ data.  

 

As performance of SVM depends on the choice of the kernel function, we also evaluate the linear 

and polynomial degree 3 of kernel functions. Figure 10 demonstrates the differences of kernel function 

for features        and       as an example. Table 6 shows the selected features and accuracy for 

three types of kernel function in both cases 1 and 2. It also shows that the best training accuracy for 

each classifier obtained with different feature set. The classification of the dataset using the selected 

features in case 1 gives an average test accuracy of 94.52%, 93.15% and 84.93% for RBF, polynomial 

and linear kernel functions, respectively. In case 2, the test accuracy of the single system is 81.29%, 

78.12% and 69.95% for RBF, polynomial and linear kernel functions, respectively. Therefore, we 

conclude that for our system (in both cases) the radial basis function results in better accuracy rather 

than the other two methods. 
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Table 6. Selected features and training accuracy for different branches of the proposed classification with different kernel functions for  

both cases. 

Case 1 Branch #1 Branch #2 Branch #3 Branch #4 Branch #5 

Best Features                                                               

RBF                98                 100             100             100 SD         100 

Linear                93                    97 P(z)        100        ApEn(  ) 100 SD         100 

Polynomial                97       P(y) 100             100                100             100 

Case 2 Branch #1 Branch #2 Branch #3 Branch #4 Branch #5 

Best Features                                                               

RBF                 92 Max(y)         94                98                  99 Max(y) Max(Mag) 99 

Linear                81                 86 P(z)        94       ApEn(  ) 97 Max(y)      99 

Polynomial               89                P(z) SD(y)                                   
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Figure 10. SVM classification based on (a) RBF (b) Linear, and (c) Polynomial degree 3 

kernel functions for an average of magnitude signal vs. standard deviation of Y axes. 

 

4.4. Normal and Impaired Respirations Classification 

In another aspect, our classification problem could be modeled as a binary classification for 

detecting healthy (positive) or unhealthy (negative) subjects. In this case,   ,   ,   ,    stand for 

true positives, false positives, false negatives and true negatives correspondingly. The performance of 

the classifier was quantified based on its sensitivity, specificity and the overall accuracy. It is worth 

mentioning that sensitivity is also called positive class accuracy or true positive rate, while specificity 

called negative class accuracy or true negative rate. 

Another parameter often used is the geometric mean of sensitivity and specificity (G-mean) which 

is defined as the square root of the product between sensitivity and specificity as Equation (16). The 

average values of sensitivity, specificity and geometric mean of SVM classifications for 11 subjects 

with different kernel functions are shown in Table 7. Table 8 also shows the classification performance 

of our single model. The values of    ,   ,  ,    are presented according to the logged data of 

Normal and impaired breaths, e.g., there are 18 and 72 testing trials for each subject’s Normal and 

impaired breathing patterns, respectively 

            
  

     
                   

  

     
              

     

           
 (15) 

 

                                (16) 

Table 7. Test performances of the classification for case 1 (in average for 11 subjects). 

Evaluation Parameters             Sensitivity Specificity Accuracy G-mean 

RBF 18 72 0 0 1 1 1 1 

Polynomial 18 67.97 0 4.03 1 0.94 0.95 0.97 

Linear 16.28 72 0 1.72 1 0.97 0.98 0.98 

Table 8. Test performances of the classification for case 2. 

Evaluation Parameters             Sensitivity Specificity Accuracy G-mean 

RBF 167 647 37 31 0.81 0.95 0.92 0.96 

Polynomial 161 641 43 37 0.78 0.94 0.91 0.95 

Linear 150 626 58 48 0.72 0.93 0.88 0.94 

(b) (c) 
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Therefore, the best classification parameters are achieved for distinguishing between Normal and 

impaired respiration patterns while using RBF kernel function.  

5. Conclusions 

In this paper, we presented an accurate, reliable and real-time respiration monitoring system. In fact, 

early identification through such portable monitoring systems and timely treatment of exacerbations 

can decrease the hospital admissions and slow deterioration while reducing early mortality and disease 

costs [32]. We presented a procedure to obtain the respiration rate with negligible error i.e., 0.53% for 

rest positions. The results reveal the potential of remote accelerometer based respiration monitoring as 

a simple, convenient and low-cost method. Besides, a hierarchical SVM has been proposed to classify 

five types of respiratory problems for the purposes of diagnosis. Three different kernel functions are 

evaluated and finally, the radial basis function (RBF) was shown to outperform the classification 

accuracy of linear and polynomial functions. We also tested our method for normal and impaired 

breathing classification and the comparison demonstrated that RBF kernel function is again better in 

terms of accuracy, specificity, sensitivity and G-mean. The results permit to consider SVM analysis as 

a promising methodology to study the respiratory patterns in patients with breath disorders. Utilizing 

cloud computing which provides vast pool of computation power and unlimited storage space let the 

physicians share information together and precisely diagnosis the breathing diseases. As a future work, 

we are going to add respiratory therapy in the platform is such a way that professional experts can 

remotely monitor the patient’s progressing in performing the prescribed breathing exercises. 
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