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Abstract: The measurement of human respiratory sgmalcrucial in cyberbiological
systems. A disordered breathing pattern can be the first symptom of different physiological,
mechanical, or psychological dysfuncsomherefoe, a reatime monitoring of the respiration
patterrs, as well as respiration rate is a critical neechedical applications. There ageveral
methods for respiration rate measurement. Howelespitetheir accuracy, these methods

are expensive and clounot be integrated im body sensor networkn this wok, we
present a redime cloudbased platform for both monitoring the respiration rate and breath
pattern classificatiorremotely The proposed system is designed particularly for patients
with breathing problems (e.grespiratory complications after surgery) or sleep disorders.
Our system includes calibrated accelerometer sensor, BludtositEnergy (BLE) and
cloudcomputing model. We also suggestpeocedureto improve the accuracy of
respiraton rate for patients atest positions The overall error inthe respiration rate
calculation isobtained0.53% considering SRBTA spirometer as the referendéve

types of respiration disordeBradapnealachypneaCheynstokes Kaussmal , and
breathingare chssified based on hierarchical Support Vect@acMne (SVM)with seven
different featuresWe have evaluated the performance of the proposed classification while
it is individualized to every subject (case 1) as well as considering allctuljgase 2)
Since the selection of kernel function i1Is a
paper three different kernel functions are evaluaié@ experiments are conducted with

11 subject@and the average accuracy of % for case Jandthe accuracy 081.29%for

case 2are achieved based oRadial Basis Function (RBF)Finally, a performance
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evaluation has been done foormal and impaired subjects considering sensitivity,
specificity and Gmean parameters of different kernel functions.

Keywords: respiration rate; breath analysis; accelerometer serfSopport Vector
Machine breath disorder

1. Introduction

Different studies show the importance of monitoring and analyzing the respiration signals in fields
such as medicine anphysiology[1i4]. Today about 7% of the population of developed countries
suffer from ChronicObstructive Pulmonary Disease (COPD), and it is a growing problem in
developing countriesFor example, & estimated of 3.7 million people live with COPD in UK,
predictedto increase by onthird by 2030,costing £1.2 billion/y [3]. Moreover, professionals in
breathing and sleep centers are demanded to assist people with shortness of breath, cardiovascul
problems such as hypertension, atherosclerosis, stroke, hdarefatardiac arrhythmias, and sudden
infant death syndrome (SISD). Therefore, a-teaé monitoring ofthe respiration rhythm plays an
important role in both diagnosis and treatment of different disorders. Remote monitoring also helps in
prevention and aly diagnosis of adult diseases, such as obesity, diabetic ketoacidosis (DKA), brain
disorders as well as abnormal breathing of newb@athsome. There are different conventional
methods &ér respiration rate measuremeimtcluding spiromeér, body volume bhanges nasal
thermocouples, impedance plethysmography, inductance pneumogsaaity gauge measurements
of thoracic circumference, wheleody plethysmography4], pneumatic respiration transducers, the
fiber-optic sensor metho{b], the Doppler radaf6], and electrocardiogram (EC®ased derived
respiration measuremertd 9]. However, in spite of their accuradyese methods are expensive and
inflexible, which may bring discomfort to thgatientsand physicians.

One recentevelopment is the usd motion sensors to detect the small movements of the chest
wall that occur during expansion and contraction of the lungsreliminary trials on hospital patients,
it has been shown that with proper sigpabcessingthis approachcan produce resulthat match
closelythe measurenents of nasal cannula press[i€]. In[11] an accelerometer and pressure sensors
are mounted on the body to obtain the respiratory rate. In this work thevaitallected by the data
acquisition card, and then the processing has been done in Labview sofwaadidation of
respiatory signal derived from suprasternal, notch acceleration has been investigdte?] for
different body positionsin this paper, the spirometry and strgiauge respirometers (SGR) signals
were filtered through an 8th order Butterworth bandpass filieh cutoff frequencies 0.1 Hz and
1 Hz.In order to remove noise from accelerometer daty usecan 8th order Butterworth loyass
filter with a cutoff frequency of 1 Hz. The precision edch samplevas 8 bits whiléhe sampling rate
was 2000 HzThe authors show that the respiration rate from the accelerometer has 1.55% error with
respect to thespirometer. Their data storage and processing is performed on a computer with their
custom build LabVIEW Virtual Instrumenin [13] the respiratory component is also extracted from
the accelerometer mounted on the suprasternal notch of subjects. The vibrations are recorded with
transducer electronic data sheets (TEDS) lightweight piezoelectric acceleromegerestiits
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demonstate the feasibility of implementing an acceleromdiaged portable dece for respiration
recording. he data acquisition is done with a compact systemdatd was stored in a laptop
Recently,[14] proposed a fusion method for accelerometer and gypess@nals to calculate the
respiration rate. They considered two types of exercises and the respiration rate errors are calculated ¢
4.6% and 9.54% for the treadmill and leg presspectively.

In addition to obtaiimg an accurate respiration rate, seenethods have beeaisosuggested for
identification of respiration disorders, such as sleep apnetact, statistical features of different
signals such as nasal air flow, the thorax and abdomen effort signals, Electroencephalography (EEG),
and ECGare mostly used in the detectidn.[15] various feature setwre analyze@énd acombination
of classifiersare useased on the arterial oxygseaturation signal (Sppand theECG in order to
evaluate sleep quality arapnea detectiorThe Bagging wih REP Tree classifier achievd®.75%
and 85.89% okensitivity and specificity respectively, while theverall accuracybtained84.40%.

In [16] the authors applied theavelet transforms and an artificial neural netw@kIN) algorithm to

the EEG signlain orderto identify sleep apneapisodesRecently, L7] proposed a method which used
Melfrequency cepstral coefficients (MFCC) as features extracted from respiratory sounds. They
applied support vector machine classifier to distinguish normal, obstrupathology airway and
parenchymal pathology. They achieme averagelassification accuracy of 90.77%.

Indeed, here are several methods for classification of normal and sleep apnea breathing patterns.
However, in this paper five different types @fspiration disordersitherwith or without apnea are
considered and remotely classifiesing hierarchicalSVM, based on the best extracted featdrem
accelerometer sensogata SVM introduced by Vapnik18] in 19%, is a set of related supervised
learning methods used for classification, regression and ranBMbl classifiers are trained by a
learning method from optimization theory which makes a learning bias obtained from statistical
learning theory 18i 20]. Nonlinear problems in\&V are solved by mapping thedimensional input
space into a high dimensional feature space in which a linear classifier is constructed which acts as «
nonlinear classifier in input spacgé9. In this work,different types of SVM classifiers are evaluated
on five different Ibeahing disordersand finally theaccuracy, sensitivity, specificity and-iBean
parameters arealculatedor distinguishingof healthyandunhealthy subjects

The advancedow-costand energy efficiet data transport architectures foody sensonetworks
allow the doctors and physicians monitor their patisrhotely with seriousfocus and effect on
successfulresults in healthcarg21]. Therefore,in this paperwe address a primary advance in this
capability through development ofpdatform. It delivergequired accuracy, continuous monitoring at
low cost, and cloud computing for breathing disosd®assification.Indeed, in eaclbreathing cycle
the volume of the thoracic cavitys changedresulted from the displacements of the rib cage
anddiaphragmHence,we employan accelerometesensor mounted on the subfisathest to capture
the movement of the rib cage whaéso providig more comfortcompared tather locationssuch as
suprasternal notcfThe previous approaches are primarily based on the use of offline data loggers and
onboard signal processing. However, in our systeme use cloudcomputing which can offer
significantadvantages over traditionalethods induding increased ofine accessibility, scalability,
automatic failover and fast automateecovery fronfailures
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The accelerometedata is transmitted via Bluetooth Low Energy (BLE) to $?@rtphonesand
then t is sent to theloud to be processed and savedmediately The algorithms and models run on
the backend anteed the application with relevadatain a reasonable amount of timé is worth
mentioning that in case of network disconnection, the datsavedin the intermediate interface
Therefore, the physicians ctnack the patients wherevehey are with devices such as smartphones,
tabletsor the web regardless of their proximity to the patients. Moreavéhjs studythe accuracy of
respiration rate compared to previous wofdgl], [12] has been improved in view of rest condis@s
well as providing a classification for different breath probleise overall proposed system is
represented in Figure Respiration rate analysis and classification methods)gkainedn detals in
the next sections.

Figure 1. Overall view of the proposed clodmhsed respiration monitoring platform
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In Section 2, a new method is used to accurately calculate the respiration re@ectlon 3, the
hierarchicalSVM has beerappliedon respiréion signalswhich derived from the accelerometer to
classify different types of the respiration patterns. Experimental results are presented and discussed ir
Section4. In Section 5,normal andmpairedrespirations classification is investigat&ially, Section
6 concludes the paper.
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2. Respiration Rate Analysis

In this section, we describe a procedure to estimate the respiraticat ratpositions Figure 2
shows the signal processing methagplied on the accelerometsensor datéo be validatd with a
referencea.e., SPRBTA spirometer

Il n order to make sur e accunatetenotgh t® bespeocessedicaiyater e a d
our accelerometer sensor using least square method propos2d.hyye to inherent deficiency or
aging problems in cybdriological systems, sensors calibration is suggested. Calibration, which is
defined as the process of mapping raw sensor readings into corrected values, can be used to compens:
the systematic ¢det andgain [23]. Generally, calibration of sensors requires experience and special
accurate tools; however, a straightforward method to calibrate an accelerometer is performed at 6
stationary positionf22]. We need to collect a few seconds of acceteter raw data at each position.
Then the least square method is applied to obtain the 12 accelerometer calibration paréneeters.
calibration procedure is simple, anéeds to bexecutednce
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Figure 2. Signal processing of respiration rate analysis
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where:

9 Vector« is the known normalized Earth gravity vector
§ Matrix & is the 12 calibration parameters that is determined as below:
L o8 & & (3)

In our experiments he accelerometer ssoris mountedon the subjeds chest for respiration rate
analysis.The raw sensodata is filtered through a 10th order Butterworth low pass filter with cut of
frequency 1Hz; and spirometer signal is smoothed with window sizeF3§ure 3, depictsa part of
respiration signalfrom sensor and spirometfar the normal breathing pattern of a 30 years old man.
As can be seen, even though two signals seem similar, there is an unwanted cumulafi/4 ewer
time that affected their synchronization. We found out that this type of error on signals occurs when
two signals have different sampling frequgnélthough, the sampling rate of accelerometer and
spirometerare both set to 561z, due toarchiecture of thenertial measurement unit (IMU), there
might be a small difference between the sampling rate and measured frequencycdbapacethe
respiration rateit is essential to ensure that both signals have identical frequencies. For this purpose
after rational fraction estimation, we resample our data by arakeding low pass FIR filter during
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the resampling procesk our experiments, theampling rate of thaccelerometesensor was set to
50 Hz, however;the data wadoggedwith about 525 Hz (measured frequency). With resampling
process explained above, we could compengetéime lead about 0.05 per second (FigurelBjs
worth noting that for resampling proces$e tsystem automatically checks the number of samples in
eachanalysiswindow to find the measured frequency of the sengben, to find the best starting
point between accelerometer and spirometiee peak of their cross correlati@mnobtained whilealso
used forsynchronizatiorof two respiration signal$Now, the respirion ratecan becomputed based
onthe number ofocal maximan thebreath signaper minute.

Figure 3. (a) The cumulative erroof accelerometer andpirometer signals over time
before resammg (b) Two signals after resampling procedure
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3. Respiration Pattern Classification

The main preprocessing stepfor breath patternslassificationsare calibration, filtering and
resamplingexplained inSection 2 Once the data are processed, they must be collated and labeled
based on the differentadsesuch adNormal, BradapneaTachypneaCheynstokes,Kaussmal.and
Bi ot 6s r e s p.i Them tai heenarchipaé structure rissbufttr modeling the classification
problem. This is a tree like structure describing the patterns we are tryingdifyclas each level of
the treea SVM classifier is used based on the extracted feamedata are separated into one of the
branches. Once we reach a leaf node, a final classification is Maeeclassification structure is
shown inSection4 in moredetails.
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3.1 Feature Extraction

Features can bihoughtof as statistically unique elements of the sensor data, which are used to
differentiate diverse classes or states. In the proposed system, classes are the different respiratio
patternsinferred from various types of breath disorders suchNasmal, Bradapnea, Tachypnea,
Kaussmal and two types of constraint breathing, such as &tekgsa nd Bi ot 6s respir
Features such as energy, mean, maximum, standard deviatewgxes correlabn and number of
local maxima are calculated on both three a@shU of the accelerometer and the magnitude of
them - AC @ U U .Thefeatures are listechiTable 1. Th& corresponding to the signal,
andl is number of samples. Besisl we extracthe Approximate Entropy (ApEn) from the
accelerometer signals as one of the main feature in our classifier explained inxttiseibsection
Indeed, therarea vast number of diverse features providing freedoselactionthat best suit ezn
application. A window of a fixed length (1) shfted in increments of 2 svas experimentally
selected. We asked the subjects to pause breathing for at IsastsBmulate the apnea in Cheyn
stokes and Bi ot ds br eat hadsnobject paasedreathing snord thaaboudb u r
559). The best features are extracted based on the obtained accuracy resulted from the training set.

Approximate Entropy (ApEnfreature

ApEn is a technique introduced by Pinc@d][to quantify the regularity/irregularity of a signal. It
has been applied to describe changes in physical activity measures as well as other movenisjt tasks [
ApEn has two usespecified parameterst, a positive integer, indicates thength of @mpared
window, andi is thetolerance rangelt is worth mentioning that, althougi andi are critical in
determining the outcome of ApEn, there is no established consensus for choosing these parameters |
short data sets, especially for biologicatadf5]. In our experiments we sétandi to 5 and 0.15
respectively.

Table 1.The features for SVM classification.

Features Description

Mean @ -B O, whereO corresponds to the samplé&s, pf8 A

Standard Deviation Sb=-B O @ ,whereO corresponds to the samplé&s, pf8 A

. B vv B v B v
| viwe wherev and v are samples

Inter-axis Correlation B v B v B v B v

from two axesE p8 A

Energy A B O, whereO corresponding to the samplé&s, pf8 A
Al 7A‘|7 F]anlr ?B’:‘ i i T;Ah i -_BE [ i TA| i , N is the

. i1
Approximate Entropy number of samples in time serigs »is the tolerance range andis the length of

compared window angis the correlation integr§P6]
Maximum Max (< the maximum value of in window size w.
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For an¢ sample time seriesdo ‘Qp Q € , givend , form vector sequences through
° as

~

o 6O pBMQa phQpBRE a p (4)

For eachi = O , let
of 2 which meansZ6:

= »be = O times the number of vectoss within "l

> . =00t aBveq > (5)
We e gDﬁ‘EE CO (6)

ApEn is obtained from thEquation(7) as follow [24]:
=wapEh> w0 e 0 (7)

- 0

0 WD ComE @)

The ApEn calculation returns a nonnegative number where higher value shows irregularity of the
signal and more regularity resulted from the lower ApEn. Note that, ApEn can be used for small data
samples even in real tim24] which makes it suitable faur cloudbased monitoring platform.

3.2.Hierarchical Support Vetor Machine Classification

A support vector machine is based on constructing oaesetof hyperplanen ahigh dimensional
space, which can be used for classification purpdSed constuctslinear functionsfrom a set of
labeled training dataset. The linear separator is constreotezlderingmaximum distance from the
hyperplane toa fraction of the data points, named support ve¢tdisand shown in Figurd. SVM is
designed for binarglassification problemswith ¢ training samplesEach sample is indicated by

e by where E phgiB A 8For a given data set

ofth) ,’Q pfBE,ON php ,e N4 (7)

wheree:i s either 1 or 11, iehbelongsadand s d-dinteesionallead s s t
vector. The notation{ " refers to the Cartesian product!bopiesof% , which is a d-dimensional
vector space ovehe field of the real numbers.

The decision boundary oflmear classifier can be written as follows:

~

e W Tt (8)

where: is a weightvector andbis a bias. There are many linesaparatorshoweverthe SVMaims
to obtan the maximuramarginhyperplandrom any data pointindeed, his distance from the decision
boundary to the closest data point determines the margin of the clasHieelinear classifier is
defined as:

VO Qe & (9)
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Designing linear separator i® find the best) and®which maximize the geometrienargin
¢fs s, consideringo @ o @ pfor all e o FQ pMB £. This can be reformulated as a
minimizationproblemas follow:

I rJ1£ . SIS (10)

ve ole. f R B

Indeed, this problem is a convex quadratic optimization with quadratic function subject to linear
constraints which can transformed into the Lagrangian dual with the KEutsihTucker (KKT)
conditions.Lagrange multiplier is linked with every inequality of the linear constrains in the primal
problem as follow:

d&@?%@@ C Hhoe & ph (11)

Usually only a small parts ¢f are not zero, the corresponding samples are support vectors
Optimal classification functiors:
VO | QQte O | VO | wee (12)
h

¢ presentghe number of the support vectors. In order to improve linear separability, the original
input space is mapped into a higindnsional space which is known as feature space. In this case the
decision function of the classifier becomes:

Qi QQE | O%ee %ee & ORI B O 1 (13)
h

A kernel function) e he %0® %oe gives the inner product valuef ¢ ande in the
feature space. Therefore the final functimtomes

Qo i QRE | @0 ehe & (14)
h

Three types of kernelseevaluated in this papetich are:

|
o

1 Linear kernel L o
1 Polynomial kernel with degree & o he-

5

1 Radial basis function (RBF) kerngk: e
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The SVM performance depends thechoice of the kernel function to transform data from input
space to a higher dimensional feature space. There atefinedrules forchoosing the kernel type,
except satisfactorperformance byimulation study19]. Figure4 depicts the wholesystem flow of
breath disorderecognitionarchitecture.

Figure 4. Respiration disorder classification procedure using different kernel functions in
hierarchical SVM classifier
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4. Experimental Results and Data Analysis

In this section, we provide experimental resultd it resolutiondataderived fromSensorTagd7]
with threeaxis lbw-power KXTJ9 accelerometessensor(Figure 53). The data is transmitted via
CC2541 BLE, a new standard that allowsi&both equipment to run for long time on a single coin
cell battery. It is worth noting that our node is fully radio type approved for US, Europe, Japan and
CanadaThe received sensors data are stored in the cloud in order-toweadr further analysi The
SPRBTA spirometer signal is used as our reference measures the oral breathing anmySBjigsoa
nose clip was used to prevent nasal breathing during recordings. The GolLink USB sensor interface is
used as the data logger of gpirometer.

4.1 Test Setup

The participants of this study wefive malesand six femalesaged4 to 48 with Mean + SD,
26.54 £11.9026. They were instructed how to perform each breath exercise before their recording
sessionsThe experimental trials lasted for aboutm per subject. We asked the subjects to perform
Normal, Bradapnea, Tachypnea, and Chsiykes patterns, each for 2 m{000 samples) and the
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other two types for Inin with a 3min rest interval. For simulating apnea in Cheyn ok es and
breathig exercises, we requested the participants to pause breathing for at least 3 s. The sensor wa
mount ed on t hipthesmidolg & stdrnmura regidiriguset5¢ and secured by a soft and
elastic strap which is easy to attach and comfortable to. Wwethe trial session, the subjects were in

the lying position; however, the rest positions or activities in which rib cage is stationary could be
considered.

Figure 5. (a) Sensory nodé€b) Spirometer ¢) Hardware module being warn
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4.2. Accelerometer Driven Respiration Validation

In this section, first the correlation between sheometer and accelerometer sigisatalculated on
11 different subjects with various ages, each for figymes of breathing disordefsext, the respiratory
rate which recognized as important indicators of physical health or the exacerbation of medical
conditions is calculated In our test, the subjects are asked to perfaimn breathing patterns
i.e., Normal, Bradapnea, Tachypnea, ChayokesKaussmal, andBo.t 0 s

Bradapneas regular in rhythm but slower than normal in ratachypneas the condition of rapid
breathing, with respiration rate higher than 20 respirations per minute (rpm). Tachypnea may occur
due to physiological or pathologicaloblems 28]. Cheynstokes breathing pattern determined by
gradually increasing, then decreasing the lung volume with a period of apnea. People suffering from
central sleep apnea syndrof@SAS) have the same breathing pattern at 4l2@p Kussmaulwhich
is defin@l as a rapid, deep and laboured breathing typeally occurs indiabeticsin diabetic
ketoacidosis30].

Bi otbs breathing is characterized by periods
apnea. There are different reasons which causes B8 s br eat hi ng, such as
oblongata by stroke (CVA) or trauma, or pressure on the medulla due to uncal or tenorial herniation
and prolonged opioid abus8(]. Figure 6 shows samples of all normalized patterns extracted from
spirometeryand accelerometer.

The correlation of spirometer and accelerometer signals of all subjects for each breath pattern is
shown inFigure 7. For example, iNormal pattern we have 28inute data for 11 subjects and the
correlation of the accelerometer andremeter signals is achieved 0.83. According to Figure 7, the
mean of the obtained correlations of all breathing patterns is 0.84 which shows a very close
correspondence dfie sensor and spirometer data.
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Figure 6. (a) Accelerometer driven respiration argpirometer signals folNormal
breathing,(b) Bradapnea(c) Tachypnea(d) Cheynstokes (¢) Kussmauland(f) Bi ot 6 s
breathing patterns.

Figure 7. Average correlation between spirometer and accelerometer signdlthe
standard deviationf®r five different disorders
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According to the procedure explained in sectioth®2,average respiration rates are extracted from
the 10second windows for lLsubjects and 6 breath conditiofi$ie overall error in respiration rate
calculation is obtained 0.53% congithg SPRBTA spirometer as the referencéhus, we could
obtain betteaccuracyfor respiration rate compared ], dual straingauge respirometedd]| and [L4]
in lying position usinga singleaccelerometerfThe details of the experimerdse brougt in Table2.

The average volume of air that was inhaled/exhaled per breath for each suldgadtsted in Table3.



