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Abstract—Quantum Fourier Transform (QFT) plays a principal role in the development of efficient quantum algorithms. Since the

number of quantum bits that can currently be built is limited, while many quantum technologies are inherently three (or more) valued,

we consider extending the reach of the realistic quantum systems by building a QFT over ternary quantum digits. Compared to

traditional binary QFT, the q-valued transform improves approximation properties and increases the state space by a factor of ðq=2Þn.

Further, we use nonbinary QFT derivation to generalize and improve the approximation bounds for QFT.

Index Terms—Fourier transform, quantum computing, multivalued logic circuits, multivariable systems, Walsh functions.
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1 INTRODUCTION

QUANTUM computing [15] has so far been demonstrated
as being capable of speeding up algorithms for

problems such as factoring integers or database searching,
as well as being useful in cryptographic applications.
Several working quantum-computing systems have already
been demonstrated in practice [8], [17]. With such a
prospect, it is natural to seek new algorithmic solutions
that exploit quantum mechanical principles.

Some of the major improvements of quantum computing

over the classical algorithms are due to Quantum Fourier

Transform (QFT) [12]. While classical Fast Fourier Transform

(FFT) [4] decreases running time from Oð22nÞ to Oðn2nÞ,
QFT offers even more dramatic improvements. Although
more restrictive in scope than classical FFT, it can be

performed in time Oðn2Þ or even OðnÞ in some cases [12].

Direct benefits of QFT are obtained in the celebrated Shor’s
number factoring algorithm [16]. It was further observed

that the derivation of general quantum operations in

nonbinary quantum logic relies on QFT [9].
Currently, the main obstacle in quantum computing is

posed by the inability to realize practical quantum systems

operating on a large number of quantum bits. Using

multiple-valued instead of binary logic has a significant

impact on the representable state space and the computa-
tional power of quantum machines. It is also worth noting

that some known quantum circuit technologies, such as ion

traps or quantum dots, are actually three-valued (ternary),
rather than binary [6].

In this paper, we consider quantum transforms imple-

mented with nonbinary quantum circuits as a way to

extend the quantum machine utility. While we primarily
focus on the implementation with ternary quantum gates,

the first motivation is to extend the state space with the
given number of quantum digits. Further, due to the
apparent inability to realize infinite-precision quantum
gates, the approximations of quantum functions are useful
[10] and likely inevitable [3]. We show that the proposed
transform has better approximation properties than QFT
implemented with the binary gates. We further both
generalize and improve upon known error bounds [5]
thanks to considering more than just a binary case.

The paper first reviews the quantum computing in
Section 2, followed by the QFT derivations in Section 3. In
Section 4, we develop ternary quantum transforms and
demonstrate their approximation capabilities.

2 PRELIMINARIES—QUANTUM STATES AND GATES

Quantum algorithms use the premises of quantum me-
chanics to achieve parallelism beyond the reach of classical
computers. A quantum system realizing such algorithms
operates in the Hilbert vector space—we can treat it as a
vector space over complex numbers in which the inner
product over vectors v and w is defined as:

hvjwi ¼
Xn
i¼1

v�i wi;

where � denotes complex conjugate. The norm of a vector v
is given as kvk ¼

ffiffiffiffiffiffiffiffiffiffi
hvjvi

p
. The orthonormal basis of the space

with n quantum basis states fjx1i; jx2i; � � � ; jxnig provides
that the inner product of each vector by itself is 1; otherwise,
it is 0.

The quantum state is a vector, i.e., a linear combination of
the basic states: �1jx1i þ �2jx2i þ � � � þ �njxni. The complex-
valued amplitudes �i are wave functions with respect to
basis jx1i; jx2i; � � � ; jxni. The system evolution in a quantum
system is performed through a linear mapping that
preserves the vector norm. Hence, each system evolution
that transforms a state �1jx1i þ �2jx2i þ � � � þ �njxni into a
state

�01jx1i þ �02jx2i þ � � � þ �0njxni
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can be expressed via unitary matrix U by ~�0 ¼ U~�. As a

consequence, such evolutions are always reversible. Basic

units of information are defined as follows:

Definition 1. A quantum bit, or qubit, is a binary quantum

system, defined over the basis fj0i; j1ig. A q-ary quantum

digit is a multiple-valued logic system over basis

f0i; j1i; � � � ; jq � 1ig.

In the literature, the ternary quantum digit is often

referred to as a qutrit, and we adopt this notation. The

state of a single q-valued quantum digit is a vector

c0j0i þ c1j1i þ � � � þ cq�1jq � 1i, where the vector norm is 1:

jc0j2 þ jc1j2 þ � � � þ jcq�1j2 ¼ 1:

Since all operations are linear, the relevant matrix

notation is summarized in Table 1. For any unitary

matrix A, A�1 equals its Hermitian conjugate (adjoint) Ay,

i.e., AAy ¼ I.

2.1 Combining the States—Entanglement

Larger quantum systems are obtained by combining

individual states. For vectors x and y, the compounded

state is a linear combination of the new basis states jxiyj.
Such a state is decomposable if it can be represented as:

Xn
i¼1

Xm
j¼1

�ijjxiyji ¼
Xn
i¼1

Xm
j¼1

�i�jjxiijyji ¼
Xn
i¼1

�ijxii
Xm
j¼1

�ijyii:

Otherwise, the state is entangled.

Example 1.

1. Consider a system of two qubits, given as

1

2

�
j00i þ j01i þ j10i þ j11i

�
¼

1ffiffiffi
2
p ðj0i þ j1iÞ 1ffiffiffi

2
p ðj0i þ j1iÞ:

This system is decomposable as the actions of

each qubit are given in the separate brackets on

the right-hand side.
2. The system 1ffiffi

2
p ðj01i þ j10iÞ is entangled. It is

impossible to express it in the form involving
individual qubits.

In general, the states are compounded by means of the

tensor (Kronecker) product of the basic state spaces. Such a

combination is referred to as the quantum register. The

speedups in quantum computation are often due to

parallelism offered by the entanglement. Hence, entangle-

ment is a special new resource in quantum computing.

2.2 Binary Quantum Gates

As with classical circuits, quantum operations can be

performed by networks of gates. Among a large number

of possible quantum gates, we now review only the gates

used in quantum Fourier transforms.
For reversibility, each gate must have the same number

of inputs and the outputs. First, single-input quantum gates

are defined by 2� 2 unitary matrices over complex

numbers.

Example 2. Consider the Walsh-Hadamard gate:

W2 ¼
1ffiffiffi
2
p 1 1

1 �1

� �
:

Its application to state jx > is:

W2jxi ¼
1ffiffiffi
2
p ðj0i þ ð�1Þxj1iÞ;

which is easily verified by applying it to states j0 > and

j1 > . This gate is equal to its own inverse since

ðW2Þ2 ¼ I.

Binary quantum gates with n inputs and n outputs are

given by unitary matrices with 2n � 2n entries. Multiple-

input, multiple output gates perform unitary operations

over a tensor product of single quantum states. There are

several common constructions of multiple qubit gates [15].

The controlled gate approach can be applied to any single-

qubit gate G. The first (control) qubit is left unchanged,

while the second qubit is affected by G only when the first

qubit is j1 > .

Example 3. The phase shift gate performs multiplication:

S� ¼
1 0
0 ei�

� �
:

The controlled phase shift gate R� performs the phase

shift if the value of the control qubit is 1. The effect of the

circuit is given as:

j00i ! j00i; j01i ! j01i; j10i ! j10i; j11i ! ei�j11i:

Other multi-qubit constructions include that of

n independent single-qubit operations. In that case, the

function is given by the Kronecker product of the single-

qubit matrices.

3 QUANTUM TRANSFORMS

The Fourier Transform represents elements over an

arbitrary Abelian (commutative) group by an expansion

over orthogonal sets of basis vectors. We will first describe

the traditional development of quantum transforms in the

case of multivariate binary inputs, i.e., ðZ2Þn, as well as

discrete Fourier transforms performed over binary qubits,

in which case the group is Zn
2 .
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Standard Quantum Operation Notation



3.1 Quantum Walsh-Hadamard Transform

The first construction is given in terms of n-variable quantum

functions over binary digits. Then, for vectors x and y, QFT

equals the quantum Walsh-Hadamard Transform,

W2n jxi ¼
1ffiffiffiffiffi
2n
p

X
y2f0;1gn

ð�1Þxyjyi;

which we denote in shorthand as:

jxi ! 1ffiffiffiffiffi
2n
p

X
y2f0;1gn

ð�1Þxyjyi:

The transformation ofn-variable functions is performed by

a Kronecker product of univariate transforms. Since then-fold

Kronecker product is equivalent to the parallel application of

n single-qubit functions, the overall transform is performed

by only n Walsh-Hadamard gates, Fig. 1. The classical fast

Walsh Transform requires Oðn2nÞ operations.

3.2 Quantum Discrete Fourier Transform

In the general case, Quantum Fourier Transforms defined

over a set of t values are somewhat more complex to

perform. For numbers x and y, the transform has the

univariate form:

jxi ! 1ffiffi
t
p

X
y 2 f0;1;���;t�1g

e
�2�ixy

t jyi:

Unlike in previous cases, there is no apparent general

way to represent the transform by means of the Kronecker

product of the decomposable bases. Similarly to the

developments in the traditional FFT, several factorizations

are possible. We concentrate on the factorization that will

allow us to develop the ternary transform in the section to

follow.

3.2.1 Transforming 2n Elements—Qubit Description

The speedup in deriving fast quantum algorithms is due to

decomposable realization. The 2n quantities by n qubits are

represented as y ¼ y0 þ 2y1 þ 22y2 þ � � � 2n�1yn�1 and the

decomposable states are: jyi ¼ jy0ijy1i � � � jyn�1i. An applica-

tion of QFT is then:

1ffiffiffiffiffi
2n
p

X
y2f0;1gn

e�
2�i
2n xyjyi ¼ 1ffiffiffiffiffi

2n
p

X
y2f0;1gn

e�
2�i
2n x
Pn

l¼1
yl2

l

jy0y1 � � � yn�1i:

The key step, analogous to the FFT, is the decomposition

X
y2f0;1gn

e�
2�i

2nxyjyi ¼
X

y02f0;1gn�1

e�
2�i
2n x2y0 jy00i

þ
X

y02f0;1gn�1

e�
2�i
2n xð2y0þ1Þjy01i

by the least significant bit. Then, QFT is (up to a

multiplicative constant) reduced to decomposable states:

X
y02f0;1gn�1

e�
2�i
2n x2y0 jy0i j0i þ e�2�ix

2n j1i
� �

:

By using the same construction recursively, QFT reduces to:

ðj0i þ e
��ix

20 j1iÞðj0i þ e
��ix

21 j1iÞ � � � ðj0i þ e
��ix
2n�1 j1iÞ: ð1Þ

By dividing x with 2l, the expression 0:xl�1xl�2 . . .x0

denotes the fraction obtained from the least significant l

qubits of x as

0:xl�1xl�2 � � �x0 ¼ 2�1xl�1 þ 2�2xl�2 þ � � � þ 2�lx0

and the expansion is rewritten into:

j0i þ e�2�i0:x0 j1i
� �

j0i þ e�2�i0:x1x0 j1i
� �

� � �
j0i þ e�2�i0:xn�1xn�2���x0 j1i
� �

:

This representation is amenable to the efficient quantum

circuit implementations. Each term, multiplied with the

appropriate constant, is the unitary transform, built using

the Walsh-Hadamard and the controlled rotation gates. The

leftmost product term is, by definition, equal to the function

performed by the Walsh-Hadamard gate

j0i þ e�2�i0:x0 j1i
� �

¼ j0i þ e��ix0 j1i
� �

¼
�
j0i þ ð�1Þx0 j1i

�
:

The remaining terms are realized following the construction

in [5]. For the lth term, we first apply the W2 gate, leading to
1ffiffi
2
p ðj0i þ ð�1Þxl�1 j1iÞ. For each k < l, we then perform a

phase shift for expð��ixk
2l�k Þ, conditional on the kth qubit being

nonzero. Recalling Example 3, this operation is performed

by the controlled phase shift gate Rk. Since one phase shift

gate is employed for each control qubit xk, k < l, this

construction is leading up to n� 1 phase shift gates in total

for each qubit. The overall transform can hence be

implemented with n�ðnþ 1Þ=2 binary quantum gates,

including n Walsh-Hadamard gates.

4 QFT USING TERNARY QUANTUM GATES

Since the most pressing limitation in making quantum

machines is in the number of quantum digits that can be

physically realized, using multivalued digit representation

has a certain advantage in expanding the state space. To

realize in the q-valued case the same number of states as the

quantum machine implemented by binary quantum gates,

we achieve the reduction by a factor of log2ðqÞ qubits. While

the proposed implementations are presented here for

3-valued qutrits, the results hold for larger q as well.
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4.1 Q-Ary Quantum Gates

Although the q-valued quantum states ðq > 2Þ come quite

naturally in many cases [13], there exist a few explicit

constructions of q-valued gates. In developing the repre-

sentation of q-valued states, we find useful the general-

ization of the Walsh-Hadamard gate, which we call the

Chrestenson gate after the Chrestenson Transform [11].

Example 4. For the case q ¼ 3, the complex third root of

unity is:

a ¼ e�2�i
3 ¼ cos

�2

3
�i

	 

þ i sin

�2

3
�i

	 

¼ �0:5� i�0:866:

The Chrestenson gate performs the mapping given by:

CH ¼ 1ffiffiffi
3
p

1 1 1
1 a a2

1 a2 a

2
4

3
5:

The adjoint of CH is given as:

1 1 1
1 a a2

1 a2 a

2
4

3
5
y

¼
1 1 1
1 a� a2ð Þ�
1 a2ð Þ� a�

2
4

3
5¼ 1 1 1

1 a� a
1 a a�

2
4

3
5:

The gate is unitary, which can be verified by multi-
plying it by its Hermitian conjugate. By performing such
a multiplication and applying identities a3 ¼ 1 and
1þ aþ a2 ¼ 0, we obtain the identity matrix.

Multivalued quantum gates used in 3-valued implemen-

tation include a controlled phase shift gate, which applies to

the incoming signal the multiplication by a factor eði�xÞ,

where x is the input controlling the amount of shift. Unlike in

the binary case, there are three possible amounts by which the

signal is phase-shifted, depending on the value of x.

4.2 Quantum Chrestenson Transform

The Chrestenson Transform in the q-valued case is given by

means of orthogonal expansion:

jxi ! 1ffiffiffiffiffi
qn
p

X
y2f0;1;���;q�1gn

e
�2�ixy

q jyi:

The multipliers are equal to the qth complex roots of the

unity. Please note that, by setting q ¼ 2, we obtain the

quantum Walsh-Hadamard Transform as a special case.
For practical calculation, the input and output vectors to

the Chrestenson Transform are expressed in terms of their

q-ary expansions:

x ¼
Xn
i¼1

xiq
i; y ¼

Xn
i¼1

yiq
i

and the decomposable states are jxi ¼ jx0ijx1ijx2i � � � jxn�1i
and jyi ¼ jy0ijy1i � � � jyn�1i.

The transform matrix is then the n-fold Kronecker

product of univariate transforms:

CHn ¼ CH � CH � � � � � CH:

Further, the quantum Chrestenson Transform can be

written in the recursive form. In the case when q ¼ 3 and by

recalling that the third root of unity is a ¼ e�2�i
3 , we obtain the

following matrix for the n-variable Chrestenson Transform:

CHn ¼
CHn�1 CHn�1 CHn�1

CHn�1 aCHn�1 a2CHn�1

CHn�1 a2CHn�1 aCHn�1

2
4

3
5:

Similarly to the Walsh-Hadamard case, the transform is

performed in parallel by n Chrestenson gates. We note that

the implementation primitives have been elaborated upon

in [13] in terms of ion-trap quantum devices, where it was

shown that the implementation using multiple-valued gates

naturally fits the technology.

4.3 QFT Using Ternary Gates

We now present the Quantum Fourier Transform over

3n elements implemented using ternary quantum circuits.

Analogously to the binary case in Section 3.2.1, the QFT

factorization is conducted as follows [14]:

QFTnjxi ¼
1ffiffiffiffiffi
3n
p

X
y2f0;1;2gn

e
�2�ixy

3n jyi

¼ 1ffiffiffiffiffi
3n
p

X
y2f0;1;2gn

e�
2�i
3n
x
Pn

l¼1
yl3

l jy0y1 � � � yn�1i

¼ 1ffiffiffiffiffi
3n
p �n�1

l¼0

��0i þ e�2�ix3�l j1i þ e�4�ix3�l j2i
h i

¼ 1ffiffiffiffiffi
3n
p j0i þ e�2�i0:x0 j1i þ e�4�i0:x0 j2i

� �
� � �

� � � j0i þ e�2�i0:xn�1���x1x0 j1i þ e�4�i0:xn�1���x1x0 j2i
� �

:

ð2Þ

In the final form, we employ in this case the ternary

fractional number notation:

0:xl�1xl�2 � � �x0 ¼ 3�1xl�1 þ 3�2xl�2 þ � � � þ 3�lx0:

The actual circuit for computing the transform is derived

by realizing each bracket in (2) with ternary quantum gates.

Starting with the leftmost bracket, the whole expression

T ðx0Þ ¼
1ffiffiffi
3
p j0i þ e�2�i0:x0 j1i þ e�4�i0:x0 j2i
� �

can be realized by a single linear and unitary gate. By

considering all three possible values for jx0 > , we obtain

exactly the action of the Chrestenson gate and its matrix

representation is the same as matrix CH given in Section 4.1.

In the final step of deriving the transform, we expand x

in terms of its ternary encoding. Considering the term with

3l in the denominator, we express expð�2�ix=3lÞ from (2):

exp
�2�i 3n�1xn�1 þ 3n�1xn�1 þ � � � 3lxl þ � � � þ 3x1 þ x0

� �
3l

	 


¼ expð�2�iKÞ exp
�2�ixl�1

3

	 

� � � exp

�2�ix1

3l�1

	 


exp
�2�ix0

3l

	 

:

Since K in this expression is an integer, the first term is

always equal to 1. Hence, xl and higher terms in the ternary

expansion of x are omitted.
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The rest of the QFT circuit is constructed by implement-

ing each term of this expanded exponential function. Please

note that, for each ternary digit (qutrit) xr, the superposition

��0i þ e�2�ixr3
�l j1i þ e�4�ixr3

�l j2i

is realized by the composition of a Chrestenson gate,

followed by the phase shift, controlled by xk ðk < lÞ:

exp
�2�ixk
3l�kþ1

	 

:

Such controlled shifts involve the least significant digits in

the fractional expansion of x.
Hence, the overall QFT is performed as in Fig. 2. This

implementation consists of one Chrestenson gate per

quantum digit, followed by the controlled phase shift gates

Rk, for a total of n�ðnþ 1Þ=2 gates. Please note that the order

of digits at the output is reversed.

4.4 Approximation Properties

The given realization of QFT has useful approximation

properties [5]. To obtain a reduced complexity circuit, an

approximate construction is derived as follows:

4.4.1 Omitting Controlled Phase Shift Gates

The controlled phase shift gates in Fig. 2 perform shifts by

exponentially decreasing quantities. Therefore, for the

q-valued case, omitting the least significant shift results in

a multiplicative factor with error magnitude of

es ¼ exp
�2�iðq � 1Þ

ql

	 


since, in the worst case, the phase shift will be the largest

when the control bit is equal to q � 1.
The magnitude of the multiplicative error can be

estimated by its Taylor-Maclaurin expansion:

exp
�2�iðq � 1Þ

ql

	 

¼ 1� i 2�ðq � 1Þ

ql
� 4�2ðq � 1Þ2

2!�q2l

þ i 8�3ðq � 1Þ3

3!�q3l
þ � � � ;

which is rapidly converging to 1 as the higher-order

coefficients decrease exponentially in q. Please note that

the same error expression holds for the binary case, where
we obtain:

exp
�2�i

2l

	 

¼ 1� i 2�

2l
� 4�2

2!�22l
þ i 8�3

3!�23l
þ � � � :

Hence, the convergence toward 1 is the slowest among all
values of q and multiple-valued implementations of QFT
have better approximation properties.

To estimate the phase of the error due to the omitted
controlled phase shift gates, the representation of em by
trigonometric functions is used to easily separates real and
imaginary parts:

em ¼ cos
2�ðq � 1Þ

ql

	 

� i sin

2�ðq � 1Þ
ql

	 

:

Since the argument in both functions tends toward 0 as l
increases, the multiplicative error factor is hence close to the
real value of 1 and the phase tends to 0. In comparison with
the binary case, where the denominator is equal to 2l, the
convergence toward 1 is always faster.

4.4.2 New Bounds for Phase Error

Such good approximation properties allow us to omit more
than one controlled phase shift. In general, if m least
significant bits are omitted, the overall error exponent is
obtained as:

�2�i qmxm þ � � � þ q x1 þ x0ð Þ
ql

: ð3Þ

The magnitude of the error phase can be determined by
the technique in [5] for the approximation error bounds of
binary QFT implementation:

2�

ql
mqmðq � 1Þ ¼ 2�m

ql�m
ðq � 1Þ < 2�m

ql�m�1
:

However, as m increases, we now show that even closer
bounds are obtained by noticing that the summation of the
terms in the bracket of (3) yields a closed-form expression,

qmxm þ � � � þ q x1 þ x0 � ðq � 1Þ q
m � 1

q � 1
¼ qm � 1;

and the magnitude becomes bounded by 2�
ql
ðqm � 1Þ < 2�

ql�m
.

This new bound is tighter by a factor of q�m. Again, by
setting q ¼ 2, we infer that the binary implementation has
the worst approximation properties. For our ternary
implementation, the error magnitude is hence reduced by
factor of ð3=2Þm relative to the binary case.

Note that the given error bound depends on the output
digit position, and is the largest for jy0 > . The least
significant digit has the lowest weight in q-ary description
of the overall output vector. The most significant digit,
however, does not suffer any imprecision due to the
omission of the controlled phase shift gates.

5 CONCLUSIONS AND FUTURE WORK

The Quantum Fourier Transform is the key algorithm in
quantum computing. In this paper, we presented the
implementation of QFT using multiple-valued quantum
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gates that can overcome the two most serious limitations in

realizing practical quantum computing machines.
First, since it is currently hard to realize physical systems

with large numbers of entangled qubits, the q-valued

approach reduces the requirements for number of qubits

by a factor of log2ðqÞ. Alternatively, for systems employing

n qubits, it expands state space by a factor of ðq=2Þn.
Second, the proposed implementation possesses better

approximation properties than the binary one. By eliminating

gates performing the smallest controlled phase shifts, the

error magnitude decreases exponentially with q. We have

also devised new bounds for the error in approximating QFT

that are tighter than the original [5] by a factor of q�m.
More work can be done in the design of circuits

consisting of multiple-valued gates, especially following

the results showing that such quantum operations might

need to be expressed in terms of Fourier Transform [9].

Binary implementations optimized for the circuit depth

have been proposed in [3]. It is worth investigating if such

techniques are applicable to ternary quantum circuits.

Further, the issue of suitable approximation of QFT in such

a way that the decoherence problem is alleviated, similarly

to [18], is another worthwhile addition to this study.
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