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Validating Assertion Language Rewrite Rules and
Semantics with Automated Theorem Provers
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Abstract—Modern assertion languages such as property spec-
ification language (PSL) and SystemVerilog assertions include
many language constructs. By far, the most economical way to
process the full languages in automated tools is to rewrite the
majority of operators to a small set of base cases, which are then
processed in an efficient way. Since recent rewrite attempts in
the literature have shown that the rules could be quite involved,
sometimes counterintuitive, and that they can make a significant
difference in the complexity of interpreting assertions, ensuring
that the rewrite rules are correct is a major contribution toward
ensuring that the tools are correct, and even that the semantics
of the assertion languages are well founded. This paper outlines
the methodology for computer-assisted proofs of several publicly
known rewrite rules for PSL properties. We first present the
ways to express the PSL syntax and semantics in the prototype
verification system (PVS) theorem prover, and then prove or
disprove the correctness of over 50 rewrite rules published
without proofs in various sources in the literature. In doing so,
we also demonstrate how to circumvent known issues with PSL
semantics regarding the never and eventually! operators, and
offer our proposals on assertion language semantics.

Index Terms—Assertion languages, automated theorem
provers, language semantics, proofs, rewrite rules.

I. Introduction

THE USE of assertions in hardware [1] has increased
rapidly in the past decade, as it has helped to deal with

the increased challenges in hardware verification. Assertions
offer a means of adding specifications incrementally to a
design, and also offer a means of verifying a design with
its expected behavior. Notwithstanding the traditional dynamic
verification techniques (such as simulation), assertions are
also used in formal verification approaches such as model
checking. With the standardization of the two main asser-
tion languages, namely property specification language (PSL)
and SystemVerilog assertions (SVA), the industry now has a
formally defined and industrially robust means of specifying
properties, assumptions and design intent in hardware designs.
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Devising circuit representations of assertions allows the
assertion based verification paradigm to reach beyond the usual
verification tools that commonly interpret such assertions.
When converted to assertion checkers [2]–[4], also called
monitors [5], the assertion verification capability can be used
in hardware emulation and post-fabrication debugging [6], [7]
to augment visibility and to assist in locating errors. Checkers
can also allow simulators and formal verification tools to
support assertions, and can be instrumental in devising the
test sequences used in dynamic verification [8].

The HORUS checker generator has had its modular ap-
proach to property construction formally proved by automated
theorem proving [3], [9]. In the modular approach to checker
generation, each assertion operator is implemented as its own
separate sub-module (or sub-circuit), and is connected to other
modules to form a checker for a complete assertion. The sub-
modules are interconnected according to the syntax tree of the
assertion, in a recursive process. Once the complete circuit
is constructed, a checker is produced and the output signals
can be observed during verification for finding errors. The
functional correctness of the method used is proved using
formal methods in the PVS proof system. The library of
components for property operators is proved correct, and then
the interconnection scheme is proved correct, and by induction
the checkers that are generated are proved correct.

Due to the richness of modern assertion languages, the use
of rewrite rules is essential in developing compact and efficient
checker generator tools. Rewrite rules have been used in the
MBAC checker generator [10] to help implement the various
forms of property operators in PSL. Although the core of
the checker generator is based on automata for expressing
properties, rewrite rules play a key role in compiling a large
part of the language.

Cimatti et al. present the theoretical foundations of a
verification tool [11] where the use of expression rewriting
is instrumental to achieve automata suitable for formal verifi-
cation. In their approach, the rewrite rules are devised to favor
the part of the language that is better suited for the intended
infinite trace automata representations.

Rewrite rules for PSLs simple subset have also been de-
veloped by Singh and Garg [12] for an early version of PSL.
The goal of these rewrite rules is to convert various assertion
forms into regular expression implications, for further use
by simulation or formal verification engines. In that work,
along with the work by Cimatti et al., the rewrite rules are
mainly developed for linear temporal logic (LTL) operators
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and sequential regular expressions. In general, rewrite rules are
often counterintuitive, and their correctness is not guaranteed,
as we will demonstrate in this paper by disproving some of
the published rewrite rules.

Previous work exploring the use of automated theorem
provers to ascertain assertion language semantics is relatively
limited. We found the work of M. Gordon particularly in-
spiring, in which he performed a “deep embedding” of PSL
in the higher order logic (HOL) proof assistant, and used
HOL to demonstrate theorems about the semantics. From this
formalization he was able to build, within the logic, a generator
to produce correct-by-construction mathematical observers for
PSL properties [13]. The direct execution of the PSL semantics
in HOL complies with the language definition by construction,
but the resulting observers are too inefficient to be used in
large designs. In contrast, in our research we formally prove
the principles on which production-quality checkers can be
generated for the wide variety of PSL operators (MBAC
rewrite rules), along with a proved correct implementation for
a kernel of PSL primitives (HORUS tool).

Other work by Claessen and Martensson proposed an op-
erational semantic definition guided by the structure of weak
PSL formulas [14], and showed some inconsistencies in the
interpretation of a special class of regular expressions. Their
goal was to investigate alternative semantic definitions to the
trace semantics, as a way to correct problems with the early
versions of PSL; if and how this was useful to guide an
implementation of property checkers has not been published.

The PSL language reference contains a set of restrictions
to help create properties that are more suitable for simula-
tion and dynamic verification, akin to the simulation–friendly
restrictions proposed for the generalized symbolic trajectory
evaluation (GSTE) monitors in [15]. In the checkers developed
for GSTE assertion graphs, certain constructs are avoided or
restricted in scope, for hardware implementation reasons.

PSL’s simple subset guidelines [16, Sec. 4.4.4] are intended
to ensure that time advances monotonically along a single
path, and thus help express assertions that are easier to grasp
given the complex temporal logic that can be specified in such
languages. The rewrite rules appearing in this paper follow the
PSL simple subset (PSL-SS) guidelines, which are presented
in the next section; however, the methods proposed apply to
the vast majority of operators found in PSL and SVA.

This paper extends previous research devoted to checker
generators, assertion language semantics, and their proofs of
correctness [17]. While we deal mainly with proving the
correctness of rewrite rules for PSL using the automated
reasoning framework applied to the HORUS tool, we also
provide insights into subtleties of correct checker synthesis
in general, as well as the assertion language definition itself.

The main contribution of this paper is to show how an
automated theorem prover can be used to ensure the correct-
ness of assertion language equivalences and rewrite rules. We
apply our methods to three sets of rewrite rules found in the
literature (over 50 rules in total), and attempt to prove that
they are well founded and semantically correct. Incorrect rules
or minor semantic issues with rules can have an important
consequence in electronic design automation tools that process

assertions. The topics and results contained in this paper can
be a helpful reference for tool designers or anyone with an
interest in assertion languages.

The proofs we perform are founded on a higher-order
semantic definition of PSL in the logic of PVS [18] and on
the use of the PVS proof assistant to mechanize the formal
reasoning. For the few cases where the proofs do not succeed,
we provide counterexamples. We also highlight problems with
the semantics of two operators in the PSL simple subset, and
propose a formally justified revision for these guidelines.

This paper is organized as follows. Section II provides
a concise description of PSLs syntax and semantics along
with its simple subset guidelines, such that the paper is self
contained. In Section III, we present the sets of rewrite rules
to be proved. Section IV shows the general strategy used
to perform the proofs in PVS, and in Section V, the proof
results are detailed and analyzed. In Section VI, we outline
our proposed improvements to the simple subset guidelines.

II. Assertion Languages and PSL

Ever since IBM donated their Sugar language to Accellera
for forming the first industry standard for specifying hardware
assertions, PSL has continued to develop and evolve into many
verification applications. Standardization of the PSL language
by the IEEE in 2005 has resulted in formally defined syntax
and semantics, as documented in the PSL Language Reference
Manual [16]. Other sources offer more pragmatic treatments
of PSL [19], and can also help to grasp the intricacies of such
languages.

The Verilog flavor of PSL is used throughout the paper;
however, the proofs and techniques are not restricted to PSL
since many concepts can easily apply to the proof of SVA
rewrite rules, for example.

A. Syntax and Semantics of PSL

The logic of the IEEE 1850 PSL standard is defined with
respect to a nonempty set P of atomic propositions, and a
set B of Boolean expressions over P . In practice, the atomic
propositions correspond to conditions and evaluations over
the registers and wires of the design. The semantics of PSL
is defined with respect to finite and infinite words over the
alphabet � = 2P ∪ {�, ⊥}. In dynamic verification, a word v

corresponds to a trace of execution of the design under test,
and a letter l from v corresponds to a valuation of propositions
in a given execution cycle. The ith letter in a word is designated
vi−1, and the length of a word is noted as |v|. A sub-word of v

is designated vi,...,j , where the sub-word is the range of letters
from vi to vj . A suffix of a word can also be expressed as vi..,
and is understood to mean the word starting at letter vi. The
notation lω is used to designate an infinite word composed of
the letter l, and v is v with every � replaced by ⊥ and vice
versa.

The semantics of Boolean expressions is the base case, and
is defined using the symbol ||=. We say that a letter l satisfies a
Boolean expression b, noted l ||= b. The semantics of Boolean
satisfaction is defined as follows: for every l ∈ 2P , p ∈ P , and
b ∈ B, we have (using Verilog notation):
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1) l ||= p ⇔ p ∈ l;
2) l ||= !b ⇔ l ||�= b;
3) l ||= b1 & b2 ⇔ l ||= b1 and l ||= b2.

For example, if the set P of atomic propositions is {a, b, c},
consider a letter l consisting of the state 〈a, c〉 (atomic proposi-
tions not listed are assumed false). For the Boolean expressions
b1 = c and b2 = b & c we have

l ||= b1 (i.e., 〈a, c〉 satisfies c)
l ||�= b2 (i.e., 〈a, c〉 does not satisfy b & c)

In this paper, the Booleans true and false represent the
Verilog constants 1’b1 and 1’b0, respectively. These constants
are such that for every letter l, we have l ||= true and l ||�= false.
Further, two special symbols � and ⊥ are defined such that
for every Boolean expression b, � ||= b, and ⊥ ||�= b; however,
these symbols are only used in the semantics and are not
modeled in the design itself.

Sequential extended regular expressions (SEREs) (se-
quences) specify temporal chains of events of Boolean ex-
pressions on finite words, while properties express temporal
operators over SEREs on finite or infinite words. The property
layer adds additional temporal operators over sequences and
Booleans, to allow extensive specification capabilities. In PSL,
SEREs are defined as follows [16].

Definition 1: If b is a Boolean expression and r is a SERE,
the following expressions define the syntax of SEREs.

• b • {r} • r1 ; r2 • r1 : r2

• r1 | r2 • r1 && r2 • [*0] • r[*]
The “;” and “:” operators are concatenation and fusion

(overlapped concatenation), respectively. The “|” and “&&”
operators represent SERE “or” and SERE length-matching
“and,” respectively. The [*0] symbol is the empty SERE, and
more generally the [*] operator expresses the Kleene closure
of SERE r (matching zero or more occurrences of r).

Definition 2: The semantics of tight satisfaction of SEREs,
denoted |≡, is defined as follows.

• v |≡ b iff |v| = 1 and v0 ||= b

• v |≡ {r} iff v |≡ r

• v |≡ r1; r2 iff ∃v1, v2 s.t. v = v1v2, v1 |≡ r1 and v2 |≡ r2

• v |≡ r1: r2 iff ∃v1, v2, l s.t. v = v1lv2, v1l |≡ r1 and
lv2 |≡ r2

• v |≡ r1| r2 iff v |≡ r1 or v |≡ r2

• v |≡ r1&& r2 iff v |≡ r1 and v |≡ r2

• v |≡ [*0] iff v = ε

• v |≡ r[*] iff either v |≡ [*0] or ∃v1, v2 s.t. v1 �= ε,
v = v1v2, v1 |≡ r and v2 |≡ r[*]

PSL defines additional syntactic “sugaring” operators, such
as non-length matching intersection (&), and various forms
of repetition ([*k], [*i:j], [=] and [–>]). Additional syntactic
“sugaring” operators in PSL simplify the writing of assertions,
but do not add expressive power to the language. The PSL
SERE sugaring operators that appear throughout this paper
are shown below.

Definition 3: If b is a Boolean expression; r is a SERE;
i, j are nonnegative integers and k, l are positive integers
with j ≥ i and l ≥ k, then the following are SERE sugaring
operators.

• r[+]
def
= r ; r[*]

• r[*k]
def
= r ; r ; . . . ; r (k times)

• r[*i:j]
def
= r[*i] | . . . | r[*j]

• b[–>]
def
= {(!b)[*] ; b}

• b[–>k]
def
= {b[–>]}[*k]

• b[–>k: l]
def
= {b[–>]}[*k:l]

• r1 & r2
def
= {{r1} && {r2;true[*]}} | {{r1;true[*]} && {r2}}

The [*k] and [*i:j] operators are known as repetition count
and repetition range. The first three operators can be used
without the SERE r, in which case r = true is implied. The [–>]
operator is known as goto repetition, and causes a matching
of its Boolean argument at its first occurrence.

Properties in PSL allow other kinds of temporal operators
to be specified over sequences and Booleans. Below are the
foundation language property operators defined in PSL. The
separating line is used only to help categorize the operators
for use in Section III-A.

Definition 4: If b is a Boolean expression, r is a SERE
and p is a property, i, j are nonnegative integers and k, l are
positive integers with j ≥ i and l ≥ k, then PSL foundation
language (FL) properties are defined as follows.

• b • !p • p1 <–> p2

• (p) • p abort b • p1 && p2

• r! • r • r |–> p

• r |=> p • eventually! p

• always p • never p

• b || p • b –> p

• p1 until p2 • p1 until p2

• p1 until! p2 • p1 until! p2

• p1 before p2 • p1 before p2

• p1 before! p2 • p1 before! p2

• next p • next! p

• next[i](p) • next![i](p)
• next a[i:j](p) • next a![i:j](p)
• next e[i:j](p) • next e![i:j](p)
• next event(b)(p) • next event!(b)(p)
• next event(b)[k](p) • next event!(b)[k](p)
• next event a(b)[k:l](p) • next event a!(b)[k:l](p)
• next event e(b)[k:l](p) • next event e!(b)[k:l](p)
The semantics of (p) is the same as the semantics of p since

the parentheses are used only for grouping. The LTL operators
X, X!, G, F, U and W in PSL are equivalent to the operators
next, next!, always, eventually!, until! and until, respectively; for
simplicity, they are omitted in Definition 4. The semantics of
the remaining property operators is given next, as defined in
Appendix B in the PSL Specification [16]. The items below
based on the iff symbol are defined as the basic operators in
PSL, whereas items based on the

def
= symbol are defined as

syntactic sugaring.
Definition 5: The semantics of PSL properties is defined

using the satisfaction criterion v |= p, which means that
property p holds in trace v (trace v satisfies property p).

• v |= b iff |v| = 0 or v0 ||= b

• v |= !p iff v |�= p

• p1 <–> p2
def
= (p1 –> p2) && (p2 –> p1)

• v |= p abort b iff either v |= p or ∃j < |v| s.t. vj ||= b

and v0..j−1�ω |= p
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• v |= p1&& p2 iff v |= p1 and v |= p2

• v |= r! iff ∃j < |v| s.t. v0..j |≡ r

• v |= r iff ∀j < |v|, v0..j�ω |= r!
• v |= r|–> p iff ∀j < |v| s.t. v0..j |≡ r, vj.. |= p

• r|=> p
def
= {r; true} |–> p

• eventually! p
def
= [true U p]

• always p
def
= ! eventually! (!p)

• never p
def
= always !p

• p1 || p2
def
= !(!p1 && !p2)

• p1 –> p2
def
= !p1 || p2

• p1 until p2
def
= (p1 until! p2) || always p1

• v |= p1 until! p2 iff ∃k < |v|, vk.. |= p2 and ∀j < k,
vj.. |= p1

• p1 until p2
def
= p1 until (p1 && p2)

• p1 until! p2
def
= p1 until! (p1 && p2)

• p1 before p2
def
= !p2 until (p1 && !p2)

• p1 before p2
def
= !p2 until p1

• p1 before! p2
def
= !p2 until! (p1 && !p2)

• p1 before! p2
def
= !p2 until! p1

• v |= next! p iff |v| > 1 and v1.. |= p

• next p
def
= ! next! (!p)

• next[i](p)
def
= next next . . . next p (i times)

• next![i](p)
def
= next! next! . . . next! p (i times)

• next a[i:j](p)
def
= next[i](p) && . . . && next[j](p)

• next! a[i:j](p)
def
= next![i](p) && . . . && next![j](p)

• next e[i:j](p)
def
= next[i](p) || . . . || next[j](p)

• next! e[i:j](p)
def
= next![i](p) || . . . || next![j](p)

• next event(b)(p)
def
= !b until (b && p)

• next event!(b)(p)
def
= !b until! (b && p)

• next event(b)[k](p)
def
= next event(b)(next next event(b)

. . . (next next event(b)(p)). . . ) (k times)
• next event!(b)[k](p)

def
= next event!(b)(next! next event!(b)

. . . (next! next event!(b)(p)). . . ) (k times)
• next event a(b)[k:l](p)

def
= next event(b)[k](p) && . . . &&

next event(b)[l](p)
• next event a!(b)[k:l](p)

def
= next event!(b)[k](p) && . . . &&

next event!(b)[l](p)
• next event e(b)[k:l](p)

def
= next event(b)[k](p) || . . . ||

next event(b)[l](p)
• next event e!(b)[k:l](p)

def
= next event!(b)[k](p) || . . . ||

next event!(b)[l](p)

The verification layer in PSL defines several directives to
indicate what a property is intended for. In particular, assert is
used to specify that a given property must hold. No semantics
is defined for this operator, as its interpretation depends on
the type of verification tool being used. For example, in static
property checking, a formal verification engine could report
that the property holds or does not hold. In dynamic verifica-
tion, a simulator could flag instances where the property did
or did not hold throughout the simulation trace.

B. PSLs Simple Subset Guidelines

Below are the main property operators defined in PSL, with
the simple subset guidelines applied. A total of eleven such
guidelines are introduced [16], which help to create properties
that are more amenable to simulation, or any form of dynamic

verification for that matter. According to the PSL Issues List
(item #99, simple subset issues [20]), the overlapping until
operator can allow a full property on the left-side, as opposed
to only a Boolean expression as originally indicated in the
simple subset guidelines. This flexibility has been taken into
account in our work. The separating line is also used to help
categorize the operators for use in Section III-A.

Definition 6: If b is a Boolean expression, r is a SERE
and p is a property, i, j are nonnegative integers and k, l are
positive integers with j ≥ i and l ≥ k, then PSL FL properties
are defined as follows in PSLs simple subset. Operators not
listed remain as defined in Definition 4.

• !b • b1 <–> b2

• eventually! r • never r

• b || p • b –> p

• p until b • p until b

• p until! b • p until! b

• b1 before b2 • b1 before b2

• b1 before! b2 • b1 before! b2

• next e[i:j](b) • next e![i:j](b)
• next event e(b1)[k:l](b2) • next event e!(b1)[k:l](b2)

To summarize the modifications, some or all of the property
arguments appearing in the operators above were reduced to
either sequences or Booleans.

III. Rewrite Rules

In languages such as PSL, a few base operators define
the core of the language while supplemental operators are
added as a syntactical convenience for writing expressions.
For example, in pure LTL, the expression X[4] p, which says
that p must hold in 4 cycles (states), would actually have to
be written as: X X X X p.

Rewrite rules often take the form x → y, to express that
when expression x is encountered, it is syntactically replaced
by expression y. The kernel of the tool does not even need
to support the form in the left side, since it gets rewritten to
more basic operators in the right side. In this paper, the

→
=

symbol is used to show that both side of the rule are to be
considered equivalent (upon confirmation in the proofs), but
with a preferred direction to be used as a rewrite rule. When
the right-hand sides of the rewrite rules are not terminal, they
are typically rewritten using other rules, until no more rewrites
apply and the base cases of sequences, Boolean expressions
and properties are reached. When doing so, proper care must
be taken to ensure that the set of rules is terminating, and that
no infinite cycle of application of the rules can exist.

In this section, we present the three sets of rewrite rules
selected for analysis in our PSL embedding in PVS. The goal
will be to prove or disprove each rules validity, and more gen-
erally to investigate the soundness of the language constructs.

A. MBAC Rewrite Rules

As presented previously, PSL properties are based on LTL,
with the addition of a wide array of sugaring operators.
Most of these sugaring operators are defined as language
equivalences in the PSL specification [16]. Because of the
restrictions imposed by the simple subset, these equivalences
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can generally not be used as rewrite rules. For example,
consider the definition of the never operator with a SERE as
its argument. If we apply the definition

never r
def
= always !r

a verification tool made for dynamic verification based on the
simple subset does not support the negation of a SERE, since
by definition, negating a SERE is not defined in the simple
subset (Definition 6). In other words, we need a definition (or
rewrite rule) for the never operator that remains in the realm
of the simple subset.

For this reason, a set of rewrite rules particularly suited to
dynamic verification was developed and used in the MBAC
checker generator [10]. This allows the majority of property
operators to be rewritten to a smaller set of base cases, for
which specialized automata-based algorithms were developed.

The nine operators shown above the separating line in
Definition 4 are the base cases that have specific automata
implementations in [10], thus no rewrite rules are used. Two
of the base cases are reduced in the simple subset, as shown
above the separating line in Definition 6. As such, negation and
equivalence (<–>) apply only to Booleans and are therefore
implicitly handled in the semantics of Booleans.

The remaining thirty property operators in Definition 4 (be-
low the separating line), of which sixteen are modified in the
simple subset (below the line in Definition 6), are implemented
using rewrite rules in the MBAC checker generator [4], [10].
The rules are presented below and are grouped into three
themes, according to a common characteristic they share.

Proposition 1: MBAC Rewrite Rules Based on Implication.

R1: b || p
→
= {!b} |–> p

R2: b –> p
→
= {b} |–> p

R3: r |=> p
→
= {r ; true} |–> p

R4: always p
→
= {[+]} |–> p

R5: never r
→
= {[+] : r} |–> false

R6: p until b
→
= {(!b)[+]} |–> p

R7: p until b
→
= {{(!b)[+]}|{b[–>]}} |–> p

R8: next event a(b)[k:l](p)
→
= {b[–>k:l]} |–> p

Rule R1 is based on the fact that if the Boolean expression
is false, then the argument property p must be true; otherwise
the entire property is automatically true. The implication in R2
can be rewritten using a suffix implication because a Boolean
expression can be easily expressed as a sequence. The R3
rewrite rule for non-overlapped property implication follows
from its definition in Appendix B in [16]. When a property
must always be true (R4), it can be seen as the consequent of
a suffix implication with a perpetually active start condition.
When a sequence must not occur (R5), a property that fails
instantly is triggered upon detection of the sequence.

The until operator states that property p must be true on
each cycle, up-to, but not including, b being true. In R6, the
implication has the effect of sending an activation to start
checking p for each cycle of consecutive !b’s. In the run-
time interpretation semantics for the until operator in [10], the
property is allowed to fail multiple times for a given activation
when b is continuously false. Implementing the overlapped
form of until (R7) is done by adding another condition for

the property p, namely that it must also hold for the cycle in
which the Boolean expression b is true.

The next event a property in R8 states that all occurrences
of the next event within the specified range must see the
property be true. This can be modeled using a goto repetition
with a range, as an antecedent to the property via suffix
implication. This sends an activation to check the property
each time b occurs within the specified range after the current
property received its activation.

Proposition 2: MBAC Rewrite Rules Based on Sequences.

R9: eventually! r
→
= {[+] : r}!

R10: b1 before b2
→
= {(!b1&!b2)[*] ; (b1&!b2)}

R11: b1 before! b2
→
= {(!b1&!b2)[*] ; (b1&!b2)}!

R12: b1 before b2
→
= {(!b1&!b2)[*] ; b1}

R13: b1 before! b2
→
= {(!b1&!b2)[*] ; b1}!

R14: next event e(b1)[k:l](b2)
→
= {b1[–>k:l] : b2}

R15: next event e!(b1)[k:l](b2)
→
= {b1[–>k:l] : b2}!

In the set of rules above, the common theme is to express
the behavior of the operator on the left side using only a
sequence. The sequence replaces the property, and thus also
appears at the property level. The first rewrite (R9) expresses
the eventuality as a strong sequence (!) which can begin at any
cycle, hence the fusion with [+]).

The before family of properties in R10 to R13 can also
be modeled by sequences. The overlapped versions state that
b1 must be asserted before or simultaneously with b2. The
next event e properties (R14 and R15) state that b2 should
be asserted at least once in the specified range of next events
of b1. This behavior is modeled by a goto repetition that is
fused with the consequent. Once the b2 consequent is observed
in the proper range, the sequence has completed and will not
indicate a failure. The strong versions of these properties are
created by using strong sequences.

Proposition 3: MBAC Rewrites Based on Property Varia-
tions.

R16: p until! b
→
= (p until b) && ({b[–>]}!)

R17: p until! b
→
= (p until b) && ({b[–>]}!)

R18: next p
→
= next[1](p)

R19: next! p
→
= next![1](p)

R20: next event(b)(p)
→
= next event(b)[1](p)

R21: next event!(b)(p)
→
= next event!(b)[1](p)

R22: next[i](p)
→
= next event(true)[i+1](p)

R23: next![i](p)
→
= next event!(true)[i+1](p)

R24: next a[i:j](p)
→
= next event a(true)[i+1 : j+1](p)

R25: next a![i:j](p)
→
= next event a!(true)[i+1 : j+1](p)

R26: next e[i:j](b)
→
= next event e(true)[i+1 : j+1](b)

R27: next e![i:j](b)
→
= next event e!(true)[i+1 : j+1](b)

R28: next event(b)[k](p)
→
= next event a(b)[k:k](p)

R29: next event!(b)[k](p)
→
= next event a!(b)[k:k](p)

R30: next event a!(b)[k:l](p)
→
= {b[–>l]}! &&next event

a(b)[k:l](p)

The group of rules in Proposition 3 is based on rewriting to
other various forms of property operators. The strong versions
of the until properties (R16 and R17) are created by using the
weak versions, and by adding a temporal obligation for the
releasing condition to occur, namely b. This can be modeled
by the strong single-goto ([–>]) of the Boolean condition b.
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The R18 to R21 rewrites use a slightly more explicit form of
next operators. These rules are based on the fact that when no
count is specified, a count of 1 is implicit.

The family of rules in R22 to R27 is based on the fact
that next event is a more general case of next. The “+1”
adjustment is required to handle the mapping of the Boolean
true. When converting a next property to a next event prop-
erty, there is a slight nuance as to what constitutes the next
occurrence of a condition. The next occurrence of a Boolean
expression can be in the current cycle, whereas the plain next
implicitly refers to the next cycle.

The strategy behind the R28 and R29 rewrites is to utilize
the next event a form, with identical upper and lower bounds
for the range. Rule R30 handles the strong version of the full
next event a property. Similarly to the strong non-overlapped
until property, it is rewritten using the weak version, to which
a necessary completion criterion is conjoined. The addition of
the strong goto sequence with the l bound indicates that for
each start condition of the next event a, all l occurrences of
the b event must occur.

B. Cimatti et al. Rewrite Rules

Rewrite rules play an important part in the compilation
of PSL into symbolically represented nondeterministic Büchi
automata [11], for subsequent use in assertion-based formal
verification. In this approach, rewrite rules are used to reduce
SERE conjunction operators to simpler forms, and also to help
convert suffix implication operators into LTL operators. Of the
rewrite rules used in the symbolic compilation of PSL [11],
we selected a few non-obvious rules to prove their validity
using the PVS-based proof strategy outlined in this paper.

The selected subset of rewrite rules appears in Proposition 4.
We used our own numbering, as opposed to that in the original
publication. The rewrites are presented in the Verilog “flavor”
of PSL, and we use the

→
= symbol to specify the direction of

the rewrite rule. As before, b is a Boolean expression, r is a
SERE and p is a PSL property.

Proposition 4: Cimatti et al. Rewrite Rules [11] (subset).
CR1: b & r[*]

→
= b | {b : r[*]}

CR2: b[*] & r
→
= {r} | {{b[*] && r} ; b[*]}

CR3: r1[*] & r2
→
= r2 | r1[*] && {r2 ; true[*]}

CR4: r1[*] & r2[*]
→
= r1[*] | r2[*]

CR5: {r1 : r2} |–> p
→
= {r1} |–> ({r2} |–> p)

CR6: {r1 ; r2} |–> p
→
=

†
{r1} |–> next ({r2} |–> p)

CR7: {r1 | r2} |–> p
→
= ({r1} |–> p) && ({r2} |–> p)

CR8: {r ; b[*]} |–> p
→
=

‡
{r} |–> ((next !b) R p)

CR9: {b[*] ; r} |–> p
→
=

‡
!b R ({r} |–> p)

CR10: b && {r1 && r2}
→
= {b && r1} && r2

CR11: b && {r1 : r2}
→
= {b && r1} && r2

CR12: b && r[*]
→
= b && r

CR13: b[*] && r[*]
→
= {b[*] && r}[*]

CR14: {b1[*] ; r1} && {b2 ; r2}
→
= {r1 && {b2 ; r2} |

{{b1 && b2} ; {{b1[*] ; r1} && r2}}
CR15: {b1[*] ; r1} && {b2[*] ; r2}

→
= {b1 && b2}[*];{{r1 &&

{b2[*];r2}} | {{b1[*] ; r1} && r2}}
Here, † : requires ε /∈ L(r1) and ε /∈ L(r2) and ‡: requires
ε /∈ L(r).

In the rules CR8 and CR9, the LTL operator R is used, but
is not defined in PSL. The operator is known as the “Release”
operator, and its semantics are as follows:

p1 R p2 = !(!p1 U !p2)

where U is the strong operator “until!” in PSL. The semantics
of the Release operator was added to our semantics modeling
of PSL in PVS, and was used accordingly in the proofs of
rewrites CR8 and CR9.

C. Singh and Garg Rewrite Rules

Rewrite rules are used by Singh and Garg to transform
expressions using the simple subset of PSL into SERE im-
plication formulas. We retain eight rules which are presented
as rules 3 to 10 in Proposition 5 below; the numbering
corresponds to that of the original publication [12]. The rewrite
rules are formatted to be consistent with the style employed
thus far in this paper. The first two cases shown as rules
DR1 and DR2 are not labeled as rewrite rules in the original
publication, but are instead presented elsewhere in the text to
explain language semantics. We believe these two cases are
more interesting to analyze, since the original rules labeled 1
and 2 are trivial to prove.

Proposition 5: Singh and Garg Rewrite Rules [12] (subset).
DR1: eventually! r

→
= {true} |–> {[*];r}!

DR2: never r
→
= r |–> {false}

DR3: b1 until! b2
→
= {true} |–> {b1[*];b2}!

DR4: b1 until b2
→
= {true} |–> {b1[*];b2}

DR5: next(r1 |–> r2)
→
= {true;r1} |–> {r2}

DR6: (r1 |–> r2) until b
→
= {{!b[+]}:r1} |–> {r2}

DR7: (r1 |–> r2) until! b
→
= {true} |–> {true[*];b}! &&

{{!b[+]:r1} |–> {r2}
DR8: next(r1 |–> r2!)

→
= {true;r1} |–> {r2}!

DR9: (r1 |–> r2!) until b
→
= {{!b[+]:r1} |–> {r2}!

DR10: (r1 |–> r2!) until! b
→
= {true} |–> {true[*];b}! &&

{{!b[+]:r1} |–> {r2}!

Although some rules presented in this section may appear
intuitive, they are included for completeness and to allow us to
compare relatively simple proofs with more difficult cases. For
the rules that are not so intuitive, the computer assisted proofs
help to confirm that they are well founded. With a successful
proof, any such rule can be used with even greater confidence
in any tool that supports PSL.

IV. Modeling and Proving the Correctness of the

Rewrite Rules in PVS

To prove the correctness of the rewrite rules, we use the PVS
theorem prover. PVS provides an integrated environment for
the development and analysis of formal verification. It consists
of a specification language, a number of predefined theories
and a theorem prover. It is based on a typed higher order
logic. The choice of PVS was motivated by the fact that the
PSL semantics is expressed in second-order logic and thus
directly represented by the PVS input formalism. In addition,
many proof strategies are automated.

We first modeled the syntax of PSL in PVS: we defined a
datatype for the Boolean expressions, sequential expressions
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Fig. 1. Datatype definition in PVS.

and FL properties. We then modeled the semantics of each
datatype by a polymorphic function Sem. This modeling mim-
ics the semantics definition from the PSL reference-language
manual, and could be automatically defined. The last step is
to define the equivalence of the rewrite rules and to perform
the proofs.

A. Syntax Modeling

Three main datatypes called Bool PSL, SERE and FL,
are defined to represent the Boolean expressions, sequential
expressions and foundation language properties of PSL, re-
spectively. SEREs are defined using Booleans, whereas prop-
erties are defined using Booleans and SEREs.

The datatype definitions (Fig. 1) are relatively intuitive
to understand, and we will explain the formalism of the
Bool PSL definition in more detail. In PSL, a Boolean ex-
pression is built over a set of atomic propositions. Bool PSL
is declared as a type with six constructors: true_S,
false_S,1 sig, and_bool, or_bool, not_bool. The
constructors true_S and false_S take no argument, they
represent the constants true and false, respectively. The pred-
icate recognizer true_S? (false_S?) holds for exactly
those expressions of Bool PSL that are identical to true_S
(false_S). The constructor sig takes one argument of
type string representing an atomic proposition name. The

1We cannot directly use the Boolean type defined in PVS to represent
true S, and false S in order to distinguish the syntax and the semantics.
true S and false S are a syntactical definition, their semantics is given
by a function, the image of which is the PVS Boolean type.

Fig. 2. Datatype definition of the set of traces in PVS.

predicate recognizer sig? holds for exactly those expressions
of Bool PSL that are constructed using sig. These three
constructors are the base cases of Bool PSL, while the last
three constructors are used to define it recursively. The con-
structor and_bool takes two arguments of type Bool PSL.
It represents the conjunction of Boolean expressions. Predi-
cate and_bool? holds for expressions that are built using
and_bool. The last two constructors are defined similarly to
and_bool, they represent the disjunction and the negation
of Booleans.

B. Semantics Modeling

Time is discrete in PSL, and we model it by the set
of natural numbers N. The datatype Trace_PSL (Fig. 2)
represents the set {0, 1}P ∪{�, ⊥}: an element of Trace_PSL
is either �, or ⊥, or a list of strings (signal names), for the
signals whose value is true.

A trace is a mapping from N to Trace_PSL. We denote
by T the set of traces and T|val the restriction of T to the
traces constructed with the val constructor; T|val represents
fully defined traces containing no � nor ⊥.

The semantics is defined recursively for each datatype. The
semantics of Boolean expressions is modeled by a mapping

Sem : Bool PSL × N× T −→ B

b, t, v �→ vt ||= b

The mapping evaluates vt ||= b, and its definition in PVS is
given in Fig. 3. If the value of vt is � (⊥), then Sem(b, t, v)
is true (false). Otherwise it depends on the semantics of b. If
b is an atomic proposition of the type sig(a), its semantics
is given by a ∈ vt . In PVS, we use a predefined predicate
member applied on an element e and a list l that is true when
e is in l. Fig. 3 illustrates the implementation in PVS. Since
this mapping is recursively defined, it is necessary to show
that the recursion stops. We defined a measure given by the
size of the Boolean expression (the depth of its syntax tree).
The type verification of PVS is used to show that the measure
is well founded.

In the sequel, we concisely summarize the semantics mod-
eling for sequences and properties and present their PVS
representations, together with a few concrete examples.

The semantics of SEREs is modeled by a mapping

Sem : S × N× N ∪ {−1} × T −→ B

s, t0, T, v �→ vt0...T |≡ s

The parameter t0 represents the starting cycle of the trace, and
T represents the end of the trace. An empty trace is specified
when T is equal to t0 − 1. The translation from the standard
to the modeling is straightforward and we illustrate it using
an example.
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Fig. 3. Definition of the Boolean semantics in PVS.

Example 1: The PVS semantics of s[*], known as the SERE
Kleene star operator, mirrors the semantics of the SERE
Kleene star operator presented in Definition 2, and is captured
in PVS as follows:

Sem(s[*], t0, T, v) =
Sem([*0], t0, T, v)

∨ ∃t1 ∈ N : t0 ≤ t1 ≤ T ∧ Sem(s, t0, t1, v)
∧ Sem(s[*], t1 + 1, T, v)

Moving on to the property layer in PSL, the semantics of
FL operators is modeled by a mapping Sem

Sem : FL × N× N ∪ {−1} × T × B −→ B

f, t0, T, v, inf �→ vt0... |= f if inf
vt0...T |= f else

The parameter inf indicates whether the semantics is defined
on a finite or infinite trace v. The definition of the semantics
of FL properties is illustrated with an example.

Example 2: The semantics of f1 until! f2 is taken directly
from the standard and is expressed in PVS as follows:

Sem(f1 until! f2, t0, T, v, inf ) = ∃k ∈ N :
t0 ≤ k ∧ (¬inf ⇒ k ≤ T )

∧ Sem(f2, k, T, v, inf )
∧ ∀j, t0 ≤ j < k ⇒ Sem(f1, j, T, v, inf )

Following this method, the PSL syntax and semantics was
specified in approximately 400 lines of PVS code. Next we
show how to model the rewrite rules in PVS. The rewrites
are entered as theorems and constitute the objective of the
interactive proof sessions.

C. Theorem Modeling

A theorem defines the equivalence of each rewrite rule in
PVS. The equivalence is proved regardless of the length of
the trace, and for traces that are fully defined (with no � nor
⊥). The letter � or ⊥ may be introduced in the process of
proving the semantic equivalence of a rewrite rule; however,
both the circuit under test and our checkers do not rely on
these symbols. For static verification, the rules remain to be
validated when � and ⊥ are to appear in traces : for example,
the � symbol appears in the semantics of the abort operator. In
dynamic verification, the abort does not extend traces with �ω

but instead discharges the evaluation of a subproperty using
other mechanisms. In our checkers, the abort is implemented
in hardware [10] and is compatible with the rewrite rules.

The modeling for rule R16 (strong until) is shown as an
example below.

Example 3: The rewrite rule for the strong until! operator
is based on the weak until operator, with a conjunction to the
strong goto-repetition matching of the eventuality condition,
namely {b[–>]}!. The theorem is modeled in PVS as follows,
using our semantics definition shown previously

∀f ∈ FL, b ∈ Bool PSL, t0 ∈ N, T > t0−1, v ∈ T|val

Sem(f until! b, t0, T, v, inf )
⇔ Sem((f until b) && ({b[–>]}!), t0, T, v, inf )

It is important to note that it is not because a rewrite
rule is used only in one direction that the theorems need
to be proved only in that direction. The syntactic rewriting
(specified with the

→
= operator in this paper) is not related

to the implication operator (⇒). If an expression is to be
rewritten to another expression, both should be equivalent, or
else an error will be introduced. For this reason the proofs
were done as equivalences in PVS (⇔).

Once expressed in PVS, the interactive proof of a theorem
can be undertaken. In the next section, we present the proof
results for the rewrite rules presented earlier in the paper, and
discuss these and a variety of other experimental results.

V. Proof Results

Using our PVS modeling of the PSL semantics, the rewrite
rules presented in Section III were posed as theorems and
the proofs were performed interactively by entering inference
rules and commands in PVS. The number of commands used
to build the proof tree of a given theorem is reported in the
tables. These numbers correspond to macro proof commands
that are manually entered in the PVS command line. These
metrics are meant as a rough indication of proof complexity,
and could be improved upon if the actual goal was to craft the
shortest possible proofs, which was not our primary intention.

In our experiments, a rule is considered correct even if it
does not hold on an empty trace. For those rules that can only
be proved on non-empty traces, the theorem is simply modified
to exclude empty traces, and then a proof can be obtained
in PVS. Proofs of non-equivalence for empty traces are
performed separately as they require the modeling of a non-
equivalence in the theorem. Neglecting empty traces is usually
not a concern in dynamic verification, as simulators, emulators
and run-time checkers begin verifying assertions only once
the activity has begun in the circuit. In formal verification
contexts however, the outcomes marked “Proved*” (with a
single asterisk) could be considered as marked “Failed.” In
some cases, a slight workaround to the rewrite rule can be
introduced to correct this issue if need be.

We first summarize the outcome of the proofs for the set of
PSL rewrite rules employed in the MBAC checker generator,
with further explanations given regarding a few particular
proof outcomes. The proofs results for the Cimatti et al.
rewrite rules follow in Section V-B, and we close this section
by reporting on the Singh and Garg cases.
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TABLE I

Proof Results for MBAC Rewrite Rules (Propositions 1−3)

Rule Result # Comm. Rule Result # Comm.
R1 Proved 85 R16 Proved 97
R2 Proved∗ 49 R17 Proved 169
R3 From Def. N.A. R18 Proved 8
R4 Proved 21 R19 Proved 4
R5 Proved∗∗ 63 R20 Proved 7
R6 Proved 133 R21 Proved 7
R7 Proved 189 R22 Proved∗ 402
R8 Proved 768 R23 Proved∗ 203
R9 Proved∗∗ 41 R24 Proved∗ 14
R10 Proved 971 R25 Proved∗ 14
R11 Proved 212 R26 Proved∗ 18
R12 Proved 420 R27 Proved∗ 15
R13 Proved 191 R28 Proved 7
R14 Proved 2481 R29 Proved 7
R15 Proved 740 R30 Proved 126

Lemmas (17) 2017

∗ With exception of empty trace.
∗∗ Using a strong sequence on left-hand side of rule.

A. Proofs of MBAC Rewrite Rules

Table I shows a summary of the proof results for the MBAC
rewrite rules appearing in Propositions 1–3. Rewrite rule R3
follows directly from the PSL definitions and does not need
to be proved.

All twenty nine non-trivial cases were proved, with only
two small modifications to the theorems, indicated by * and
**. Rule R2 and rules R22–R27 were proven for non-empty
traces, and for rules R5 and R9, strong sequences had to be
specified in the left side of the rewrite rules. These issues are
discussed further at the end of this section.

As can be seen in the table, proof trees range in size
from trivial proofs (under ten commands), to almost 2500
commands. In general, short proofs indicate that a given
rewrite rule is very close to the language equivalence used
to define the operator in the PSL semantics. For example,
rules R24–R29 (next* family) can be seen as specialized
cases of more general operators, and are thus relatively quick
to prove. General operators such as those in the left sides
of rules R14 and R15 (next event e) require much more
effort.

The proofs are semi-automatic, and require a fair amount
of human intuition and experience, especially when a proof is
complex (for example, R14). In most cases, specific knowledge
of the PSL semantics modeled in a given proof sequent
(a step in the proof) is required to direct the next step,
as opposed to blindly applying inference rules in hopes of
succeeding.

Two cases in Table I deserve special explanations since the
rewrite rules actually had to be modified, to adjust for what
we believe is a suspicious behavior in the PSL semantics.
The original form for rewrite rule R5 (never) can be dis-
proved using the counterexample sequence {a;b;c}; as shown
next

never {a;b;c} �≡ {[+] : {a;b;c} } |–> false

Fig. 4. Waveform for signals a, b, c.

The waveform in Fig. 4 illustrates the values of signals
a, b and c. For the trace starting at �0 and ending at �5,
the property never {a;b;c} is false because the sequence as
a property {a;b;c} is satisfied on the trace starting at �4 and
ending at �5. But in the same trace, the property {[+] : {a;b;c} }
|–> false is satisfied because the sequence {a;b;c} is not tightly
satisfied on [�4, �5]; hence there is a contradiction.

The rule that is implemented is in fact the following one:

never r!
→
= {[+] : r} |–> false

According to the standard, a property holds if no bad states
have been seen, all future obligations have been met and if
on any extension of the trace the property may or may not
hold. It is worth noting that the property never {a;b;c} does
not hold on the trace [�0, �6] since a bad state has been seen
for the trace [�0, �4] padded with �. This semantics problem
is mentioned in [21].

With the same waveform and similar arguments, we show
that rule R9 is not satisfied; the implemented rule is actually

eventually! r!
→
= {[+] : r}!

The expression eventually! {a;b;c} holds on sub-trace
[�0, �4] and [�0, �5] since {a;b;c} holds on [�4] and [�4, �5].
Intuitively, we would have wished the property to be pending
just as it is on the trace [�0, �6]. In the right-hand side of
R9, we show that it does not hold on [�0, �4] nor on [�0, �5]
since the sequence must be strongly satisfied. We found no
mention of this problem related to the eventually! operator in
the literature.

These two rewrite rules, and the successful proofs for the
modified versions lead us to believe that the simple subset
definition requires a few modifications. These are discussed
further in Section VI-B.

The rules R22–R27 regarding the next family are not correct
for the case i = 0 when the trace is empty. Let us focus on
rule R22. Using Definition 5, the left part of R22 is equivalent
to p

next[0](p) ≡p

We can now rewrite the right-hand side of R22 using the
semantics of the unclocked SEREs and FL from the standard

next event(true)[0+1](p)
≡ next event(true)(p)
≡ false until p
≡ false until! p ∨ always false
≡ false until! p ∨ ¬eventually! true
≡ false until! p ∨ ¬(true until true)



MORIN-ALLORY et al.: VALIDATING ASSERTION LANGUAGE REWRITE RULES AND SEMANTICS WITH AUTOMATED THEOREM PROVERS 1445

TABLE II

Proof Results for Cimatti et al. Rewrite Rules (Proposition 4)

Rule Result # Comm. Rule Result # Comm.
CR1 Proved 92 CR9 Proved 82
CR2 Proved 122 CR10 Proved 25
CR3 Proved 38 CR11 Proved 29
CR4 Proved 57 CR12 Proved 23
CR5 Proved 44 CR13 Proved 96
CR6 Proved 53 CR14 Proved 146
CR7 Proved 44 CR15 Proved 188
CR8 Proved 95 Lemmas (4) 197

The right-hand side of the disjunction holds on an empty
trace, as shown next

v |= ¬(true until true)
≡ ¬( ∃k < |v|, vk... |= true, ∧ ∀j < k, vj... |= true )
≡ ∀k < |v|, vk... |= false, ∨ ∃j < k, vj... |= false

If the trace is empty then ∀k < 0, vk... |= false is true
and we can conclude that for any property p, the property
next event(true)[0+1](p) holds on an empty trace. If p is a
strong formula, it will not hold on an empty trace.

The same argument applies to rules R23–R27. Thus, it is
necessary to restrict rules R22–R27 to i > 0, and introduce
five additional rewrite rules specific to the case i = 0. For
instance, for R22 the rule would be

next[0](p)
→
= p

Rule R2 (property implication) is not valid for empty traces.
Interestingly, defining the semantics of implication with the or
operator and Boolean negation (instead of property negation)
leads to a successful proof even on empty traces; however, this
applies only to the simple subset case where full properties are
not used in the antecedent.

B. Proofs of the Cimatti et al. Rewrite Rules

The rewrite rules developed by Cimatti et al. [11] are used
to simplify various forms of SEREs and suffix implications.
Table II shows a summary of the proof results for the set
of fifteen rules presented in Proposition 4. All fifteen rewrite
rules were proved correct in PVS.

A few lemmas from the proofs performed in the MBAC
rewrites were also used in the proofs herein. One new lemma
was devised for assisting in the proof of rule CR13. The
supplemental lemma expresses the fact that if a SERE in the
form r[*] holds on a given trace, it also holds on an arbitrary
sub-trace contained within the initial trace. The proof of this
lemma was done using strong induction, and required 114
commands to prove separately. As in many proof strategies,
preparing intermediate proof constructs (lemmas) can go a
long way toward simplifying a proof. This is exemplified in
the many lemmas used, particularly in the proofs of the MBAC
rewrite rules.

Empty SEREs deserve special attention in some rules. In
this paper, the term “empty SERE” describes a SERE that
can be tightly satisfied by the empty trace, as in the example
{a[*0:4]}, whereas the term “null SERE” describes a SERE that

TABLE III

Proof Results for the Singh and Garg Rules (Proposition 5)

Rule Result # Comm. Rule Result # Comm.
DR1 Failed 49 DR6 Proved 217
DR2 Failed 45 DR7 Proved∗ 203
DR3 Proved∗ 143 DR8 Failed 101
DR4 Proved 311 DR9 Proved 123
DR5 Failed 185 DR10 Proved∗ 196
Lemmas (7) 301

∗ With exception of empty trace.

can only be tightly satisfied by the empty trace. A null SERE
can be specified in PSL using {[*0]}. The mechanism used to
prevent empty SEREs from being modeled in the theorems,
as required for rewrite rules CR6, CR8 and CR9, is to ensure
that the SERE semantics is not true on any empty trace. It is
implemented as follows in PVS (where r is a SERE):

not (exists (t1: N): sem(r, t1, t1 − 1))

As such, the above expression is used as an antecedent in
an implication, and the semantic equivalence to be proved is
entered as the consequent.

A substitute for rule CR6 is shown as rule CR6b

CR6 : {r1 ; r2} |–> p
→
=

†
{r1} |–> next ({r2} |–> p)

CR6b: {r1 ; r2} |–> p
→
=

†
{r1} |=> ({r2} |-> p)

The alternate rewrite rule is based on non-overlapped suffix
implication, and can be used in place of the original rule. It was
proved in PVS using roughly the same number of commands
as rule CR6. As outlined (†), empty SEREs are disallowed in
r1 and r2. Computer assisted proofs can also be performed to
help ensure correctness when conjecturing on alternate forms
of existing rewrite rules, as we have done here.

C. Results for the Singh and Garg Cases

To further demonstrate the scope of applicability of the
methods proposed in our PSL-PVS framework, we now report
on the proof results for the Singh and Garg cases. The set of
ten rewrite rules was shown in Proposition 5. Table III shows a
summary of the proof results. For each failed case, the number
of steps used to prove the non-equivalence of the rule on a
counterexample is instead reported.

We now detail the incorrectness proofs for the first two
cases, which correspond to the rewrites labeled DR1 and
DR2. These two particular cases are not actually introduced
as rewrite rules in the original reference [12], but are used
to explain the semantics of property operators in the text. We
have branded these two cases as rewrite rules in this paper,
since a rewrite rule can always be derived from a semantic
equivalence, provided the equivalence is correct to begin with.

The approach we adopt essentially resides in finding a
counterexample to a given equivalence rule, and then proving
the non-equivalence in the case of the counterexample. In the
typical equivalence proof, one tries to prove a statement for
all possible cases. Often, if the statement cannot be proved, a
reason for this becomes apparent during the proof steps and
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a counterexample can be derived. The counterexample is then
used on a theorem of nonequivalence.

The counterexample for the first equivalence statement
consists of a SERE and a trace showing a case where the rule
fails to hold. The first statement is related to the eventually!
operator, and was presented as rule DR1 in Proposition 5

eventually! SERE ≡ {true} |–> {[*];SERE}!

This rule has similarities to rewrite rule R9 in Proposition 2.
The problem anticipated with this rule, however, is the fact
that an empty SERE could be produced in the right side’s
concatenation with [*]. The counterexample for this rule makes
no use of an explicit trace, and can be designed using the
SERE {a[*0:4]}. In an abstracted notation, here is how the
conjecture is entered in PVS:

∀ t0 > 0, T > t0 − 1 :
vt0..T |= {true} |–> {[*];{a[*0:4]}}! �⇒
vt0..T |= eventually! {a[*0:4]}!

On the trace where a is always false, the property on the
left-hand side of the ⇒ implication is true, since {a[*0:4]} is
satisfied on an empty trace. The property on the right-hand side
of ⇒ is false since eventually! can be rewritten to: true until
{a[*0:4]}!. According to the standard, the second operand of
the until operator is satisfied only on a non empty trace. Thus,
“a” must be true at least once, hence the contradiction. This
shows why in our rule, a fusion with [+] is more appropriate.

Another equivalence in [12] was presented as rewrite rule
DR2 in Proposition 5

never SERE≡ SERE |–> {false}

This rule was also disproved by counterexample. A coun-
terexample is produced when the SERE starts after the first
cycle and does produce a match. In this case, the property on
the right-hand side of ≡ will not signal an error (because the
SERE does not hold in the initial cycle) while the one on the
left will (the SERE evaluation restarts at each cycle).

Rewrite rules DR3, DR7 and DR10 were only proved for
non-empty traces. The common reason for this is that in these
three cases a strong until! operator is used in the left side of the
rule, whereas the right side makes use of suffix implication.
A suffix implication can be true on an empty trace since the
antecedent is not matched; however, the obligation imposed
by the strong until! cannot be met on an empty trace.

The rules DR5 and DR8 were shown incorrect by counter
example

DR5: next(r1 |–> r2 )
→
= {true;r1} |–> {r2}

DR8: next(r1 |–> r2!)
→
= {true;r1} |–> {r2}!

The following SEREs, when used in the rewrite rules, can be
used to prove that the equivalence does not hold on any trace
of length two

r1 = empty S, r2 = false S

It is interesting to note, however, that if an empty SERE is
disallowed in r1, as is done in some Cimatti et al. rules, the
DR5 and DR8 rules can be proved.

TABLE IV

Proposed Modifications to Simple Subset Guidelines

Item1 Revised guideline
2 The operand of a never operator is a Boolean or a strong

Sequence
3 The operand of an eventually! operator is a Boolean or a strong

Sequence
8 The right-hand side operand of an overlapping

until∗ operator is a Boolean
10 The operand of next−e∗ is a Boolean or a sequence
11 The FL Property operand of next−event−e∗ is a

Boolean or a sequence

1Itemized list in Section 4.4.4 of [16].

VI. Revised Simple Subset Guidelines

In this section, we first present our formulation of the
formal definitions for finite behaviors in PSL, and show how
to interpret the satisfaction criteria for finite traces. We also
proceed to outline our proposal for simple subset guidelines.

A. Some Formal Definitions for Finite Behaviors

The PSL language reference defines four levels of satis-
faction of a property: holds strongly, holds, pending, fails, but
gives no formal definition. These satisfaction levels are defined
using some intermediate definitions that we have formalized to
ease the understanding of our discussion on the unsuccessful
rewrite rules.

Let ϕ be a property and v be a trace.

1) No bad states have been seen. This is defined by

∀j ≤ |v|, v0..j�ω |= ϕ

2) All future obligations have been met. The definition is

v |= ϕ

3) The property will hold on any extension of the path. In
this case, it must hold on the trace padded with extra
⊥’s

v⊥ω |= ϕ

Combinations of these intermediate definitions define the
four satisfaction levels mentioned above.

B. Syntactic Definition of the Simple Subset

We present our view of what the simple subset guidelines
should be, in the light of the findings arising from our proof
efforts. Of the eleven conditions outlined in the simple subset
guidelines, in Section 4.4.4 of [16], five require modifications.
Table IV shows how we believe these conditions should
appear.

To summarize, the modifications for items 2 and 3 are a
consequence of the PVS proofs we performed in this paper,
as discussed in Section V-A. Consequently to the proofs
performed, the word “strongly” should be added to further
characterize the sequences that can be used in these two
operators. The modification to item 8 is part of the simple
subset issues of the working group [20], and in this paper was
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proved to be coherent with our run-time semantics and rewrite
rules. The original formulation of this guideline required that
both operands be of type Boolean.

The modifications to items 10 and 11 are a consequence of
analyzing the rewrite rules corresponding to these operators.
Here, the original formulation required that only a Boolean be
used in the given operand. The proposed modification allows
sequences to also be used while still preserving a certain
amount of temporal order in the property, enough for it to
be considered simulation-friendly. To illustrate how we obtain
the relaxed conditions of allowing sequences, consider the
rewrite rule for the next event e operator (the strong version
and the two next e cases are similar)

R14: next event e(b1)[k:l](b2)
→
= {b1[–>k:l] : b2}

In the right-hand side of the above rule, the second argument
of the fusion (:) could actually be a sequence instead of the
Boolean b2. Hence, the less constrained condition for the
simple subset could be as follows (where r is a SERE):

next event e(b)[k:l](r)
→
= {b[–>k:l] : r}

The reasoning behind our simple subset version is that there
should be a certain amount of consistency in the guidelines
such that rules are well founded no matter what form one
chooses to express a property. To make a case, consider again
the last rewrite rule. It would seem illogical that the form

next event e(b)[k:l](r)

be excluded from the simple subset while the equivalent form

{b[–>k:l] : r}

is easily part of the simple subset. We believe that the rewrite
rules provide a key mechanism to formally define the simple
subset guidelines and help provide a closed subset that is
consistent.

VII. Conclusion and Continuing Work

In this paper, we have shown how automated theorem prov-
ing can be used to effectively prove the assertion rewrite rules
and equivalences in modern hardware assertion languages such
as PSL. Due to the complexity of the language and the coun-
terintuitive nature of some of the rewrite rules, we have shown
that some of the published rewrites were actually incorrect. Of
the more than 50 rewrite rules from various sources retained
for experiments in this paper, two were not provable because
of language semantics issues, nine were shown not to hold on
empty traces only, and four were shown to be false.

As witnessed in our proof results, we also showed how
certain simple subset guidelines must be changed in order to
create behaviors that are better suited to dynamic verification
with PSL. We have formally justified the guidelines for writing
a simulation friendly PSL. In our view, the simple subset is the
set of properties that can be rewritten to a property compliant
with our Definition 6 along with one or more of the proved
correct rewrite rules.

Our method is easily applicable to SVA semantics as well.
Given the relative similarities of SVA and PSL [22], proving

theorems about SVA semantics and rewrite rules is quite simi-
lar. New extensions will be required in our PVS framework to
handle local variable assignments in SVA sequences [23]. A
noteworthy challenge also remains to prove theorems about
multi-clock assertions, that is, single assertions containing
subexpressions that are synchronized to different clock rates.
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