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&TOACHIEVE PERFORMANCE, feature, and cost goals

set by the marketplace, engineers must build increas-

ingly large and flexible systems in ever smaller and

more efficient devices. This trend has led to the

introduction of versatile SoCs, which can include

many disparate electronic subsystems. In advancing

SoCs, the emerging network-on-chip (NoC) concept

plays an important role, as it will ultimately allow

scalability and modularity in hardware. Architectural

design and modeling of NoCs increasingly requires a

cross-layer design methodology that spans multiple

abstraction levels, as decisions taken at a high level

inevitably have a significant impact on the final

implementation’s physical features. In addition to the

traditional speed and area concerns, designers must

model myriad other metrics, including energy con-

sumption, noise resilience, reliable connectivity and

interoperability, manufacturability, and bug-free oper-

ation across the system. All of these will ultimately

determine the quality of the system during its life cycle.

Here, quality refers to achieving sufficiently correct

operation across abstraction layers and implementa-

tion technologies. Examples include

& performing required operations under increased

coupling noise or defects of new and emerging

technologies;

& correctly transmitting bits at high speeds or

across poor (such as wireless) communication

channels; and

& being sufficiently free of logic and

software bugs across increasingly

large, distributed systems.

Without quality built in from the early

stages of modeling, the staggering

complexity and the reduced room for

error are seriously affecting the ability

of industry to make profitable products

on time. For example, Intel and AMD have repeatedly

had to recall or postpone their processors, including

incidents as recent as December 2007, when the

energy consumption of processors already on the

market was found to be excessive in some corner

cases. As a consequence, close to 25% of all design

resources at Intel are now expended in post-fabrica-

tion validation.1

This article presents a development platform that

facilitates quality-driven design via multi-abstraction-

level modeling. The NoC concept not only simplifies

the overall integration of cores but also provides the

possibility for executing test, debug, and CPU control

(the ability to control the execution of many CPU

cores, loading, breakpoints, and so on) from a single

access point. We can then monitor the transactions

and highlight any deviation from the specifications at

the highest possible abstraction level by incorporating

assertions in the simulation and emulation platforms.

This monitoring requires multiabstraction support, and

we conduct it in real time using on-chip silicon-based

checkers. The checkers are derived automatically

frommodern languages such as Property Specification

Language (PSL) and SystemVerilog Assertion (SVA). In

the emulation environment (or FPGA prototype),

many assertion checkers can be instantiated to further

improve visibility. Some of those checkers can remain

in the final implementation, depending on an

acceptable area overhead (that is, a reasonable cost

for increased quality).
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To master the NoC and SoC development challeng-

es, we validate the behavior of complex systems,

including embedded software, by using emulation

and prototyping on FPGAs across abstraction levels in

a cosimulation environment. Our goal is to improve

quality of design (QoD). Therefore, we are developing

design tools and methodologies that enhance the

verification effort from the conception of the system

model to the FPGA prototype.

Quality of design
The complexity of designing efficient, scalable on-

chip communication interconnects will continue to

grow as increasing numbers of cores are integrated

onto a single chip. A major challenge in chip design

will be to provide a scalable and reliable communi-

cation mechanism that will ensure correct system

behavior.2,3 Traditional SoC designs have used shared-

medium (bus-based) architectures, whose limitations

have now become apparent.4,5 In fact, for systems

consisting of more than 20 cores, a bus interconnect

quickly becomes the system bottleneck,6 degrading

performance such that it is no longer a feasible

solution to the communication requirements. The key

problem with bus-based approaches is their limited

scalability. To address the shortcomings of the shared-

medium architecture, designers have adapted con-

cepts from the domains of networking and parallel

processing for on-chip use, giving rise to the notion of

an on-chip communication network, or NoC.2,3

Although the NoC concept addresses the shortcom-

ings of shared-medium architectures, the vast NoC

design space adds complexity to the design flow.

Specifically, because the network topology significant-

ly impacts performance and cost, the topology

selection must now be included as part of the design

space exploration and high-level prototyping stages.

Typically, designers start with high-level functional or

transaction-level models for rapid prototyping and

design space exploration. The high-level models are

then refined until they can be synthesized to hardware.

The traditional verification effort is usually left until the

final stages of development, and is usually used to

verify correct system behavior for a certain range of

possible system inputs (functional coverage). Further-

more, DFT, another significant quality factor, is not

integrated into architectural exploration, where there

is now a possibility to reuse the NoC as a test access

mechanism.7

Functional coverage is used to verify system

behavior before the system is implemented in

hardware. Although a well-tested system is of higher

quality than a poorly tested one, functional coverage

does not help detect error conditions in the field.

Therefore, besides performing functional coverage,

another way to improve system quality is to add

monitoring capabilities to enable detecting and

properly dealing with runtime errors after fabrication.

At first glance, it would seem that improving quality

by adding test, debug, and monitoring infrastructure

would be relatively straightforward. Intuitively, all that

is needed is to add the infrastructure IP and possibly

some redundancy to compensate against failures. The

difficulty lies in integrating the quality effort into the

traditional design flow in a systematic approach to

improving design quality during the pre- and post-

fabrication stages. There are two aspects of design that

improve the overall quality: verification and the

testing, monitoring, and debugging (TMD) infrastruc-

ture.

Verification can be performed at the block and

system levels. Block-level verification checks that

individual components conform to specifications,

and system-level verification checks that the compo-

nents function correctly when interacting with one

another.

The TMD infrastructure has the following character-

istics:

& Reusing an NoC as a test access mechanism

poses challenges in guaranteeing the bandwidth

and latency for streaming the tests to all

subsystems.7 The communication bandwidth

and processing capabilities of the processing

elements (PEs) are needed to predictably route

test data, but possibly also for the self-tests and

online testing.

& Runtime monitoring can be added to detect

error conditions that might be caused by

unverified corner cases or by the presence of a

timing fault or silicon defect that might have

escaped initial testing.

& Integrated debugging hardware enables the

system to diagnose the cause of errors, and to

react appropriately (for example, reroute traffic

around a faulty node). The visibility gained by

the presence of the debugging modules facili-

tates the localization of the root cause of
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problems during both pre- and post-fabrication

debug.

Figure 1 shows our proposed design flow, which

integrates verification and the TMD infrastructure.

Usually, system-level verification is performed after

block-level verification. So, in addition to verification

typically taking place late in the development process,

system-level verification usually occurs last. This has

profound implications for NoC development because

of the paradigm shift from computation-centric to

communication-centric design.3 That is, the perfor-

mance of current SoCs is limited mainly by the

computational cores, so the system interconnect can

be selected almost as an afterthought. Conversely,

tomorrow’s large SoCs will be limited by the available

communication bandwidth, thus making the design of

the interconnect architecture critical. If system-level

verification occurs at the latter stages of development,

problems with a chosen interconnect architecture

may be discovered too

late. It is therefore neces-

sary to begin system-level

verification as early as pos-

sible, and to include it in

the architectural explora-

tion cycle. Moreover, veri-

fication components can

be reused and refined dur-

ing the implementation

phases for regression test-

ing.

Essential to the monitor-

ing effort is the ability to

detect temporally complex

error conditions. Electron-

ic system-level (ESL) de-

sign and RTL languages

and their simulation envi-

ronments support asser-

tions in a way similar to

modern programming lan-

guages. There are two

problems with those sim-

ple assertion mechanisms:

& The assertions can be

expressed only by us-

ing simple Boolean

conditions.

& The assertion logic cannot be directly translated

to hardware.

To address the problem of the limited complexity

restrictions of standard assertion mechanisms, the

industry introduced assertion languages such as PSL,

which supports temporal expressions and thus can

express complex sequences of events over time. This is

an important capability for NoC verification because

transactions can be monitored at varying levels of

abstraction and granularity, ensuring conformance to

specifications. Without a tool to translate PSL state-

ments to hardware, there is a gap between the

monitoring capabilities of the simulation environment

and the final hardware implementation. In our view,

system quality could be improved by incorporating the

PSL-represented logic in all stages of specification and

design, with some logic left in the final implementation

for online monitoring. Therefore, our designs include

PSL-derived hardware checkers.8,9
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Figure 1. The quality of design (QoD) flow incorporates the system debug and

monitoring infrastructure via debug and assertion modules, and reuses the network on

chip (NoC) for test and verification. (PSL: Property Specification Language; TMD:

testing, monitoring, and debugging.)
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To complement the checker hardware, we added

debug modules, as shown later in the article. Thus,

when the monitoring hardware detects an error

condition, the system diagnoses the problem and

takes appropriate action.

Design space exploration is the process of

comparing the properties (area, speed, power,

and so forth) of several system configurations and

selecting the most appropriate candidate. Figure 1

shows how high-level cost models are integrated

into the SystemC prototyping phase to help drive

early design space exploration. We developed the

cost models by using FPGA and ASIC synthesis

results of specific design instances. For example,

we can use the synthesis results of a specific

configuration of a hierarchical-ring interconnect to

develop a cost function that takes as input certain

design parameters (for example, bus width and

FIFO buffer depths), and allows comparing differ-

ent configurations without synthesizing each in-

stance.10 Using cost models early in the design

phase increases the probability that the final

implementation will meet resource and perfor-

mance constraints, and thus is an important step in

improving QoD.

Although verification is an extremely important part

of the usual design flow, it does not impact the

resource usage of the final implementation. However,

the TMD infrastructure in our QoD flow will eventually

be implemented in hardware. Therefore, the overhead

of the TMD infrastructure must also be characterized

and included in the cost models so that its resource

requirements are accounted for during the design

space exploration stages. Also, TMD cost models can

serve to optimize the included TMD components to

meet resource constraints. For example, it is probably

too expensive to include all assertion checkers or

instantiate debug modules at every node in the

network.

Quantifying quality
So far, the discussion has centered on the idea of

improving quality by adding the TMD infrastructure to

the design flow. It is obvious that adding extra

diagnostic and recovery capabilities to a design will

improve its quality, but how do we quantify the

improvement? And, how can we compare the quality

of two different designs when performing architectural

exploration? A representative quantitative measure

lets us evaluate the quality of several architectures and

select the one with the best score. We use the

following quality function to score the quality of a

specific design instance di:

Q dið Þ ~ lQV dið Þ z rQTMD dið Þ z sQNoC dið Þ ð1Þ

where QV numerically represents the verification

quality of the components in the design; QTMD is a

measure of the quality of the TMD infrastructure

hardware; QNoC is a quality measure of the network

architecture and topology; and l, r, and s assign

relative weights in the calculation of Q. The term QV

can be a combination of the functional coverage of

each component and the completeness of the system-

level verification effort (the higher the coverage, the

higher the quality score).

To facilitate the comparison of architectures with

differing numbers of nodes, we can express QV and

QTMD as an average value per node. For example, we

compute the value of QTMD by solving

QTMD dið Þ ~ aQT dið Þ z bQM dið Þ z cQD dið Þ
dij j

ð2Þ

whereQT,QM, andQD are the quality scores of the test,

monitoring, and debug hardware; and a, b, and c

assign relative weights in the calculation ofQ. Dividing

by |di| (the number of nodes in the architecture) yields

an average QTMD value per node. The calculation of

QTMD described by Equation 2 assumes we can

numerically represent the capabilities of the TMD

infrastructure. One way to score assertions is to simply

rank each one using a numeric value. (The calculation

of QNoC will be discussed later.)

The cost of quality
Under ideal circumstances, we’d like to add as

much extra TMD hardware as possible to maximize

quality. However, the added functionality comes at the

cost of extra resource requirements, which may

exceed the resource budget for the design. Therefore,

we must find a way to balance quality against the

required overhead. We express the resource require-

ment of a design instance di as

R dið Þ ~ R0 dið Þ z RTMD dið Þ ð3Þ

where R0 is the resource requirement of the design

without TMD infrastructure, and RTMD is the resource

requirement of the TMD infrastructure components.
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Optimizing quality versus cost
In addition to integrating the TMD infrastructure to

increase quality, we can also use our design flow

(Figure 1) to support design space exploration and

optimization to meet performance and resource

constraints. Aided by FPGA and ASIC synthesis results,

we developed cost models so that we could drive

exploration at higher abstraction levels using SystemC

instead of the RTL. The feedback loop in Figure 1

shows how we use synthesis results from the lower

abstraction levels at the SystemC level to develop the

cost models. Only a subset of the possible configura-

tion of parameterizable components are synthesized

to obtain a few data points, which can be used to infer

relatively accurate estimates for the range of possible

configurations. This is key to enabling rapid high-level

exploration and optimization, because synthesizing

every design instance and comparing resource re-

quirements would be far too time-consuming.

Under resource constraints, optimizing quality

versus cost (resource requirements) is a multiobjective

optimization problem, with the goal of maximizing

quality and minimizing cost. We define the objective

function for optimization as the ratio Q:R. Thus, we

find the optimal design di by solving

max Q dið Þ=R dið Þ½ $ ð4Þ

The RTL box in Figure 1 shows how we select the

checker and assertion hardware from large libraries.

(A significant portion of this hardware comes from

reusing the verification assertions.) A practical design

has resource constraints, so only a subset of the TMD

capabilities goes in hardware. Therefore, the challenge

is to efficiently select the best subset such that the

quality is maximized for the RTMD resource constraint.

FPGA emulation in quality-driven
architecture exploration

FPGA emulation and prototyping can provide a

decisive advantage to the multiprocessor and com-

puter architecture research. Using this platform, we

have proposed and studied several NoC topologies

that augment the transaction-level SystemC models

with RTL modules to be run directly on FPGAs. The

modeling can be made more accurate when needed.

However, dealing with the inherent complexity and

difficulties in validating a given proposal is possible

only through accurate models executed at the speed

of FPGA circuits (for an acceptable QV). The concrete

NoC studies completed so far describe how to create

the composite topologies of the popular mesh NoC

using hierarchical rings in several different ways,11 and

how to evaluate them realistically. This is an extremely

interesting NoC proposition, given the inherent pla-

narity of hierarchical rings.

The hierarchical ring offers fewer physical links

connecting the NoC’s PEs. This is quite beneficial in

any emulation platform because it reduces the use of

the limited inter-FPGA links. A full crossbar switch or

mesh network would overwhelm the emulation

platform hardware connectivity and would require

hardware workarounds such as time-division multi-

plexing to support the very large number of links as the

design is partitioned into multiple FPGAs.

There are, however, limitations in using only direct

circuit emulation without quality considerations.

Therefore, we augmented the NoC architectural

studies with the energy and area models, derived

from more refined RTL block implementations. Our

quality considerations benefit significantly from FPGA

emulation to advance architectural and related

research and offer a flexible testing ground to refine

our quality metrics.

Networking and quality of service

Central to the theme of the NoC, the networking

protocol and data structures require careful con-

siderations to incorporate support for the TMD

infrastructure. The networking header definitions

must include fields so that the routers can

autonomously terminate transactions that are

destined for the monitor and debug units or the

router itself. The NoC must support virtual channels

that allow differentiated services of TMD traffic.

One such service is the transport of assertion

information, which is characterized by small

messages (low bandwidth) requiring low latency

and best-effort delivery. To support debugging, the

NoC needs at least one communication channel

that can bypass the flow control and compel

delivery of the payload without considering the

congestion level in the buffers (for example,

overwrite user data to end a deadlock situation).

These bypass channels are necessary for diagnos-

ing complex error conditions in the NoC and for

controlling the PEs at a very low level.

The ability to completely bypass the router logic in

the presence of a physical defect in either the router or

the PEs could help increase the yield if the full NoC
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capabilities are not required (say, for

reduced functionality or a lower-cost

device). A time-to-live (TTL) counter is

also necessary in the networking payload

so that packets destined to a disabled

endpoint don’t endlessly loop in the

network. For an arbitrary NoC architec-

ture, it’s possible to predetermine the

maximum number of hops, and then

adjust the TTL counter size accordingly.

Built-in performance monitors report

expired packets to the software layers in

order to detect incorrect routing tables.

Because the network includes the neces-

sary interfaces to assume control of the

PE resources (mainly the CPU), debug-

ging and diagnostic transactions can be

initiated while the NoC is still operating

with one (or more) of the PEs in bypass

mode. In many applications, this will

mean a reduced level of service to the

user, but not a complete failure of the

NoC.

Architectural exploration
During the initial development stages,

designers must select an NoC architec-

ture that meets the performance and

cost requirements of the application.

Using the high-level models, the design-

ers can discard unsuitable candidates

before adding TMD hardware and per-

forming the quality optimization dis-

cussed earlier.

To facilitate architectural exploration, we devel-

oped our own NoC simulation platform, written in

SystemC. This platform contains a library of para-

meterizable components for constructing arbitrary

network topologies. We’ve integrated previously de-

veloped energy models, as well as area estimates

derived from FPGA synthesis and more recent ASIC

synthesis results.10 The augmented high-level models

are useful for comparing the performance character-

istics of arbitrary network topologies for the target

application, letting designers quickly discard unsuit-

able candidates early.

Figure 2 shows examples of topologies we have

modeled using our platform. Figure 2a shows a two-

level hierarchical-ring topology, and Figure 2b shows a

2D hyper-ring topology. Figure 2c shows our hybrid

ring-mesh architecture,11 which uses a two-level

hierarchical-ring interconnect to route global traffic

between disconnected mesh networks. The augment-

ed ring-mesh architecture shown in Figure 2d uses the

same hierarchical-ring interconnect to augment a

single large mesh network; the ring interconnect

reduces the latencies associated with long-distance

traffic by skipping over portions of the mesh network.

The inherent planarity and energy consumption

benefits of hierarchical rings make these topologies

very attractive. Furthermore, using RTL models, we’ve

demonstrated that the hierarchical rings are fast and

area efficient,10 making them well-suited for NoC

implementation.

Using our QoD flow, we can evaluate different

topologies. Here, we focus on the hierarchical-ring and
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Figure 2. Examples of topologies modeled using our platform: two-level

hierarchical rings (a); 2D hyper-ring (basically a hierarchical-ring

architecture with a second global ring added) (b); hybrid architecture

connecting several mesh networks together (c); and augmented network,

routing global traffic through the hierarchical rings to reduce latencies and

hop counts (d).
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hyper-ring topologies, but other topologies could be

compared as well. The benefit of comparing two ring

architectures is that we have high-level (ESL) and low-

level (RTL) implementations of each, so we can use

the full QoD flow to select a final implementation.

Hierarchical-ring topology
We constructed the hierarchical-ring topology in

Figure 2a by arranging several unidirectional rings

around a central global ring to form a two-level

hierarchy. The unidirectional ring is the simplest

form of a point-to-point interconnection, resulting

in a minimum number of links per node and simple

interface hardware. The simplicity of the rings

requires a straightforward routing mechanism so

that the only decision remaining is whether to

remove a flit from the ring or forward it to the next

node. Hence, each switch’s buffer requirements

are reduced, the maximum speed at which each

switch can operate is increased, latencies are

reduced, and the point-to-point links between

nodes are better utilized.

Although the simplicity of the unidirectional rings

makes it an attractive architecture, it has the

drawback of limited scalability. The diameter of the

network grows linearly with network size; hence, hop

counts and latencies can become unacceptably

large. To attenuate the scalability issues of the single

large ring, designers should consider hierarchical-ring

topologies, which have greater scalability and smaller

network diameters. In fact, the diameter of a

hierarchical-ring topology grows logarithmically with

the number of nodes.

The topology in Figure 2a consists of four local

rings and one global ring for routing traffic

between local rings. Each local ring consists of

several ring interface (RI) components, which

interface with the PEs, and an inter-ring interface

(IRI) to connect the local ring to the global one.

The hierarchical-ring topology shares the same

characteristics of the single unidirectional ring that

are important for NoC implementations. The low

node degree of the switches results in simple, fast,

and area-efficient routers.10 For example, the

degree of each RI is 2, and the degree of each IRI

is 4. The low node degrees of the hierarchical rings

result in a planar topology, which is well-suited for

efficient 2D layout. In fact, the topologies discussed

in this article have no global routing. Consequent-

ly, place-and-route results in a layout that has no

global channels.10 The unidirectional nature of the

rings reduces the overhead associated with routing

and thus results in low latencies and high

throughput.

Hyper-ring topology

A drawback of the hierarchical-ring topology is that

the global ring can saturate quickly under heavy load.

An alternate ring topology is the n-dimensional hyper-

ring,12 which addresses the bisection bandwidth

limitations of the hierarchical rings. The drawback of

higher-dimensioned hyper-rings is that they lose the

property of planarity and can thus become difficult to

map efficiently onto silicon. Therefore, we’ve chosen

the 2D hyper-ring shown in Figure 2b, because of its

similarity to the two-level hierarchical-ring architec-

ture.

In Figures 2a and 2b, the hyper-ring architectures

are basically an augmented version of the hierarchical-

ring architecture, with a second global ring added.

Simulation results confirmed that the increased

bandwidth afforded by the additional global ring

lowered average latencies by 20% to 40%, depending

on the simulation parameters; it also increased the

saturation point for accepted traffic by 10% to 15%.

PE ring interface architecture
The RI components provide an interface to the

network through which a PE can send and receive

data. Figure 3 illustrates the internal blocks resulting

from the design flow presented previously. Notice that

the ring interface not only manages the add/drop

traffic flowing in and out of the PE but also monitors

and autonomously reports assertion failures and

performance information. This network status report-

ing is decentralized and consumes only a small

fraction of the bandwidth. Because the NoC transports

the aggregated information like other traffic, the NoC

can easily reroute this information or give it a higher

priority to ensure low latencies.

We designed hardware units such as the network

performance monitor using ESL design methods (or

hand-coded RTL, when necessary). However, we

derived the hardware assertion checkers and coverage

monitors from high-level temporal statements.

Hardware assertion checkers
Recently introduced design verification languages

such as IBM’s PSL have allowed tremendous improve-

ments in verification productivity, leading to a rapid
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increase in the use of assertions.We use theMBAC tool

to compile PSL assertions to hardware for immediate

use in emulations, monitoring, and silicon debug.8,9

Because assertions are the most suitable means of

specifying complex temporal relations, this way of

instrumenting circuits has far-reaching applications in

monitoring, debugging, and otherwise assessing and

improving the quality of digital systems. We have

developed a complete new framework for debugging

circuits during pre- and post-fabrication verification.

To efficiently solve the synthesis problem and increase

visibility, this project includes several fundamental

contributions to the realization of nondeterministic

acceptors of extended regular expressions, including

new ways to handle nondeterminism and new

automata symbol-encoding schemes.

From PSL to hardware
Eachhardwareassertionchecker representingaPSL

statement can be augmented with specialized debug

enhancements,8 such as activity monitoring or se-

quence completionmonitoring, by passing command-

line options to the assertion compiler. Designers could

implement their own code for validating the internal

state of the circuit, but an automated translation from

PSL assertions to gates eliminates the risk of altering the

behavior of the circuit with the checkers. The MBAC

assertion compiler generates hardware that only

monitors thecircuit behav-

ior, thus guaranteeing that

the hardware behaves as

originally intended. Fur-

thermore, automatically

translating PSL assertions

to RTL code eliminates the

risk of introducing errors

into the assertion circuitry

itself, which likely would

occur if the translations

were done manually. Any

errors introduced into the

assertion hardware during

translation would affect

the resulting quality of the

hardware. Therefore, an

automated approach is

not only preferable but

also necessary for large,

complex systems such as

NoCs.

The methodology also benefits from the uniform

representation of assertion failures and high designer

productivity because the temporal languages can

concisely describe complex behavior. Furthermore,

the PSL statements database and NoC topology

information can be combinedwithin amore advanced

debugger to automate the localization of failures.

Tool flow details

Our approach to the design of NoC diagnostic and

failure detection modules includes the following steps,

illustrated in Figure 4:

1. Beginning with verification units containing

PSL assertions derived from the high-level

modeling effort, we select those suitable for

translation to hardware.

2. The hardware assertion-checker generator

(MBAC) processes those assertions, then the

RTL synthesizer extracts the size and timing

characteristics of the hardware checker circuits.

3. The resulting information is recorded in a

database along with a quality score given by

the designer. The timing is checked to ensure

that the assertion checkers do not interfere with

the circuit timing budget.

4. New PSL statements can be written to ease

debug and diagnosis of potential error condi-
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Figure 3. The processing element (PE) ring interface, which includes

hardware dedicated to providing the interface between the debug control

and monitors, and the networking infrastructure. (DMA: direct

memory access.)
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tions, and these statements go in the assertion

database. A flit tracer or a checker for corner

cases that are very long to get in a simulation

could be added to improve visibility in the

hardware implementation. Coding these addi-

tions in PSL is straightforward.

5. The interfaces to the NoC interconnect and the

PEs are generated. This produces the TMD

infrastructure module, including the assertion

checkers and interface logic. A byproduct of

this process is a database mapping the asser-

tions’ bit positions and addresses for integration

with the controller and the rest of the system.

Interface generation (step 5) is performed in the

following manner:

1. The hardware assertion checker outputs and

monitors are packed so that they can fit in a

given number of words of a certain bus width

(usually 16 or 32 bits). Monitors can be set to

include counters, which are placed to avoid

straddling two registers.

2. A transition detector is generated for each

assertion checker. It is a simple state machine

that detects the transition from the idle state to

a detected assertion failure. Because numerous

assertions are simultaneously monitored, this

method avoids flooding the network with

information if assertions repeatedly fail. Only

the initial failure is sent. Other firings of the

same assertion checker can be counted but are

not sent to the network (until the PE resets the

transition detector).

3. An interface is generated to the local PE so that it

can control, reset, and examine the assertion

checker outputs and counters. This local inter-

face also guarantees that the assertion failure is

available in case the network is deadlocked or

buggy (the PE interface can be read via the scan

chain or a similar mechanism).

4. Finally, an interface to the network is generat-

ed. It consists of a hardware controller that

continuously scans the assertion transition

detectors and autonomously generates a worm

(packet) destined to a central unit when

transitions are detected.

Thus, the designer selects and ranks assertions on

the basis of a subjective quality evaluation. Our tool

chain can handle the transformation to hardware,

optimized selection, and organization of those asser-

tion checkers in hardware. It also provides a database

that can relate a particular assertion failure to an entry

that details the error back to the original assertion, thus

assisting in debug.

Comparison of the hierarchical- and
hyper-ring topologies

The following example illustrates our proposed

quality-driven flow’s usefulness for comparing the

quality versus cost of the hierarchical-ring and hyper-

ring topologies, and explains how we integrated the

TMD infrastructure hardware into the NoC. To

compare the quality of both architectures, we consider

the individual terms of Equation 1.

Quality of verification
As previously discussed, the value of QV from

Equation 1 is meant to quantify the thoroughness of

the verification effort performed on each individual

component as well as at the system level (that is, QV

can be expressed as a function of block- and system-

level verification). Because both architectures use the

same components (RIs and IRIs), the block-level
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Figure 4. Quality-enhancing monitors and debug units creation

are automated via the MBAC tool, which translates assertions

to hardware checkers. The quality-optimizing process selects

the best hardware units that can be instantiated in the design.

The bases for this selection are the scores and constraints

given by the designers for the PSL assertions and debug

modules.
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verification value contributed to QV is approximately

the same for each architecture. Furthermore, the

similarity of the architectures lets us reuse the

same application code and synthetic testbenches to

perform system-level verification. Therefore, we can

reason that

QV dhierarchicalð Þ & QV dhyper
! "

ð5Þ

For this evaluation, we assume that they are close

enough to be considered equal.

Quality of TMD infrastructure
The quality index of the TMD infrastructure is

different for the two architectures because the

monitoring and debugging capabilities are better in

the hyper-ring architecture. The calculation of QTMD

depends on several factors, such as location (or

placement) and capabilities of the TMD infrastructure

hardware. For example, the placement of debug and

monitoring hardware at the inter-ring interfaces brings

more quality to the design because these interfaces are

the bridge between the global and local rings; hence,

more traffic passes through those nodes. The number

of network input ports for each component can serve

to quantify the QTMD values of the RI and IRI

components as

QTMD dRIð Þ ~ 1 ð6Þ
QTMD dIRIð Þ ~ 2

The hierarchical-ring architecture consists of 16 RIs

and four IRIs (20 nodes), and the hyper-ring architec-

ture has 16 RIs and eight IRIs (24 nodes). Using

Equations 2 and 6, we find that the quality index for

the TMD infrastructure for both architectures is

QTMD dhierarchicalð Þ ~

16QTMD dRIð Þ z 4QTMD dIRIð Þ
20

~ 1:20

ð7Þ
QTMD dhyper

! "
~

16QTMD dRIð Þ z 8QTMD dIRIð Þ
24

~ 1:33

Equation 7 assumes that all components in the

architecture contain TMD infrastructure hardware, so

the comparison is straightforward. However, under

resource constraints, we might wish to restrict the

number of IRI and/or RI components that are TMD

enabled, thereby resulting in an asymmetric distribu-

tion of TMD hardware. In this case, the comparison

and selection between the two architectures becomes

an optimization problem with a potentially large

solution space.

Quality of NoC architecture

The calculation ofQNoC from Equation 1 is an open

problem because there are many network character-

istics that can be taken into account when comparing

the quality of two NoC architectures. For example, the

bisection bandwidth, an often-studied property, could

be included along with the node degrees, network

diameter, path diversity, and so on. For this example,

it’s sufficient to evaluate the relative quality of each

architecture by using our understanding of the

different architectures’ properties. The hyper-ring

architecture has a higher bisection bandwidth and

greater path diversity. This is important for debug

because one global ring can be reserved for debug

traffic to provide quality of service. In our example, the

property of path diversity is of primary concern, so we

express the quality of the NoC topology as the number

of paths between any two nodes in the network. For

the two architectures under consideration, we define

QNoC as

QNoC dhierarchicalð Þ ~ 1
ð8Þ

QNoC dhyper
! "

~ 2

where the hyper-ring architecture has two possible

paths between any two nodes.

We’ve deliberately kept our representation ofQNoC

simple for illustration purposes, but for a real

application, we would factor in other architectural

characteristics such as node degree, network diame-

ter, and so forth. The difficulty in defining a specific

architecture’s quality index lies in the many properties

that can be taken into account. Also, the importance

of each property can vary, depending on the

application, problem domain, resource and packaging

constraints, and so forth.

Hardware resources and quality

We distinguish between hardware checkers de-

rived from assertions and debug units that are

purposely designed. Hardware checkers derived from

assertions tend to focus on a very particular aspect of

the design, such as a protocol property that should

remain valid at all times. One such example would be
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the following PSL statements, which check for valid

worm length and proper ending of worms in an NoC:

property ValidWormLen 5

always StartOfWorm |5.

{ [*63] ; EndOfWorm };

property ExpectEnd 5

{StartOfWorm |5. eventually!

EndOfWorm abort AbortedWorm};

assert ValidWormLen;

assert ExpectEnd;

The ValidWormLen checker, when translated

to hardware, would be quite small (comparable to a

6-bit counter). The ExpectEnd checker would use

only one to two flip-flops (depending onMBAC output-

buffering settings) and a few gates of logic. The QTMD

value for those checkers could be weighted quite

highly. Because their hardware overhead is small, they

would be good candidates to be preserved in silicon.

Our tool flow groups the hardware assertion

checker outputs into vectors at the PE interface. The

hardware then sends a special worm that encodes the

transitions in those assertion vectors to a designated

node in the NoC for further processing and fault

localization. Because the checkers are generated from

PSL or SVA assertions, translated to hardware, and

combined into a list of registers, fault localization takes

place by correlating assertion bit position and network

location with the assertion details. Those details

include the original PSL expression, a reference to

the specification from which the assertion was

derived, and any comments left by the designer above

the PSL expression. A faulty behavior in an NoC

module triggers the chain of events just discussed and

produces a meaningful error message. One or more

assertion failures in operation might indicate, for

example, that a certain part of the circuit is faulty

(timing errors, defective gates, and so on). The NoC

debug infrastructure can then use local scan-test

access to run more-specific tests in order to help

isolate the fault. Figure 3 shows the hardware modules

resulting from this tool flow.

Debug units, on the other hand, are designed to

provide advanced capabilities beyond what can be

created from assertion statements. In an NoC, an

example would be a worm back-trace buffer that

can memorize the last n worms routed out of a

module along with a time stamp of the interval

between those worms. Such a hardware monitor

can be quickly designed in an ESL flow and would

imply some memory (n entries deep, and with a bit

width capable of holding routing information

about the worm and its time stamp). The QTMD of

this debug monitor could be high, but so would its

area overhead. A good compromise would be to

instantiate this debug monitor in only a specific

subset of stations (located at key points in the

NoC) such that those stations would benefit the

most in troubleshooting a problem. For the

hierarchical-ring and hyper-ring topologies, this

type of debug unit yields the greatest benefit when

located at the IRIs, because they process more

traffic.

Comparing quality-to-cost ratios
We illustrate the topology quality metric QTMD by

comparing the hierarchical-ring and hyper-ring topol-

ogies. We synthesized an RTL version of the two NoC

interconnects using Synopsys DC Ultra (version X-

2005.09) for the TSMC 0.18-micron standard cell

operating at 1.8 V. Table 1 gives a sample of the

results for two different target frequencies.

For this example, we ignore verification quality

(shown in Equation 5 to be equivalent) and use

QTMD values from Equation 7 and QNoC values from

Equation 8; and we assign equal weightings to the

TMD and the NoC quality (that is, the multipliers

are l 5 0, r 5 1, and s 5 1 in Equation 1). With
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Table 1. Area and power comparison of quality in the hierarchical- and hyper-ring topologies for operating
frequencies of 500 MHz and 250 MHz.

Topology

Operating

frequency (MHz)

Total cell

area (mm2)

Total

power (W)

Quality,

Q

Area

score, Q:RA

Power

score, Q:RP

Hierarchical-ring 500 5.10 2.26 2.20 0.43 0.97

250 4.95 1.11 2.20 0.44 1.98

Hyper-ring 500 5.98 2.66 3.33 0.55 1.25

250 5.82 1.31 3.33 0.57 2.54
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the synthesis results obtained, we can solve for

each topology’s Q:R ratios (Equation 4). Table 1

summarizes the results. The higher ratios for the

hyper-rings indicate that the quality increase from

adding the second global ring and the TMD

infrastructure comes with a relatively low cost.

Thus, the Q:R scores of the hyper-ring architecture

are superior to that of the hierarchical-ring archi-

tecture.

If only the QTMD scores were used, this topology

would already be selected for its higher quality by

allowing more traffic through the monitors. In many

designs where redundancy in the center ring and

higher bandwidth offset the slightly higher resource

usage, the QNoC for the hyper-ring will also be higher

(the exact factor is application dependent). Therefore,

on the basis of those calculations, the hyper-ring

architecture would provide better quality than the

hierarchical-ring architecture.

This simplified example is only meant to convey

the general spirit of our method. The application

domain, cost constraints, and weighting coefficients

for the various elements driving the overall quality

scores must be carefully selected using heuristics or

analysis of prototyping results. The optimization prob-

lem can then be solved using known algorithms, aiming

for the best quality while meeting all constraints.

IN COMPARING THE hierarchical-ring and hyper-ring

topologies, we found that the increased quality of the

hyper-ring architecture came at an acceptable in-

crease in resource requirement. Calculating the quality

index accurately requires quantitatively measuring

many characteristics of the architecture. This poses a

difficult problem because so many variables must be

taken into account. Further complicatingmatters is the

sometimes subjective nature of design decisions, such

as the selection of topology. In addition to the difficulty

in quantifying quality, the addition of resource

constraints makes the architecture and TMD compo-

nent selection a multiobjective optimization problem.

Nevertheless, although the quality index calculation

remains an open problem that requires further study,

we have demonstrated that the proposed QoD flow

can help designers integrate TMD hardware while

meeting design constraints in a systematic way. &
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