
4

Automata-Based Assertion-Checker
Synthesis of PSL Properties

MARC BOULÉ and ZELJKO ZILIC

McGill University

Assertion-based verification with languages such as PSL is gaining in importance. From assertions,
one can generate hardware assertion checkers for use in emulation, simulation acceleration and
silicon debug. We present techniques for checker generation of the complete set of PSL properties,
including all variants of operators, both strong and weak. A full automata-based approach allows an
entire assertion to be represented by a single automaton, hence allowing optimizations that can not
be done in a modular approach where subcircuits are created only for individual operators. For this
purpose, automata algorithms are developed for the base cases, and a complete set of rewrite rules
is derived for other operators. Automata splitting is introduced for an efficient implementation of
the eventually! operator.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design
Aids—Verification; J.6 [Computer-Aided Engineering]: Computer-Aided Design (CAD); F.4.3
[Mathematical Logic and Formal Languages]: Formal Languages—Classes defined by gram-
mars or automata

General Terms: Verification, Algorithms

Additional Key Words and Phrases: PSL, Assertion-Based Verification, automata, hardware, emu-
lation, assertion checkers

ACM Reference Format:
Boulé, M. and Zilic, Z. 2008. Automata-based assertion-checker synthesis of PSL properties. ACM
Trans. Des. Autom. Electron. Syst. 13, 1, Article 4 (January 2008), 21 pages. DOI = 10.1145/
1297666.1297670 http://doi.acm.org/10.1145/1297666.1297670

1. INTRODUCTION

Assertion-Based Verification (ABV) is a powerful methodology for design verifi-
cation [Foster et al. 2004]. Using temporal logic, a precise description of the
expected behavior of a design is captured, and any deviation from this ex-
pected behavior is verified by simulations or by formal methods. Hardware
assertions are written in verification languages such as PSL (Property Speci-
fication Language) or SVA (SystemVerilog Assertions). When used in dynamic

Author’s address: M. Boulé, McGill University, McConnell Building, Room 633, 3480 University
Street, Montréal, Québec, H3A 2K6, Canada, email: marc.boule@elf.mcgill.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/01-ART4 $5.00 DOI 10.1145/1297666.1297670 http://doi.acm.org/
10.1145/1297666.1297670

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:2 • M. Boulé and Z. Zilic

verification, a simulator monitors the Device Under Verification (DUV) and
reports when assertions are violated. Information on where and when asser-
tions fail is an important aid in the debugging process, and is the fundamental
reasoning behind the ABV methodology.

As circuits become more complex, simulation time becomes a bottleneck in
dynamic verification. Simulation acceleration and hardware emulation is in-
creasingly used in the industry in the form of hardware products for high-
performance emulation. Hardware emulation involves loading and executing
the circuit on reprogrammable hardware, often on an array of programmable
logic devices. Once implemented in hardware, the emulator fully exploits the
inherent circuit parallelism and the DUV does not have to be processed serially
in a conventional simulator.

Assertion languages allow the specification of expressions that do not lend
themselves directly to hardware implementations. Such languages allow com-
plex temporal relations between signals to be stated in a compact and ele-
gant form. In order to consolidate assertion-based verification and emulation,
a checker generator is used to generate hardware assertion checkers [Abarbanel
et al. 2000; Boulé and Zilic 2006]. These checkers are typically expressed in a
Hardware Description Language (HDL). An assertion checker (or assertion cir-
cuit) is a circuit that captures the behavior of a given assertion, and can be
included in the DUV for in-circuit assertion monitoring. A checker generator
can be seen as a synthesizer of monitor circuits from assertions, for use in
verification, silicon debug and online monitoring.

This paper introduces automata techniques and rewrite rules for transform-
ing PSL properties used in assertions into efficient checker circuits. These tech-
niques are implemented in our checker generator called MBAC. Assertion cir-
cuits should be compact, fast and should interfere as little as possible with
the DUV, with which they share the resources. There are two other similar
stand-alone tools in the literature for generating hardware checkers from PSL
assertions. IBM’s FoCs Property Checkers Generator [Abarbanel et al. 2000;
IBM AlphaWorks 2006] (v.2.04) is the oldest such tool. Concurrently to us, a
checker generator is being developed at the TIMA laboratory, with results com-
parable to FoCs 2.02: sometimes better, sometimes worse, and in the best cases,
approximately four times better for large assertions (Borrione et al. [2005] and
elsewhere).

The automata produced in Gheorghita and Grigore [2005] and Gordon et al.
[2003] can be used to check a property during simulation. These types of check-
ers indicate the status of the property at the end of simulation/checking only,
and are not ideal for debugging purposes. In dynamic verification, it is much
more informative to provide a dynamic trace of the assertion and to signal each
assertion failure instance.

A modular approach was employed in a previous version of our tool, and
also in Borrione et al. [2005]; Das et al. [2006]; and Morin-Allory and Borrione
[2006a], whereby submodules for each property operator are built and inter-
connected according to the expression being implemented. Since we implement
entire assertions as automata, in our case the optimizations can be applied

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:3

across module boundaries, and thus help produce minimized checkers. As in
FoCs, we also utilize an end-of-execution signal that marks the end of time
for strong properties. This is required so that any unfulfilled obligations can
trigger the checker to indicate an error.

The rewrite rules and automata-based checker synthesis for base cases in-
troduced in Boulé and Zilic [2006] are presented here in a more comprehensive
and succinct manner. Major modifications to the until family of operators are
integrated herein: future PSL modifications are planned to relax the limita-
tions to the until operators, which we now support; and the until operator is now
presented as a rewrite rule, which simplifies its explanations. Another improve-
ment concerns the eventually! operator, which is no longer implemented using a
rewrite rule, but rather with a new automata splitting operation. Experimen-
tal results show the advantages of this new strategy, and in general, it will be
shown that the circuits generated by MBAC can be significantly more efficient,
and can support all operators.

2. BACKGROUND

The two most popular assertion languages are SystemVerilog Assertions (SVA)
and PSL, now standardized as IEEE Std. 1850 [2005]. Below we briefly present
PSL in Verilog flavor. Many of the themes presented in this paper apply to SVA
assertions as well. The clocking operator is purposely omitted, as assertions
will be clocked using the default clock directive.

The Boolean Layer in PSL is built around the Boolean expressions of the
underlying HDL, in addition to symbols true and false. Let top-level Boolean
expressions be represented by single primary symbols labeled bi. Each bi can be
a single signal or a Boolean function of multiple signals. Sequential-Extended
Regular Expressions (SEREs) are used to specify temporal chains of events of
Boolean primitives.

Definition 2.1. SEREs are defined as follows. If b is a Boolean expression
and r, r1 and r2 are SEREs, the following expressions are SEREs:

• b • {r} • r1 ; r2 • r1 : r2
• r1 | r2 • r1 && r2 • [∗0] • r[∗]

Some aspects of SERE notation are equivalent to conventional regular expres-
sions (REs): the [∗] operator is a repetition of zero or more instances, and the
| operator corresponds to SERE disjunction. The [∗0] operator denotes a prim-
itive that spans no clock cycles and is referred to as the empty SERE; it is
similar to the ε symbol in REs. Further, the curly brackets are equivalent to
parentheses in REs. In assertion context, concatenation “;” of two Boolean ex-
pressions bl ; br indicates that the Boolean expression bl must evaluate to true
in one cycle, and br must be true in the next cycle.

The “:” operator denotes SERE fusion, which is a concatenation in which
the last Boolean primitive occurring in the first SERE must intersect (both
must be true) with the first Boolean primitive occurring in the second

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:4 • M. Boulé and Z. Zilic

SERE. The length matching SERE intersection (&&) requires that both ar-
gument SEREs occur, and that both SEREs start and terminate at the same
time.

Additional syntactic “sugaring” operators in PSL simplify the writing of as-
sertions, but do not add expressive power to the language. The PSL SERE
sugaring operators that appear throughout this paper are shown below. Here,
b is a Boolean expression; r is a SERE; i, j are nonnegative integers; and
k, l are positive integers with j ≥ i and l ≥ k; and the �= symbol indicates
equivalency, with a preferred direction to be used as a rewrite rule in our
tool.

• r[+] �= r ; r[∗] • b[–>] �= {(∼b)[∗] ; b}
• r[∗k] �= r ; r ; . . . ; r (k times) • b[–> k] �= {b[–>]}[∗k]
• r[∗i: j] �= r[∗i] | . . . | r[∗ j] • b[–> k: l] �= {b[–>]}[∗k:l]

The [∗k] and [∗i: j] operators are known as repetition count and repetition
range. The operators in the left column can be used without the SERE
r, in which case r = true is implied. The [–>] operator is known as
goto repetition, and causes a matching of its Boolean argument at its first
occurrence.

PSL also defines properties on sequences and Boolean expressions. When
used in properties, SEREs are placed in curly brackets. Sequences are denoted
using the symbol s, and are formed from SEREs: s := {r}. SEREs and sequences
are different entities, and production rules are more constrained than what was
stated previously. Since we are mainly concerned with the effect of an operator,
the exact syntax rules are deferred to IEEE Std. 1850 [2005].

Some forms of properties are not suitable for simulation and can only be
evaluated by formal methods. The portion of PSL suitable for simulation is
referred to as the simple subset of PSL. The PSL foundation language proper-
ties are shown below (in the Verilog flavor), and are presented with the sim-
ple subset modifications (Section 4.4.4 in IEEE Std. 1850 [2005]). Properties,
like SEREs, are built from a reasonably compact set of operators, to which
“sugaring” operators are also added. However, because the simple subset im-
poses many modifications to the arguments of properties, we will not make the
distinction between sugaring and base operators. Operators next, next!, always,
eventually!, until! and until are equivalent to standard LTL operators X , X !, G,
F , U and W , respectively, and are omitted. Furthermore, as indicated in the
Working Group issues for the next version of PSL, the until and until! operators’
left-hand side arguments do not need to be restricted to Boolean expressions in
the simple subset.

Definition 2.2. Let b, b1, and b2 be Boolean expressions; let s be a sequence,
and let p, p1, and p2 be properties. If i, j are nonnegative integers and k, l are
positive integers with j ≥ i and l ≥ k, then PSL foundation language properties
are defined as follows in the simple subset.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:5

• b • (p) • s
• !b • p abort b • s!
• p1 && p2 • b1 <–> b2 • s |–> p
• b || p • b –> p • s |=> p
• always p • never s • eventually! s
• p until b • p until b
• p until! b • b1 before b2 • b1 before b2
• p until! b • b1 before! b2 • b1 before! b2
• next p • next event (b) (p) • next a[i: j](p)
• next! p • next event! (b) (p) • next a![i: j](p)
• next[i](p) • next event (b)[k](p) • next e[i: j](b)
• next![i](p) • next event! (b)[k](p) • next e![i: j](b)
• next event a(b)[k: l](p) • next event e (b1)[k: l](b2)
• next event a!(b)[k: l](p) • next event e! (b1)[k: l](b2)

This definition shows that Booleans and sequences can be used directly as
properties, thereby indicating that the sequence or Boolean expression is ex-
pected to be matched, and that a nonoccurrence constitutes a failure of the
property. The matching is weak, meaning that if the end of execution occurs
before the matching is complete, then the property holds. A sequence can be
made to be a strong sequence using the ! operator, thereby specifying not only
that the sequence should be matched, but that it should be matched before the
end of execution. The abort operator can be used to release an obligation on a
property when a given Boolean condition occurs.

In the simple subset, negation and equivalency of full properties are not
allowed, and must be performed only with Booleans. Property implication and
property disjunction allow at most one of the arguments to be a property. In
the case of the implication operator, the antecedent must be a Boolean. If the
antecedent of the implication occurs, then the consequent property is expected
to hold. A behavior similar to implication also exists for disjunction. If the
Boolean is false then the argument property is expected to hold, and if the
Boolean is true then the property holds. In the definition of properties, even
though the Boolean is shown as the left-side argument of ||, reversed arguments
are also acceptable. Property conjunction &&, not to be confused with SERE
intersection, is used to specify that two properties must both hold.

The always and never operators specify how their argument property and
sequence, respectively, should behave. The next operator starts the checking
of its property argument in the cycle following its own activation. This is a
weak property, meaning that if the next cycle does not occur, then the property
holds. The strong version of this operator, namely next!, does not allow the end
of execution to occur in the next cycle. In other words, the next cycle must be
a valid execution cycle and the argument property must hold, in order for the
next property to hold.

The until family of properties cause the continual checking of their argument
property until the releasing Boolean occurs. In the overlapped versions (with
the), the argument property is also checked in the clock cycle were the Boolean

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:6 • M. Boulé and Z. Zilic

occurs. In the strong versions (with the !), the Boolean must occur before the
end of execution. The before family of operators specify that the left side Boolean
should occur before the right side Boolean, or else the property fails. Overlapped
and strong versions of this operator are also defined. The eventually! property
states that its argument sequence must be observed before the end of execution
occurs.

The next[]() properties are extensions of the next properties mentioned previ-
ously, with a parameter for specifying the nth next cycle. This applies to both the
weak and the strong versions. The next a properties cause the checking of their
argument property in a range of next cycles, specified with a lower and upper
bound integer. The next e properties apply only to Booleans, and are used to in-
dicate that the given Boolean must be observed at least once within a specified
range of next clock cycles.

So far, eight variations of next properties have been encountered that use
the clock cycle as a basic unit. The remaining eight next-type properties in
Definition 2.2 are based on a different unit, namely the next event. For example,
next event a! is used to specify that an argument property must be true within a
range of next occurrences of an argument Boolean, and that all next occurrences
of the Boolean that were specified in the range must occur before the end of
execution. A subtlety worth mentioning is that the next event of a Boolean can
be in the current cycle.

The two forms of temporal implications (|–> and |=>) are referred to as over-
lapped and nonoverlapped suffix implication, respectively. In overlapped suffix
implication, for every matching of the antecedent sequence, the consequent
property is expected to hold. The property must hold starting in the last cycles
of all the antecedent sequence’s matches. In the nonoverlapped suffix impli-
cation, the consequent property is expected to hold starting in all cycles that
follow any successful antecedent sequence match.

Properties that appear below the separating line in Definition 2.2 are those
for which we will devise rewrite rules to the base cases (previous the line).
Following the definition of properties, it can be observed that sequences and
Boolean expressions can be interpreted in two modes in dynamic verification.

Definition 2.3. Obligation mode. Subexpression semantic context for which
the failure of a sequence or Boolean expression must be identified. For each start
condition, if the chain of events described by the Boolean expression or sequence
does not occur, the result signal is triggered. For a given start condition of a
sequence, only the first failure is identified.

Definition 2.4. Conditional mode. Semantic context for which the detection
of a sequence or Boolean expression must be performed. For each start condition
of a Boolean expression (sequence), the result signal is triggered each and every
time the Boolean expression (chain of events described by the sequence) is
observed.

For example, in assertions

assert never {b1 ; b2}; assert always ({b1 ; b2} |–> p1);

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:7

Table I. Conventional Automata vs. Sequence Automata

both sequences are in conditional mode because their presence is used to detect
a failing condition. On the other hand, in

assert always {b1 ; b2}; assert always (b1 –> {b2 ; b3});
both sequences are in obligation mode because their failure to occur is used
to trigger a condition. When such cases occur, a start condition indicates that
the sequences must occur, and that a nonoccurrence constitutes a violation of
the expected behavior. This is in contrast to their use in the conditional mode,
where they are used in a more direct pattern detection manner. The use of
properties is illustrated in Example 2.5.

Example 2.5. Property used in the verification of bus arbiters:

always ({∼req A ; req A} |–> {(∼grantA)[*0:15] ; grant A})
This property states that when a request is issued to the arbiter, agent A will
receive a bus grant within 16 clock cycles. If the stated condition is not satisfied,
an assertion error occurs. In this example, a checker generator would be used
to create a monitoring circuit for the assertion, for inclusion into hardware
emulation, silicon debug or post-fabrication diagnosis. Special considerations
such as assertion multiplexing and assertion grouping must be made when a
large amount of checkers are to be emulated and probed.

2.1 Automata for Sequences and Boolean Expressions

An automaton can be depicted by a directed graph, where vertices are states,
and the conditions for transitions among the states are inscribed on edges.
In our case, the transition conditions are different than in conventional au-
tomata [Hopcroft et al. 2000]. The procedures for constructing Sequence Au-
tomata appears in Boulé and Zilic [2007], but will be reviewed further on to
keep the paper self-contained.

Table I shows the differences and similarities between conventional au-
tomata and our sequence automata. Edge labels in conventional automata rep-
resent distinct, mutually exclusive symbols, while in sequence automata, they
represent complete Boolean-layer expressions that are not necessarily mutu-
ally exclusive: a number of separate expressions can simultaneously evaluate to
true. This creates a Nondeterministic Finite Automaton (NFA) because a given

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:8 • M. Boulé and Z. Zilic

state may transition to more than one successor state for the same input. Con-
ventional automata are nondeterministic when more than one outgoing edge
from a state carries the same symbol. This fundamental difference between
both automata models influences many operations and operators, not the least
of which is DETERMINIZE().

In operation O1, the typical determinization procedure based on subset con-
struction (Hopcroft et al. [2000], p. 61) is not strong enough to determinize se-
quence automata. Classical determinization operates only at the symbol level
and does not take into account the Boolean expressions behind symbols. Hence,
this is referred to as weak determinization in sequence automata, and is used
extensively in our minimization procedure. The strong determinization in O2
is performed by an algorithm that is also based on subset construction, with
added features that take into account the simultaneous nature of the underly-
ing Boolean expressions on edges.

A similarity between both models, however, is the inductive construction
procedure of automata (Hopcroft et al. [2000], p.103), also called McNaughton-
Yamada NFA construction. As an example, the union of two automata is typi-
cally performed by adding a separate start state and activating both automata
through ε edges. In our work, the operators O3, O4, and O5 for disjunction, un-
bounded repetition and concatenation are instead implemented using distinct
automata algorithms, given that we do not use ε transitions. These algorithms
produce automata that are equivalent to using the traditional approach fol-
lowed by application of an ε-removal algorithm.

Length-matching intersection is affected by the Boolean nature of edge la-
bels, and must be modified from its conventional version. Implementing the O6
intersection operator in both cases is done using product construction (Hopcroft
et al. [2000], p.135); however, in the case of sequence automata, the condition
on equality of symbols must be relaxed, given their Boolean nature. The algo-
rithm must allow for added conditions in which edges from each argument are
simultaneously true, even if they represent different expressions.

The fusion in O7 is not an operator typically encountered in regular expres-
sions, but is part of PSL’s sequential regular expressions. Since fusion is an
overlapped concatenation, a separate fusion algorithm was designed to merge
the two argument automata by adding fusion edges between them. The fusion
edges are intersection edges from all the combinations of edges that hit final
states in the first automaton and edges that leave the start state in the second
automaton.

Henceforth, A
(
s
)

and A
(
b
)

denote obligation mode automata for sequences
and Boolean expressions in accordance with Definition 2.3. This mode will
be employed when Boolean expressions or sequences are used in properties.
Some properties such as never and suffix implication (|–>) also require condi-
tional mode sequences and Boolean expressions, for which the corresponding
automata are denoted AC

(
s
)

and AC
(
b
)
. Since a Boolean b can be seen as the

sequence {b}, the construction of automata for Booleans in both modes is sub-
sumed by the construction of automata for sequences.

The entire procedure described thus far creates conditional mode automata
AC

()
for occurrence detection, and are consistent with Definition 2.4. Creating

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:9

Fig. 1. a) Automaton for AC
(
true

)
, A

(
false

)
; b) Automaton for AC

(
false

)
, A

(
true

)
.

Fig. 2. a) Automaton for AC
({b[*0:1] ; c}); b) Automaton for A

({b[*0:1] ; c}).

an obligation mode automaton A
()

involves applying the FIRSTFAIL() procedure
to a conditional mode automaton as follows:

A
(
s
)

= FIRSTFAIL(AC
(
s
)
)

As its name implies, the FIRSTFAIL() function (O8) is used to transform the
argument automaton to detect the first noncompletion of its equivalent PSL
expression, for a given start condition. This function makes use of the strong
determinization function mentioned previous, along with other edge manipu-
lations.

The way sequence automata (which include Boolean automata) are used to
form properties is at the core of this article. As will be presented in the next
section, a property automaton can be used directly as an assertion automa-
ton. In an assertion automaton, an assertion violation is reported each time a
final state is activated. For a given assignment of various Boolean labels, all
conditions that are true will cause a transition into a new set of active states.

PSL does not have a prescribed operational semantics [Claessen and
Martensson 2004], and alternative runtime interpretations are possible. To
provide useful debug information, we designed our automata algorithms such
that the assertion result signal provides a continuous report of when the as-
sertion has failed, rather than simply indicate a yes/no answer obtained at the
end of execution. Event-driven simulators such as Mentor Graphics’ Modelsim
may have different semantics, as their interpretation of PSL involves a very
different process.

Figures 1(a) and 1(b) show simple automata for the Boolean expressions
true and false, in both modes. A generalized Boolean automaton is identical to
these, with the corresponding Boolean expression inscribed on the edge label.
In Figure 1(b), since the false symbol can never be true, the automaton never
reaches the final state (double circle). When a conditional mode automaton
reaches a final state, the expression represented by the automaton has been
detected. When an obligation mode automaton reaches a final state, the first
failure of the expression has been caught. The state in bold is the start state of
the automaton, and for a top-level automaton, it is the only active state when
reset is released. Figure 2(a) shows a conditional mode automaton for detecting
the sequence {b[*0:1] ; c}. Figure 2(b) shows how the same sequence is processed
in obligation mode by an automaton.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:10 • M. Boulé and Z. Zilic

3. TRANSFORMING PROPERTIES INTO CIRCUITS

We now show how to transform properties into automata, for subsequent con-
version to circuits. The resulting HDL circuit descriptions become the checkers
that are responsible for monitoring the behavior that is modeled by the asser-
tions. Implementing an automaton in hardware is done in two parts. First, each
state signal is sampled by a flip-flop (FF). The FF’s output is referred to as the
sampled state-signal. Second, a state signal is defined as a disjunction of the
edge signals that hit a given state. An edge signal is a conjunction of the edge’s
symbol with the sampled state signal from which the edge originates. The sig-
nal that is returned by the automaton, called result signal, is a disjunction of
the state signals of the final states (as opposed to the sampled state signals).
In sum, automata are implemented using combinational logic and flip-flops,
and do not have to be deterministic. The conversion of automata to circuits is
illustrated in a summary example further in this section.

Compilation of a PSL property involves recursively scanning the syntax tree
of the PSL expression. Each node returns an automaton describing the be-
havior of the subproperty rooted at that node. The parent then builds its own
subproperty automaton from its children automaton(s), using a variety of trans-
formations and operations. This is referred to as Recursive Mechanism #1.

Properties are inherently in obligation mode; however, Definition 2.3 is too
strict for use in properties. To provide more debugging information for proper-
ties, the obligation is not limited to the first failure for each start condition. For
example, the property never {a} is made to trigger every time a is observed. Since
properties are meant to catch failures, the PSL directive assert p is modeled as:

A
(

assert p
)

= A
(
p
)

An assertion signal is normally at logic-0, and triggers when a violation is
observed.

In our work, a full automaton approach allows the production of efficient
automata. Consider the following examples, for which a modular approach will
generate more checker code for the assertion on the left, even though in dynamic
verification both assertions are semantically identical.

assert never {b[*1:2] ; c}; assert never {b ; c};

3.1 Implementation of Base Cases

The approach for implementing the base cases consists in taking the automa-
ton(s) returned by the argument(s) of a property, and then building a single
resulting automaton for the property and its arguments. This way, an entire
assertion can be represented by a single finite automaton. The automata im-
plementations of the base cases are shown in Table II.

Parentheses affect only the syntax tree and can be dropped as shown in
the implementation of base case B1. Certain properties are relegated to the
Boolean layer in the simple subset, such as in cases B2 and B3. The negation
and equivalency of properties—as allowed in full PSL—create properties that
are not suitable for monotonically advancing time. When used as properties, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:11

Table II. Base Cases’ Automaton Implementation

Fig. 3. a) MAKESTRONG(A
({ b[*0:1] ; c})); b) ADDLITERAL(A

({ b[*0:1] ; c}) , ∼a).

automata for Booleans and sequences are built in obligation mode, as shown
in cases B4 and B5. Implementing strong sequences involves constructing the
obligation mode automaton with a slight modification, as shown in B6. The
MAKESTRONG() function adds edges that cause the automaton to transition from
any active state to a final state upon activation of the End-Of-Execution (EOE)
signal. If the automaton is processing a sequence when the EOE occurs, an error
is detected. For example, applying the function to the automaton in Figure 2(b)
yields the automaton in Figure 3(a).

Handling the abort property also involves modifying the automaton of the
property argument, as shown in case B7. When the abort operator is encoun-
tered in the syntax tree, the argument property’s automaton is built and a
new primary symbol for the abort condition’s Boolean is created. The function
ADDLITERAL() then adds a literal (a conjunct) to each edge symbol in the prop-
erty automaton such that when the abort condition is asserted, all transitions
in the automaton are disabled and the automaton is reset. The added literal
corresponds to the negation of the abort Boolean, given the conjunctions with
existing symbols. For example, aborting the automaton in Figure 2(b) yields
the automaton in Figure 3(b).

Property conjunction (B8) is implemented using the | operator, which rep-
resents automata union (disjunction). The disjunction is required because a
failure by either subproperty is a failure for the && property. Both argument
automata are simultaneously activated by the parent node’s subautomaton in
the syntax tree, and when either one reaches a final state, a failure is detected.
The automata disjunction is the same as in SERE disjunction, where both
automata are concurrently searching for a match, for a given start condition
(activation).

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:12 • M. Boulé and Z. Zilic

Table III. Rewrite Rules Based on Property Implication

Overlapped suffix implication (also called property implication) is imple-
mented using a conditional mode automaton for the antecedent sequence, which
is then fused with the consequent property, as shown in case B9. When used
in the context of automata, the “:” symbol denotes the actual automata fusion
algorithm, the same one that is invoked when the SERE fusion operator “:”
is encountered. The fusion algorithm avoids building fusion edges containing
the EOE symbol such that activations (antecedents) occurring at the end of
execution do not cause a failure.

Using fusion in properties does not create unwanted side effects, as empty
SERE can not cause a match on either side of fusion. In properties, a conditional
or obligation mode automaton’s start state can never be a final state; this creates
automata behavior consistent with the formal semantics of PSL in Appendix B
in IEEE Std. 1850 [2005]. As an example, when a sequence automaton’s start
state is a final state, and this sequence is used as an antecedent in suffix im-
plication, the empty match can not cause the consequent to be enforced. When
a conditional mode sequence automaton is used at the property level, the start
state is made nonfinal. When an obligation mode sequence automaton is built
for a sequence that cannot hold, the automaton from Figure 1(a) is returned to
the parent.

3.2 Rewrite Rules for Properties

Most properties from Definition 2.2 do not need to be explicitly handled in the
checker generator kernel. When such properties can be expressed using the
base cases from the previous subsection, they are rewritten when encountered
during checker generation. The rules by which these properties are rewritten,
that is, rewrite rules, are categorized in three groups appearing in Tables III
to V.

Using the sugaring definitions from Appendix B in IEEE Std. 1850 [2005]
as rewrite rules is generally not feasible because of the restrictions imposed by
the simple subset. For this purpose, we introduce a set of rewrite rules that is
suitable for the simple subset of PSL, within the context of dynamic verification.

In the simple subset, one of the properties used in disjunction must be
Boolean (for simplicity the Boolean expression is shown as the left argument).
The R1 rewrite rule is based on the fact that if the Boolean expression is not
true, then the property must be true; otherwise the property is automatically
true. The implication in R2 can be rewritten using a suffix implication because
a Boolean expression can be easily expressed as a sequence.

The R3 rewrite rule for nonoverlapped property implication follows from its
sugaring definition in Appendix B in IEEE Std. 1850 [2005]. The simple subset

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:13

Table IV. Rewrite Rules Based on Using Sequences as Properties

does not affect this definition; therefore, it can be used directly as a rewrite
rule.

As explained in the previous section, suffix implication has a conditional-
mode sequence as an antecedent, and a property as a consequent. When a
property must always be true (R4), it can be seen as the consequent of a suffix
implication with a perpetual start condition ([+] is sugaring for true[+]). When
a sequence must not occur (R5), a property that fails instantly is triggered upon
detection of the sequence. Because overlapped suffix implication does not have
a clock cycle delay between antecedent and consequent, these rewrites offer the
correct timing.

The until operator states that property p must be true on each cycle, up to,
but not including, b being true. In R6, the implication has the effect of sending
a start condition to p for each cycle of consecutive ∼b’s. In our interpretation
of operational semantics for the until operator, the property is allowed to fail
multiple times for a given start condition when b is continuously false. Imple-
menting the overlapped form of until (R7) is done by adding another condition
for the property p, namely that it must also hold for the cycle in which the
Boolean expression b is true.

The next event a property in R8 states that all occurrences of the next event
within the specified range must see the property be true. This can be modeled
using a goto repetition with a range, as an antecedent to the property via suffix
implication. This sends a start condition to the property each time b occurs
within the specified range after the current property received its start condition.

The before family of properties in Table IV (R9 to R12) can be modeled by
obligation mode sequences. The overlapped versions state that b1 must be as-
serted before or simultaneously with b2. The next event e properties (R13 and
R14) state that b2 should be asserted at least once in the specified range of next
events of b1. This behavior is modeled by a goto repetition that is fused with
the consequent. Once the b2 consequent is observed in the proper range, the
obligation mode sequence has completed and will not indicate a failure. The
strong versions of these properties are created by using strong sequences.

In Table V, the strong versions of the until properties (R15 and R16) are
created by using the weak versions, and adding a temporal obligation for the
releasing condition to occur, namely b. This can be modeled by the strong single-
goto of the Boolean condition b. If the end-of-execution occurs before the releas-
ing condition, the assertion will trigger, even though the weak until may have
always held.

The R17 to R20 rewrites use a slightly more explicit form of next operators.
These rules are based on the fact that when no count is specified, a count of

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:14 • M. Boulé and Z. Zilic

Table V. Rewrite Rules Based on Property Variations

1 is implicit. Since the right-hand sides of these rules are not terminal, they
are subsequently rewritten using other rules, until no more rewrites apply and
either sequences, Boolean expressions or base cases are reached.

The family of rules in R21 to R26 are based on the fact that next event is a more
general case of next. The “+1” adjustment is required to handle the mapping of
the Boolean true. When converting a next property to a next event property, there
is a slight nuance as to what constitutes the next occurrence of a condition. The
next occurrence of a Boolean expression can be in the current cycle, whereas
the plain next implicitly refers to the next cycle. Another reasoning shows the
consistency between the operators: we observe that next[0](p) could not be mod-
eled without the increment because next event(b)[k](p) requires a positive count
for k. Incidentally, next[0](p) is equivalent to (p).

The strategy behind the R27 and R28 rewrites is to utilize the next event a

form, with identical upper and lower bounds for the range. Rule R29 handles the
strong version of the full next event a property. Similarly to the strong nonover-
lapped until property, it is rewritten using the weak version, to which a necessary
completion criterion is conjoined. The addition of the strong goto sequence with
the l bound indicates that for each start condition of the next event a, all l oc-
currences of the b event must occur before execution terminates.

Example 3.1. Summary example for rewrite rules and base cases:

assert always {∼a ; a} |–> {b[*0:1] ; c};
The subautomaton for the left side of the temporal implication is a three state
conditional mode automaton with two edges, and is visible in the left side of
Figure 4(a). The subautomaton for the right side of the implication appears in
the right side of the same figure, and was also shown in Figure 2(b). The suffix
implication is implemented with automata fusion and thus merges these two
subautomata together, as shown in the right side of Figure 4(b). In the left side
of Figure 4(b), the antecedent of the always rewrite is prepared. In Figure 4(c)
the suffix implication contained in the always rewrite is also implemented with

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:15

Fig. 4. Complete checker for assertion example: assert always {∼a ; a} |–> {b[*0:1] ; c};.

fusion, and the resulting minimized automaton is shown. Converting the au-
tomaton to RTL is done as indicated at the beginning of Section 3, and appears
in Figure 4(d). The start state is optimized given that the true self loop perpet-
ually keeps the state active. The checker’s output signal can then be monitored
during device execution to locate errors.

3.3 A Special Case for eventually!

Compilation of a PSL property normally involves recursively scanning the syn-
tax tree of the PSL expression, whereby each node returns an automaton for
the sub-property rooted at that node. The parent builds its own subproperty
automaton from its children automata; this was referred to as recursive mech-
anism #1. In an alternate mechanism (#2), a parent sends a precondition in
automaton form to a child, whereby the child node is responsible for build-
ing the subautomaton (with its activations) and returning it to the parent. If
other child nodes exist, the parent forms other precondition automata, possibly
using the automata returned by previous child nodes. When finished, the par-
ent returns an automaton formed from the children automata (directly or with
modifications) to its parent. This recursive process continues until the top-level
directive’s automaton is formed. Recursive mechanism #2 is a prerequisite for
automata splitting. Automata splitting is required for assertion threading and
activity monitors [Boulé et al. 2006], and also for the more efficient form of
eventually!.

In Boulé and Zilic [2006], rewriting eventually! is based on the following rule

eventually! s �= {[*]:s}!
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:16 • M. Boulé and Z. Zilic

This rule has the advantage of preserving the full automaton approach; how-
ever, given that the sequence in the right-hand side of the rule is in obligation
mode, it is not the most efficient form. This subsection details the use of a more
efficient procedure for implementing the eventually! property, for use when au-
tomata splitting is allowed and the use of separate logic and wire declarations
are permitted. An efficient implementation of eventually! is also important for the
cover directive which is often rewritten to the eventually! operator [Ziv 2003]. Al-
though automata optimizations can no longer cross split automata boundaries,
in the case of eventually! the improvements brought upon by the split approach
outweigh this disadvantage.

In the split approach, implementing the “eventually! s” property is done with
a conditional-mode automaton. When the conditional-mode automaton for se-
quence s is built, its start state is made nonfinal. At this point, if the sequence
automaton has no final states, the sequence cannot eventually occur, and the
failure must be signaled at the end of execution. In this case an automaton for
“never {EOE}” is returned to the parent node in the syntax tree of the assertion.

If the sequence automaton is not degenerate, then a more complex algorithm
is applied. First, any incoming edges to the start state are removed. Then any
outgoing edges from the final states are removed. The automaton must be im-
plemented as a module, for which a result signal is declared. The result signal
is then used, complemented, as the symbol of a self loop on the start state. This
has the effect of keeping the start state active until at least one occurrence
of the sequence has manifested itself. The actual result signal of the eventu-

ally! operator therefore corresponds to the output of the start state’s flip-flop.
In this manner, no extra states (hence flip-flops) are used. The actual result
signal is implemented in automaton form before being returned to eventually!’s
parent node. This consists in preparing a two-state automaton whereby the
second state is a final state, the start state has a self true loop, and an edge
from the start state to the second state carries a symbol corresponding to the
result signal.

When a precondition automaton is passed to eventually! in the recursive com-
pilation, the precondition automaton is implemented as a module, for which a
result signal is declared. This signal constitutes the precondition signal for the
eventually! automaton. Each time the precondition is asserted the conditional
mode automaton for eventually! is flushed, with the start and final state’s edges
modified as described previously. Automaton flushing consists in deactivating
the edges for all states except the start state. This is accomplished by and-ing a
negated literal of the precondition signal to each outgoing edge symbol of each
nonstart state. In this manner, each new precondition guarantees a new com-
plete obligation. The precondition automaton used in this technique implies
that recursive mechanism #2 must be employed.

Figure 5 shows an example of the efficient eventually! strategy. The property
is actually implemented as two automata, and the automaton at the top right
in the figure is returned by the property’s node in the syntax tree. Since the
always property is the argument of the assert directive, the returned automaton
is directly implemented in RTL. The grey state also serves as the memory
state, which is deactivated once the obligation is fulfilled (sequence occurred).

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:17

Fig. 5. Automata Splitting for eventually!; ex: always (a –> eventually! {b;c;d }).

Automaton flushing is also visible with the added “∼s2” literals. If the always

property was part of a more complex assertion, the returned automaton would
be used by the parent property to continue to build the complete automaton for
the assertion. Automata splitting and the use of custom logic (an inverter) could
also be used for efficient automata negation by avoiding the determinization
step.

4. EXPERIMENTAL RESULTS

The circuits produced by the MBAC checker generator are evaluated using var-
ious test assertions and measured against the only comparable tool available
to us. The hardware comparison metrics involve synthesizing the assertion cir-
cuits using ISE 8.1.03i from Xilinx, for a XC2V1500–6 FPGA. The number of
flip-flops (FF) and four-input lookup tables (LUT) required by a circuit is of
primary interest when assertion circuits are to be used in hardware. The max-
imum operating frequency (MHz) for the worst clk-to-clk path is also reported.
Assertion signals are sampled by a FF in both tools to achieve the same timing
for simulations and equivalence checking.

The assertions used for evaluating checker generators typically do not con-
tain complex Boolean expressions because such expressions have no effect on
the temporal aspect of assertion checkers. Consequently, without loss of gener-
ality, the Boolean layer is abstracted away using simple signal names a, b, etc.
Furthermore, temporally simple assertions such as those used for verifying bus
protocols (e.g., AMBA bus assertion from Cohen et al. [2004]) are not informa-
tive for evaluating a checker generator, as they span very few clock cycles.

The FoCs and MBAC checker generators are evaluated with the set of asser-
tions shown in Table VI, whereas the synthesis results are reported in Table VII.
Properties P18 and P20–P24 are from [Borrione et al. 2005]. For cases P1 to
P12 and P16, no synthesis results are given because the properties are not
supported by FoCs. Property P14 exceeded the internal limits in FoCs and no
output was produced.

With the exception of P13, we observed that when FoCs produced a checker,
both tools produce functionally equivalent checkers. Functional equivalence

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:18 • M. Boulé and Z. Zilic

Table VI. Benchmarking Properties

Table VII. Hardware Metrics for Checkers (P1-P12 are not supported by FoCs yet)

was formally verified using the Cadence SMV model checker, to which we input
the Verilog code obtained from the two checker generators. For a given assertion,
the checkers generated by both tools are instantiated and a property stating
the equivalency of their outputs is specified using the xor gate approach (i.e.,
the xor between the two functions must always be false). Test cases P20 and
P24 exceeded the maximum memory capacity of the model checker, and were
compared in simulation instead. The FoCs checkers for those two cases have
309 and 175 state elements respectively in the HDL code, versus 27 and 9
respectively in MBAC’s checkers.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:19

Table VIII. Hardware metrics for Implementations of eventually!

Test cases P20 and P24 were compared using a testbench of 105 biased
pseudo-random test vectors. For each assertion, the circuits produced by both
tools offer the same behavior on every clock cycle. In biased random vector gen-
eration, signal probabilities are adjusted in order for the assertions to trigger
reasonably often. This method is not a proof that the circuits are functionally
equivalent; however, combined with the fact that model checking produced no
counterexample before reaching its limit, this does offer reasonable assurance.

For test case P13, slight differences in behavior were noticed due to the
operational semantics of “p until b,” where it is up to the tool’s architect to decide
whether to flag all failures of p before b occurs, or to flag only the first one. This
flexibility is expected in dynamic verification with PSL, and may occur with
other operators.

With P17 and P19, the behavior of the checkers is identical between both
tools, and only a slight difference occurs when the End-Of-Execution (EOE)
signal activates. This was alleviated by using a monostable flip-flop on the
assertion outputs such that when the assertion triggers, the output remains in
the triggered state. This was used because the semantics of the checkers does
not have to be defined after the EOE occurs. In all test cases, our circuits are
more resource-efficient than FoCs’.

Table VIII shows the advantages of the split-automata method in the imple-
mentation of eventually!, compared to the rewrite rule from [Boulé and Zilic 2006].
The split-automata method scales much better because a conditional mode au-
tomaton can be employed as opposed to an obligation mode automaton, which
can be exponentially larger given the required strong determinization [Boulé
and Zilic 2007]. In the test cases, the split-automata method produces faster
circuits, and except for a few small examples, requires less hardware. In all
eleven test cases, functional equivalence of the checkers was formally verified
by model checking. These examples show that in general not all sequential
optimizations can be performed by traditional synthesis tools, and efforts to
optimize the checkers pre-synthesis should always be made.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

4:20 • M. Boulé and Z. Zilic

5. CONCLUSIONS AND FUTURE WORK

We have presented methods for implementing PSL properties in checker gen-
erators. The base cases were handled using a variety of automata techniques.
A set of rewrite rules that account for all peculiarities of PSL operators were
also devised. These rewrites represent the simplest way to support such oper-
ators in the kernel of the checker generator, and can be implemented in any
tool that utilizes PSL for dynamic verification. A new recursive mechanism was
developed, and along with automata splitting, a more resource-efficient imple-
mentation of the eventually! operator was introduced. Experimental results show
the effects of this method, and also show the overall strength of the MBAC gen-
erator, with respect to functionality and the size of the generated assertion
circuits. We have also presented in a single paper the only (to our knowledge)
checker implementation of all PSL operators, both strong and weak, with all
variants of operator families.

Many of the techniques developed in this paper also apply to SVA assertions.
For example, the disable iff operator in SVA is very similar to PSL’s abort operator,
and both forms of suffix implications are identical in both languages. Property
conjunction and disjunction are also similar; however, always and never have
slight differences that should be straightforward to convert.

We plan to ad support for multiple clock domains in a single assertion,
and to benefit from techniques such as in Morin-Allory and Borrione [2006b],
to provide an independent theorem prover based verification of our rewrite
rules.

REFERENCES

ABARBANEL, Y., BEER, I., GLUSHOVSKY, L., KEIDAR, S., AND WOLFSTHAL, Y. 2000. FoCs: Automatic
generation of simulation checkers from formal specifications. Conference on Computer Aided
Verification. 538–542.

BORRIONE, D., LIU, M., MORIN-ALLORY, K., OSTIER, P., AND FESQUET, L. 2005. Online assertion-based
verification with proven correct monitors. In Proceedings of the 3rd ITI International Conference
on Information & Communications Technology (ICICT). 123–143.

BOULÉ, M., CHENARD, J., AND ZILIC, Z. 2006. Adding debug enhancements to assertion checkers for
hardware emulation and silicon debug. In Proceedings of the 24th IEEE International Conference
on Computer Design (ICCD). 294–299.

BOULÉ, M. AND ZILIC, Z. 2006. Efficient automata-based assertion-checker synthesis of PSL prop-
erties. In Proceedings of the IEEE International High Level Design Validation and Test Workshop
(HLDVT). 69–76.

BOULÉ, M. AND ZILIC, Z. 2007. Efficient automata-based assertion-checker synthesis of SEREs
for hardware emulation. In Proceedings of the 12th Asia and South Pacific Design Automation
Conference (ASP-DAC). 324–329.

CLAESSEN, K. AND MARTENSSON, J. 2004. An operational semantics for weak PSL. In Proceedings
of the 5th International Conference on Formal Methods in Computer-Aided Design (FMCAD).
337–351.

COHEN, B., VENKATARAMANAN, S., AND KUMARI, A. 2004. Using PSL/Sugar for formal and dynamic
verification. VhdlCohen Publishing, Los Angeles, CA.

DAS, S., MOHANTY, R., DASGUPTA, P., AND CHAKRABARTI, P. 2006. Synthesis of system verilog as-
sertions. In Proceedings of the Conference on Design Automation and Test in Europe (DATE).
70–75.

FOSTER, H., KROLNIK, A., AND LACEY, D. 2004. Assertion-Based Design, 2nd Ed. Kluwer Academic
Publishers.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

Automata-Based Assertion-Checker Synthesis of PSL Properties • 4:21

GHEORGHITA, S. AND GRIGORE, R. 2005. Constructing checkers from PSL properties. In Proceedings
of the 15th International Conference on Control Systems and Computer Science (CSCS) 2, 757–
762.

GORDON, M., HURD, J., AND SLIND, K. 2003. Executing the formal semantics of the accelera property
specification language by mechanised theorem proving. Lecture Notes in Computer Science,
vol. 2860, 200–215.

HOPCROFT, J., MOTWANI, R., AND ULLMAN, J. 2000. Introduction to Automata Theory, Languages
and Computation, 2nd Ed. Addison-Wesley.

IBM ALPHAWORKS. 2006. FoCs Property Checkers Generator, version 2.04. www.alphaworks.
ibm.com/tech/FoCs.

IEEE STD. 1850. 2005. IEEE Standard for Property Specification Language (PSL). Institute of
Electrical and Electronic Engineers, Inc., New York, NY.

MORIN-ALLORY, K. AND BORRIONE, D. 2006a. Online monitoring of properties built on regular ex-
pression sequences. Forum on Specification Design Languages (FDL).

MORIN-ALLORY, K. AND BORRIONE, D. 2006b. Proven correct monitors from PSL specifications. In
Proceedings of the Conference on Design Automation and Test in Europe (DATE). 1246–1251.

ZIV, A. 2003. Cross-product functional coverage measurement with temporal properties-based
assertions. In Proceedings of the Conference on Design Automation and Test in Europe (DATE),
834–839.

Received May 2006; revised May 2007; accepted July 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 4, Pub. date: January 2008.

