
MYGEN : Automata-Based On-line Test Generator for
Assertion-Based Verification

Yann Oddos, Katell Morin-Allory,
Dominique Borrione

TIMA Laboratory, Université Joseph Fourier
Grenoble, France

name.surname@imag.fr

Marc Boulé, Zeljko Zilic
McGill University

Montréal, Québec, Canada
marc.boule@mail.mcgill.ca,

zeljko.zilic@mcgill.ca

ABSTRACT
To assist in dynamic assertion-based verification, we present a method
to automatically build a test vector generator from a temporal prop-
erty. Based on the duality between monitors and generators, we
have extended the monitor generator tool MBAC to produce syn-
thesizable on-line generators. We have tested the resulting genera-
tors in simulation and by emulation on an FPGA. The combination
of multiple generators provides an efficient way to model the en-
vironment of modules within a DUT, facilitating an equivalent of
software “unit testing” under real conditions, early in the design
flow.

Categories and Subject Descriptors
B.2.3 [Reliability, Testing, and Fault-Tolerance]: Error-checking—
Test generation; B.5.2 [Design Aids]: Verification

General Terms
Verification

Keywords
Test vector generation, semi-formal verification, PSL, generator

1. INTRODUCTION
Guaranteeing that a state-of-the-art system on chip (SOC) is ex-

empt from design errors is a daunting challenge. Most emphasis is
put on advancing the technology and improving the design meth-
ods. The relentless increase in the number of logic elements that
can be placed on a single chip, combined with platform-based de-
sign, IP reuse, and design at higher abstraction levels, drive the
complexity and performance increase exhibited each year. At the
same time, despite significant progress in formal and dynamic ver-
ification techniques, the gap between the design and verification
capabilities widens.

Dynamic verification, featuring simulation and/or emulation, re-
mains the only viable solution for checking complete systems, but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’09, May 10–12, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-522-2/09/05 ...$5.00.

its quality critically depends on the thoroughness of both the system
specification and the test sequences. A good specification should
be mechanically interpretable in test scenarios, in order to ascer-
tain that it correctly portrays the designer’s intent. It should also
be used in a wide variety of verification tools, all along the design
and verification flow. Lots of progress in empowering designers to
provide thorough specification has been recently achieved through
the Assertion-Based Verification (ABV) paradigm [6]. In ABV, the
essential logic and temporal properties of the design and its envi-
ronment are expressed in a declarative form, using a formal prop-
erty description language. At any time the properties can be added
to the design description, or separately linked for emulation, simu-
lation or model checking purposes.

Two IEEE standards are mainly used to write temporal proper-
ties: PSL (Property Specification Language) [7] and SVA (Sys-
temVerilog Assertions) [14]. In the following, all the properties are
written in PSL, but our method applies to SVA as well.

As an example, consider the following PSL property P1:

Property P1 : always (Start → Req until Ack)

Property P1 states: for each cycle where Start is 1, a request Req
should be produced and maintained active (Req=1) as long as the
acknowledge signal Ack is not active (Ack=0).

The trace on Figure 1 satisfies property P1. Signal Start is active
at cycle]1 and Req is fixed to 1 during the same cycle. Then Req
remains active up to]7. At]8, signal Ack takes value 1. After this
cycle, all the constraints have been satisfied and the trace complies
with P1.

Ack

Req

Start

1 2 3 4 5 6 7 8 9

Figure 1: A trace satisfying property P1

Temporal properties are divided into two sets: assertions and as-
sumptions. Assertions are used to specify functional aspects of the
design under test (DUT). Assertions can be turned into monitors
that check if the design is compliant with corresponding proper-
ties. Assumptions are used to constrain the behavior of the envi-
ronment, which is very useful in restricting the generators of pos-
sible DUT input vectors. By avoiding non-compliant test vectors,

75

the overall dynamic verification can be significantly faster, without
impacting its quality.

While the verification with the help of assertions is widely sup-
ported in current model checkers (RuleBase, FormalCheck, etc.)
and simulators (ModelSim, NCSim, etc.), modeling the environ-
ment of the DUT with formal assumptions is less widespread.

In this paper, we focus on the following problem in dynamic ver-
ification: how to automatically build an executable model of the en-
vironment, which generates test vectors that satisfy all assumptions
about the environment. We present a simple method by which each
assumption is first transformed into an efficient automaton, which
is then turned into a synthesizable test generator. Please note that
the main outcome here is an on-line test generator, which facili-
tates a high-throughput simulation/emulation when embedded with
DUT, with no need for a separate test generation procedure.

The overall scenario that this outcome facilitates is as follows:
starting with a HDL description of a design and the properties ex-
pressed in PSL, we provide a self-certifiable system, consisting of a
test generator and the property monitors sufficient to check whether
the properties are maintained across all self-generated test cases.
The test generation and error reporting are well compacted: all that
is needed is to check whether assertion monitors fire, signaling a
failure. This scenario can be applied for testing modules (i.e. unit
testing), or for complete designs, to improve verification productiv-
ity and quality.

Section 2 gives a brief overview of different approaches used to
improve the quality of test vectors, by modeling the environment of
the DUT at different levels. Our approach is described in section 3.
The construction time and synthesis results on FPGA are given in
section 4. Finally section 5 concludes on the method and its future
extensions.

2. STATE OF THE ART
In the context of logic simulation and logic testing, a wide range

of methods have been proposed to replace pure random test se-
quence generation by smaller, more focused sequences. Recently,
assertion-based verification has renewed the interest in constrained
test generation.

A first approach found in [15] applies the divide and conquer
principle: the design is sliced into smaller components. Each one
is used to extract constraints which are recombined to get the con-
straints for the whole design. Test vectors are obtained by ana-
lyzing these global constraints. Combined with an Automatic Test
Pattern Generator (ATPG), all the random sequences not compliant
with the interface specification are deleted, thus increasing the test
efficiency.

An early method to produce test vectors compliant with a set of
temporal properties combines the design with external blocks (one
in Verilog and one in C) which dynamically constrain the inputs of
the design [13]. The main drawback is the lack of expressive power
due to the use of only one operator.

An automata theoretic approach is presented in [4]. Two au-
tomata are extracted from the system and the property, and the
product automaton is constructed. State space traversal techniques
are used to extract test vectors that lead to a failure. The method
can suffer from a state explosion in the resulting product automata.

A two-step method is described in [11]. First, random vectors
are applied, and the registers and wires that seldom or never change
value are identified. Second, “input cubes” are computed, specially
aimed at reaching these identified elements. The experimental re-
sults show very good test coverage results on small cases, but this
gate-level approach may become complex on large circuits.

A black-box approach is presented in [10]. The goal is to in-

crease the test coverage during simulation. From assertions on the
design under test, the method produces satisfying test vectors with-
out vacuity. The underlying formalization is a game between the
environment and the DUT. Three different methods are defined de-
pending on the level of observability and controllability of the sig-
nals involved in the assertion.

In contrast to all the above previous work, our approach only
relies on the property formulas, and not on the DUT, to generate
test vectors: PSL properties are synthesized into hardware modules
that generate compliant signals. The same applies to the concept of
“cando objects” [5], except that their solution is technically very
different and oriented towards model checking rather than on-line
execution; in particular, they do not support arbitrary repetition (’+’
and ’*’) operators.

In [9], the HORUS tool has been developed to produce synthe-
sizable and low complexity test vector generators from temporal
properties. The idea is to define a library of primitive compo-
nents (one for each PSL primitive operator), and an interconnec-
tion scheme to build a generator for a complex property.

The method presented in this paper is the result of a cooperation
between the groups that developed MBAC and HORUS. The mo-
tivation was to benefit from the efficiency of MBAC in automata
processing [3], and the duality between language generation and
recognition, to unify the construction of generators and monitors.

3. GENERATORS WITH MYGEN

3.1 Preliminaries

Building Checkers from Properties.
The MBAC tool takes as input a temporal property and produces

a monitor for a given PSL property [3]. To achieve this goal, it
builds a non-deterministic automaton that recognizes all the traces
that violate the property. Then, the automaton is transformed into a
synthesizable RTL checker.

Basic automata have been defined for a kernel of primitive PSL
operators. The remaining operators are translated in terms of the
kernel, using rewrite rules. These rewrite rules have been proven
correct with respect to the PSL semantics, using the PVS theo-
rem prover [8]. Complex properties are turned into a monitor in
two steps: apply rewrite rules as necessary, and combine basic au-
tomata to obtain the final automaton for the checker. Automata and
logic optimizations are performed to minimize the size of the final
checker.

The right part of Figure 2 depicts the automaton produced by
MBAC for the following property P2:

Property P2 : always (sig1→ next sig2)

Transitions are labeled with conditions, i.e. Boolean expressions
built over a combination of the signals involved in the property.
Each combination of an active state and input condition is evaluated
to determine which next states are to be activated. The automa-
ton then transitions into a new set of active states, and the process
repeats at each clock cycle. Each time a final state is active, the
property has failed and a counterexample trace can be analyzed.

Two different modes are used in MBAC to treat a property. A
Boolean or sequence appears in two different semantic contexts,
depending on how it is used in a property [3]:

• Obligation mode: Expression for which the failure of a se-
quence or Boolean expression must be identified. The au-
tomaton must match a Boolean expression or sequence when
it fails to occur.

76

• Conditional mode: Expression for which the detection of a
sequence or Boolean expression is required.

For example, in a property implication with two sequences (s1

|–> s2), a successful detection of s1 enforces the obligation that s2

must be matched, hence the two modes described above. The obli-
gation mode version of a sub-automaton is obtained from the typ-
ical conditional mode automaton by applying an algorithm called
First_Fail.

For the P2 example, Figure 2 illustrates how the second transition
leads to a failure of the property (right side of figure). If at a cycle
n, sig1 is active, then the property fails if at cycle n+1, sig2 is false.
In the general case for more complex properties, First_Fail
may modify the structure of the automaton.

sig1 !sig2

First_Fail

sig1 sig2

S0 S2

S1

S0

S1

S2

Initial FA Monitor FA

truetrue

Figure 2: Monitor and Generator Finite Automata (FA)

From Monitors to Generators.
Generators and monitors are dual concepts: a monitor recognizes

the complement language1 of a property, while a generator pro-
duces the language of the property. This symmetry is depicted at
the automaton level in Table 1. Since the monitors built by MBAC
are of low complexity and efficient in emulation, we reuse the
MBAC approach and automaton construction mechanism to pro-
duce synthesizable generators.

Table 1: Symmetry between Monitors and Generators
Monitors Generators

transitions’ labels observed generated
final states failure satisfaction without vacuity

3.2 Construction of a Generator

Global description.
Figure 3 illustrates the steps required to build a generator from a

property. First, the MBAC tool is run in generator mode and elabo-
rates the generator automata as opposed to checker automata. Gen-
erators machines produce accepted traces for the property, as op-
posed to monitor automata which mark assertion failures. Finally,
the synthesizable HDL description for the generator is extracted.

MBAC-generator.
The basic idea is to avoid the application of the First_Fail

algorithm. The resulting automaton describes all the traces compli-
ant with the corresponding property. This effect can be observed in
Figure 2. The underlying concept is that the First_fail applies
a form of negation on a portion of the automaton. This algorithm
gives the set of all the traces not compliant with a property. By
1In dynamic verification, this is actually not the exact complement.

avoiding its application, we obtain the set of all the traces compli-
ant with the property. The implementation in MBAC is actually
more involved, and requires particular modifications to algorithms
for operators such as “until” and “before”.

3.3 The Generator

Description of the Generator Automaton.
All generators have a generic interface. They take as inputs the

synchronization signals clk and reset. Their outputs are composed
of all the signals involved in the corresponding property.

The HDL description is composed of two blocks: one modeling
the generator automaton and one used for pseudo-random number
generation. As more than one state can be active during the same
cycle, one flip-flop is used for each state. The HDL process for the
FA block always has the same structure:

1. Selecting active states (line 1 of the HDL code in Figure 5);

2. Selecting outgoing transition(s) for the current active state
(lines 2, 4 and 8);

3. Selecting values of output signals for the current transition
(lines 9, 14, 18).

In every terminal branch of the automaton code (lines 3, 10, 15 and
19 in Figure 5), two types of actions are performed: output sig-
nal assignments, and activation (resp. deactivation) of destination
(resp. source) states.

Random Numbers.
Several traces can satisfy the same property. Therefore, more

than one path may lead to a final state verifying the property: there
exist some states where a choice among several possible outgoing
transitions has to be made. A pseudo-random block is used to ran-
domly choose one transition.

The pseudo-random component is not only used to select a tran-
sition. Given a transition, its associated condition can be a complex
Boolean expression, involving several signals: more than one valu-
ation for the signals can satisfy the condition. The choice between
these valuations is carried out by the pseudo-random block.

Two different kinds of random number generators were tested
: Linear Feedback Shift Registers (LFSR), and specific Cellular
Automata (CA) [16] suitable for random number generation such
as CA30. CA are more efficient in terms of synthesis and random
quality [12], but their characterization is complex and actually still
incomplete.

The random block can be parameterized to modify the quality of
the traces produced by the generator. Moreover, it is possible to
build a generator using different modes provided by our tool. This
enables more precise control over the kind of test vectors that are
to be generated:

• SimpleRand: simple random generation shares the random
component for different tasks (selects transitions for all the
states, defines the random value of the signals etc...). The
quality of the resulting traces is low due to the dependencies
induced by this sharing of the random block; however, it can
be useful for “quick-prototyping” on a small platform.

• DirRand: directed random generation allows the selection
of the length of test vectors such as: shortest, short, medium,
long etc... It can be used for an in-depth test of the design.

77

!c

!a | cc
a

a & b

Clk Reset

MYGEN

BoolSolve

Random

TransVHDL

Back−End

3

2

1

0

ReqAck Start

always (Start → Req until Ack)

PSL property

Generator HDL

Generator FA

MBAC

GENERATOR

Figure 3: The Generator Flow - Embedding of MBAC into MYGEN

• RealRand: realistic random generation uses a distinct ran-
dom block for each choice to be made in the FSM. The qual-
ity of test vectors is maximal and the generator covers all
the set of traces complying with the corresponding property.
This is particularly suitable for a complete test without ex-
cluding any possible corner case, at the cost of a significant
overhead in generator size.

The flexibility provided by these different modes is useful, because
it allows the creation of different instances of the same generator,
each one dedicated to a different step in the test phase.

Let “random register” denote a register containing pseudo-randomly
generated numbers. For the selection of the transitions, the random
registers are denoted Trans. This is illustrated Figure 5 in lines 2,
4 and 8.

BoolSolve.
For each transition, the generator must produce a combination

of signals validating the condition’s transition. It is possible that
several signals satisfy the condition. To enumerate all these possi-
bilities and put them into the HDL description, a Boolean solver is
used.

We use a simple and freely available tool called BoolSolve [1].
It takes as input a Boolean expression (the condition’s transition
in our case), and provides all the correct valuations of signals for
this expression. All these possibilities are written into the HDL de-
scription. The random registers Rand are used to randomly select
one of these valuations as it is shown in the HDL code in Figure 5,
in lines 9 and 14. All the other signals (those not involved in the
current condition’s transition) have a random value.

Multiple Transitions.
The last issue to cover in order to build a correct generator is

to take care of the dependencies that may exist between outgoing
transitions from a given state. Consider the automaton in Figure 4,
and assume transition Trans(2) is selected. Two scenarios may
occur, depending on the values of signals (A,B):

• (0,1): in this case, nothing special happens. Trans(2) is active
and within the next cycle, only S2 will be active.

• (1,0): here, Trans(1) is implicitly activated because A was
assigned ’1’ for Trans(2). Then the two transitions are taken
and within the next cycle, S1 and S2 will be active. That is
why S1 is not deactivated for conditional branches (lines 14
and 18 in Figure 5).

These dependencies are analyzed by the MYGEN back-end prior
to HDL code production.

A

C

S2 S3
A or B

Trans(0)

Trans(1)

Trans(2)
S1

Figure 4: Part of a Generator FA

1. if S1=1 --Current State=S1
2. if Trans(0)=1 --Cond=A
3. A<=1;
4. elsif Trans(1)=1 --Cond=C
5. C<=1;
6. S1<=0;
7. S3<=1;
8. elsif Trans(2)=1 --Cond=A or B
9. if Rand(0)=1 and Rand(1)=1
10. A<=0;
11. B<=1;
12. S1<=0;
13. S2<=1;
14. elsif Rand(0)=0 and Rand(1)=1
15. A<=1;
16. B<=0;
17. S2<=1;
18. else
19. A<=1;
20. B<=1;
21. S2<=1;
22. end if;
23. end if;
24.end if;

Figure 5: HDL Code for the FA depicted in Figure 4

78

4. EXPERIMENTAL RESULTS
Experiments were conducted on a laptop equipped with a 2GHz

dual core processor and 2 GB RAM, running a Linux Mandriva
2008 OS. The MYGEN is coded in C, and its efficiency is tested
over a set of 60 properties which are partitioned into 3 groups:

• PRIM: this set contains the properties numbered from 0 to
27. They model primitive PSL operators (Boolean, Sequence
and Foundation Language operators);

• CPX: properties numbered from 28 to 48. They model a va-
riety of conventional PSL properties used in industrial cases;

• LIM: properties numbered from 49 to 59 are used to test the
limits of the MYGEN tool. We have defined four types of
properties: next[i], next_e[1..i], next_event[i] and [*i], with
i ∈ {64, 128, 256, 512}.

All the properties are accessible on this web page: [2]. They are
not described here for reasons of space.

The generators produced for these properties were used in simu-
lation and served as a first validation of our approach.

4.1 MYGEN Analysis
Property complexity in the LIM group is one order of magni-

tude higher than in the other groups. Experimental results for the
LIM are not displayed in Figures 7 and 6 in order to obtain clearer
graphs.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

5 10 15 20 30 35

T
im

e
(s

ec
)

S
iz

e
(K

o
.)

Property Number

Building Time for generators

Building Time
Size of HDL (Ko)

S
iz

e
 (

K
b

.)

T
im

e
 (

se
c
.)

(Kb.)

Figure 6: MYGEN Statistics : Run Times and HDL Code Sizes

Execution Time.
As can be seen in Figure 6, most of the generators are built in a

few seconds. Almost all the time required to build a generator is
consumed by the BoolSolve tool to list all the valid valuations for
each transition condition.

Thus, the more transitions there are, the longer the generator
construction time. For example, consider the following property
Bench56 (belonging to the LIM group):

Property Bench56 :
always a→ next_event_e(sig1)[1:512](sig2)

The generator’s automaton has 510 transitions and it takes several
minutes to extract the corresponding HDL description.

Generator Complexity.
While the construction time is related to the number of tran-

sitions in the automaton, the size of the HDL description depends

essentially on the complexity of the transition conditions. The num-
ber of valid assignments for one transition condition can grow very
sharply. As all the valid valuations for a transition are hardcoded
in the HDL description, the size of the HDL description may also
explode. Consider the following property Bench16 (belonging to
the CPX group):

Property Bench16 :
always (sig1 or sig2 or sig3 or sig4 or sig5 or sig6 or sig7 or sig8);

The automaton for Bench16 is very simple and has only 2 tran-
sitions. One transition is labeled by the Boolean expression con-
tained in Bench16, for which 28 − 1 valid assignments exist. The
HDL description produced for this simple property has 4000 lines
of source code.

These results also show that it is hard to anticipate the size of the
generator just from the structure of the property: the size seems to
be more influenced by the choice of Boolean and temporal opera-
tors.

4.2 Synthesis Results on FPGAs
Generators have been synthesized with QuartusII 7.2 on a Cy-

cloneII EP2C35 FPGA. Synthesis was performed with the synthe-
sis options “balanced”. Generators have been built in the mode
RealRand of the MYGEN tool.

As shown in Figure 7, the complexity of the synthesized genera-
tors varies significantly. Figures 6 and 7 show that the construction
time for the generator, the size of the HDL descriptions and the
area used by generators are all related. The area, shown in the left
graph of Figure 7, is nearly in linear relation to size of the HDL
description, which is the blue curve in Figure 6.

Further, the size of the synthesized hardware generators can also
increase dramatically, especially for properties from the LIM group.
For example, the hardware generator for property Bench56 uses
122K logical cells and 70K flip-flops.

Finally, the left graph in Figure 7 shows that the amount of LCs
and FFs for each generator is almost always equal. The resulting
hardware thus has a very short critical path, enabling high clock
rates, which attests to the efficiency of the proposed generators.
Figure 7 shows that very good clock rates are indeed obtained.
The minimum frequency is around 200 MHz, even for very com-
plex generators. One can notice that the majority of the generators
(60%) have the maximal frequency of 420 MHz imposed by the
CycloneII technology.

5. CONCLUSIONS
A method has been defined to automatically build test vector

generators from PSL properties. This approach, supported by the
tool MYGEN, is completely independent of the DUT complexity,
and can be used in a number of dynamic verification scenarios. The
proposed methodology also frees verification engineers of the need
to develop standalone test generation. Using a set of 60 properties,
we have shown that the obtained generators are fast and relatively
compact, which can be helpful in real design verification flows. In
particular, our tool can produce a library of reusable parameterized
components (SPI, OCP etc.), that can be instantiated with specific
parameter values to fit the requirements for a specific test environ-
ment.

The automata theoretic approach that serves as a ground layer to
process the properties is more efficient for monitors than for gen-
erators: the central mechanism in MBAC produces very compact
monitors, but much bigger generators. A partial explanation lies in
the FA simplification obtained from the First_Fail algorithm,
used for monitors only. Also monitors are simple acceptors with a

79

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40 45 50

F
re

q
.
(M

H
z)

Property Number

Synthesis Results for Mode : Simple

Freq

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45 50

F
F

s
&

 L
C

s

Property Number

Synthesis Results for Mode : Simple

LCs
FFs

Figure 7: Synthesis Results: Area (left) and Clock Rates (right)

“yes/no” answer, while generators produce a set of possibly com-
plex outputs, and require on-the-fly reasoning.

We also embedded into generators the pseudo-random compo-
nents, which are portable (to ASICs and FPGA platforms, simula-
tion engines, etc.), and significantly reduce the circuit size. If an
external pseudo-random source is available, it can be directly used,
removing the LFSR’s or CA. The resulting generator size is then
proportional to the number of states. In any case, the generator
frequency is always very high. With our generators, we provide
designers with a tool to build a model of the environment and test
the design at-speed.

We are currently studying the random components (LFSR and
CA) to improve the quality of the pseudo-random generation. From
our experiments we conclude that CA are more efficient than the
LFSR we tested. We would like to characterize a set of CA for
our generators to automatically embed them into the generators.
Further, the construction time for the generators can be improved
by replacing the slow Boolean solver by a production quality SAT
solver, e.g. MiniSAT. Finally, we plan a more complete verification
by model-checking the generators and their corresponding proper-
ties. This will improve the confidence in the correct production of
the synthesizable HDL code for the generators.

6. REFERENCES
[1] http://freshmeat.net/projects/bool-expr-solve/.
[2] http://www-tima.imag.fr/vds/horus/mygen_props/.
[3] M. Boulé and Z. Zilic. Automata-Based Assertion-Checker

Synthesis of PSL Properties. ACM Transactions on Design
Automation of Electronic Systems (ACM-TODAES),
13(1):Article 4, January 2008.

[4] J. Calamé. Specification-based test generation with TGV.
Technical Report R0508, Centrum voor Wsikunde en
Informatica, May 2005.

[5] H. Eveking, M. Braun, M. Schickel, M. Schweikert, and
V. Nimbler. Multi-level assertion-based design. In 5th ACM
& IEEE International Conference on Formal Methods and
Models for Co-Design MEMOCODE’07, pages 85–87, Jun.
2007.

[6] H. Foster, A. Krolnik, and D. Lacey. Assertion-Based
Design. Kluwer Academic Publishers, Jun. 2003.

[7] H. Foster, Y. Wolfshal, E. Marschner, and I. . W. Group.
IEEE standard for Property Specification Language PSL.
pub-IEEE-STD, pub-IEEE-STD:adr, Oct 2005.

[8] K. Morin-Allory, M. Boulé, D. Borrione, and Z. Zilic.
Proving and disproving assertion rewrite rules by automated
theorem proving. In IEEE International High Level Design
Validation and Test Workshop 2008 HLDVT’08, Nov. 2008.

[9] Y. Oddos, K. Morin-Allory, and D. Borrione.
Assertion-based design with horus. In 6th ACM-IEEE
International Conference on Formal Methods and Models for
Codesign MEMOCODE’2008, Jun. 2008.

[10] B. Pal, A. Banerjee, A. Sinha, and P. Dasgupta. Accelerating
assertion coverage with adaptative testbenches. In IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, volume 27, pages 967–972, May 2008.

[11] I. Pomeranz and S.-M. Reddy. Circuit lines for guiding the
generation of random test sequences for synchronous
sequential circuits. In 2008 conference on Asia and South
Pacific Design Automation, pages 641–646, 2008.

[12] B. Shackleford, M. Tanaka, R. J-Carter, and G. Snider.
High-performance cellular automata random number
generators for embedded probabilistic computing systems. In
In Proceedings of the 2002 NASA/NOD Conference on
Evolvable Hardware EH’02, 2002.

[13] K. Shimizu and D.-L. Dill. Deriving a simulation input
generator and a coverage metric from a formal specification.
In DAC, pages 801–806, 2002.

[14] J. Srouji, S. Mehta, D. Brophy, K. Pieper, S. Sutherland, and
I. . W. Group. IEEE Standard for SystemVerilog - Unified
Hardware Design, Specification, and Verification Language.
pub-IEEE-STD, pub-IEEE-STD:adr, Nov 2005.

[15] R.-S. Tupuri, A. Krishnamachary, and J.-A. Abraham. Test
generation for gigahertz processors using an automatic
functional constraint extractor. In DAC, pages 647–652,
1999.

[16] S. Wolfram. Random sequence generation by cellular
automata. In Advances in Mathematics, volume 7, pages
123–169, 1986.

80

