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ABSTRACT 
To address the increasing demand for reliability in on-chip 
networks, we proposed a novel Reliability Aware Virtual channel 
(RAVC) NoC router micro-architecture that enables both dynamic 
virtual channel allocations and the rational sharing among the 
buffers of different input channels. In particular, in the case of 
failure in routers, the virtual channels of routers surrounding the 
faulty routers can be totally recaptured and reassigned to other 
input ports. Moreover, our proposed RAVC router isolates the 
faulty router from occupying network bandwidth. Experimental 
result shows that proposed micro-architecture provides 7.1% and 
3.1 % average latency decrease under uniform and transpose 
traffic pattern. Considering the existence of failures in routers of 
on-chip network, RAVC provides 28% and 16% decrease in the 
average packet latency under the uniform and transpose traffic 
pattern respectively.  

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance 

General Terms 

Reliability 
Keywords 
Network on Chip, System on Chip, Virtual Channel. 

1. INTRODUCTION 
Driven by unquenchable demand for having high bandwidth, 
throughput and in particular scalable platforms, System-on-Chip 
(SoC) designers find on-chip interconnections to be a limiting 
factor in terms of the performance and energy consumption [1]. 
Increases in the resistance of wires due to the decreases in wire 
cross-section cause to increase in the latency, stressing out the 
problem of traditional interconnect. Expectedly, a signal would 
require multiple clock cycles to traverse the length of a large wire 
in SoCs.  The network-on-chip (NoC) can be used to combat the 
delay emanating from slow global wiring, providing scalable, low 
power and high-bandwidth communication infrastructure to the 
SoCs design.  NoCs were outlined as an advance for SoCs. Since 
all links in the NoC can operate simultaneously on different data 
packets, a high level of parallelism is making it attractive for 
replacing previous communication architectures like dedicated 

point-to-point signal wires, shared buses, or segmented buses with 
bridges.  
Since then, it was widely established that NoCs can provide 
enhanced throughput and scalability. 
As the transistor feature size shrinks, so does the voltage, leaving 
less noise margin.  Hence, the ability of the network to function in 
the presence of component failures, reliability and fault-tolerance 
issues become important.  
The NoC topologies will need to be considered from this angle. 
Network topologies are the configurations of routers and the 
Network Interfaces (NIs) to connect to a router. The fundamental 
duty of NIs is the interfacing between processing elements and 
network infrastructure. In the domain of router architectures, the 
comprehensive research has been carried out to enhance the 
performance, power, and fault-tolerant mechanisms.  
Buffers are the instrumental elements in router input and output 
channels. They were shown to consume about 64% of the total 
router leakage power  [3] making them largest leakage energy 
consumers in NoCs. Moreover, in terms of dynamic energy 
consumption, buffers are dominant  [3]. It was shown in  [5] that 
far more energy consumption is expected in storing packets in 
buffers than transmitting them. On balance, the effective and 
resourceful management of buffers and hence input and output 
channels in NoC routers has a crucial effect in performance and 
efficiency of interconnection networks. In this work, we propose 
new NoC router architecture that enables dynamic reconfiguration 
of input channels in NoC routers. Our proposed architecture tries 
to alleviate the effect of faulty routers and congestion in an NoC. 
Intuitively, the crux of our design is in the effective usage of 
available buffers, particularly when switches fail. To the best of 
our knowledge, this work is the first attempt at sharing among the 
buffers of different input channels.  
We propose a new micro-architecture for NoC routers that enables 
sharing among virtual channels (VCs) of input ports. Addressing 
the fault tolerance requirement of our architecture, our suggested 
switch can dynamically change the pre-assigned number of VCs 
to an input port. In the case of switch failure, the VCs of routers 
surrounding the faulty routers can be totally recaptured and 
reassigned to the other input ports. Isolating the faulty switch 
from receiving incoming packets and the eliminating related 
power dissipation is another advantage of our proposed reliability 
aware architecture. 

2. RELATED WORK 
The relationship between network performance and buffer 
resources has to be taken into account when trying to reduce 
buffer sizes to minimize energy consumption as well as the silicon 
area. In fact, flow control policies play a decisive role in the 
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management and sizing of buffers [4]. The wormhole flow control 
relaxes the constraints on buffer size at each router by controlling 
at the granularity of flit, instead of packet. In particular, this flow 
control enables more efficient use of buffer space than store-and-
forward and Virtual Cut-Through flow control  [9]. 
Although in wormhole flow control buffers are allocated at the flit 
level, a blocked packet can impede the progress of other packets 
because physical paths still are allocated at the packet level. Due 
to distribution of single packets across the several ports, such a 
blocking causes substantial decreases in the performance of NoC. 
The application of VC flow control is instrumental to alleviating 
the problem of blocking in wormhole flow control.  
Assigning multiple virtual paths to the same physical channel is 
the essence of VC flow control. Generally, each virtual path has 
its own associated buffer queue  [10] - not only that VC routers 
can increase throughput by up to 40% over wormhole routers 
without VCs, but virtual channels also help with deadlock 
avoidance. However, the performance of VC flow control worsens 
relative to the fixed VC structures. In other words, supposing the 
statically-allocated VCs implementation lowers buffer utilization 
due to lack of flexibility in buffer size. Practically speaking, low 
throughput is expected at high data rates due to lack of VCs, 
assuming routers are configured with few deep VCs. For low data 
rates, on the other hand, if many shallow VCs are arranged, the 
packets are distributed over a large number of routers. Therefore, 
contentions and the increase in the latency arise as a consequence 
of extra interrupts in continual packet transfers. 
In  [4] the authors explain the aforementioned facts and show that 
the optimal number of VCs depend on the traffic pattern. At low 
data rate, increasing VC depths results in better performance. For 
high rates, the optimal structure depends on the distributing 
patterns. It is advisable to increase VCs under uniform data 
patterns, but to decrease VC depth under hotspot patterns, e.g., in 
matrix transpose. Hereafter, the dynamic buffer sizing becomes an 
instrumental in NoC routers.  In  [6] an analytical approach for 
assigning buffer sizes at design time have been investigated. 
However, their proposed technique revolves around assignment of 
the size and the number of VCs at the design time that is static. In 
fact, supposing a particular application and specific hardware 
mapping, they apply their method to find the optimal buffer sizes 
applicable to that particular application.  On the other hand, within 
the realm of NoCs dealing with different workloads and 
spontaneous traffic, the runtime management and reconfiguration 
of buffer organization are more interesting. In fact, regardless of 
the traffic type in the NoC, dynamic scheme can be exploited to 
maximize utilization. In  [7], a unified and dynamically allocated 
buffer structure was presented as Dynamically Allocated Multi-
Queue (DAMQ) buffer; however, utilizing a fixed number of 
queues and hence VCs per input port is one limitation of this 
architecture.  Another disadvantage of their approach specifically 
in domain of NoC is the complex control logic of the DAMQ 
buffer. Particularly, every read and write operation needs there 
cycles to complete, which might be excessive in an on-chip router. 
To improve drawbacks of DAMQ in terms of hardware overhead 
and overall complexity, DAMQ with self-compacting buffer was 
introduced in  [7]; using registers which selectively shift some flits 
inside the buffer to enable all flits of one VC to occupy a 
continuous buffer space was the crux of this approach. The VC 
Regulator (ViChaR) which dynamically allocates VCs and buffer 
slots in real-time basically has been presented in  [12]. Dynamic 
Allocations of VCs in this scheme is based on the traffic condition 

of the interconnection network. However, this dynamic VCs 
allocation scheme lacked efficient structure with little hardware 
overhead to support various packet sizes or traffic patterns. 
Additionally, the idea of enabling sharing among the buffers of 
different input channels which is our innovation in this work has 
not been addressed in their proposed scheme. In  [11] a novel 
dynamic VC architecture to escape the HOL blockings is 
introduced. In their scheme, the low overhead link list structure is 
used to manage arriving and departing flits. In general, utilizing 
the link status and switch arbitration results, their proposed 
structure creates variable number of VC at the run-time to 
maximize the throughput. However, their proposed architecture 
could not perfectly utilize the unused buffers of their neighboring 
input channels. To the best of our knowledge, existing dynamic 
virtual-channel allocation schemes in the realm of NoC never 
address the issue of perfectly utilizing and sharing available 
buffers in the input channels of router. 

3. PRELIMINARIES 
Micro-architecture of the conventional VC NoC router is shown 
in Fig .1. The Routing Unit, VC allocator, Switch allocator, input 
channels and a Crossbar constitute basics elements of a Virtual 
Channel NoC router [14]. In general, NoC routers may have any 
number of input and output ports; however, network topology 
ultimately determines the number of input and output ports of 
each router. In most implementations, the numbers of input and 
output ports are five; four inputs from the four cardinal directions 
(North, East, South and West) and one from the Network Interface 
(NI) which is in charge of restructuring Local Processing Element 
(PE) packets to the acceptable format of NoC routers. Using the 
destination information in header flit, Routing Unit leads the 
header-flit of incoming packet to the appropriate output port. A 
unit of information that can be transferred across a physical 
channel in a single step or cycle is called flit. Basically, a NI 
forms the flit-sized messages before injecting them to the 
network.  To easily distinguish the type of information carried out 
by flits, they are categorized into Header-Flit (H-F) that keeps the 
information of the source and the destination, Data-Flits (D-F) 
that packs the body of a message and Tail-Flit (T-F), which is the 
representative of end of a packet. On the other hand, a routing 
algorithm determines the path along which a packet is delivered to 
destination node. The routing algorithm can be either 
deterministic or adaptive. Ideally, deterministic routing algorithms 
always supply the same path between a given source/destination 
pair. On the other hand, by utilizing information about network 
traffic, adaptive routing algorithms try to avoid congested or 
faulty regions of the network [13]. In VC NoC routers, each 
physical channel involves the finite number of VCs. Considering 
North input channel of Fig. 1, we can define the basic behavior of 
VC NoC router. While a header-flit is arriving from the upstream, 
its VC identifier (VC_ID) defined with the previous router is 
decoded. The header-flit will be buffered in the appropriate VC 
according to its decoded VC-ID. Meanwhile, the state of 
aforementioned VC will be changed to the routing state. There are 
four specific sets of states corresponding to each VC, as shown in 
Figure 1. Every header-flit activates the specific request lines of 
the Global VC allocator that is directly matched to the result of 
the routing unit. Inspecting both the priority of input VC and the 
state of requested output VC global-VC-allocator gives output VC 
to one of the input channels. Switching step is the next state of an 
input VC. During this state, each input VC provisioned by its 

512



respective grant from VC-Allocator enters its request to access the 
output port through the cross bar.  
 

 
Fig. 1 Conventional VC Router Architecture 

4. PROPOSED ROUTER ARCHITECTURE  
The hospitality of an input channel is defined as the tendency of 
an input channel to host the arriving flit of other channels. 
 

 

Equation 1 
In Equation1, the VC[i]][dir].Capacity represents the number of 
flits in the ith VC at the specific direction. Hence, for each 
physical input channel there exists hospitality metric. Because the 
number of flits stored in each VC is reserved in the input VC 
status, hospitality of each input port can be determined using 
already available data in an NoC router; moreover since the input 
channel capacity usually is power of two, in RAVC NOC router 
simple shifters and adder were used for the calculation of 
hospitality. 
The probability of VC expansion to accommodate an incoming 
header-flit which is supposed to depart in specific direction can be 
determined using the Equation 2. In general, when the value of 
credit in specific output VC becomes zero concerning VCs at the 
destination routers either no longer can accept the new flits due to 
congestion or have a small amount of buffers.   
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As shown in Fig. 2, when R[2,1] is going to send a packet to the 
R[4,4] in an ordinary and non-faulty state the flits of this packet 
will pass through R[2,2], R[2,3], R[2,4], R[3,4] and finally R[4,4] 
based on the XY routing algorithm. If R[2,3] becomes faulty, by 
resorting to a fault tolerant routing algorithm like XY-YX  [13], 
R[2,2] actually will forward all the incoming flits from R[2,1] to 
R[3,2] or R[1,2]. As shown in Figure 2, having extra buffers in 
neighboring switches of R[2,3] would be instrumental in 
following up the extra traffic. This extra traffic is predictable as a 
consequence of having faulty routers in our interconnection 
network. In fact, R[3,3] and R[1,3] particularly in the depicted 
scenario due to failure in R[2,3] are supposed to received more 
flits compared to the non-faulty condition. 

 
Fig. 2 Dynamic Input Ports Buffer Sharing 

4.1 Proposed RAVC Router Architecture 
To enable dynamic allocation of storage between different VC, 
link listed data structures are used to represent VCs in our RAVC 
router.  Using the Linked list more efficient use of memory is 
expected. In fact, many previous studies  [11] [12] have shown that 
static VC allocation when there are large numbers of VCs leads to 
unbalanced loading across VCs. Thus, it is advantageous to 
allocate more memory to the busy channels and less to the idle 
channels. Fig. 3 shows our proposed input channel architecture. 
Moreover, we used four global registers that indicate the condition 
of four neighbor routers. Referring to these status registers, the 
input channel will be notified about the status of neighbor routers 
in particular whether they are safe or faulty. The arriving header-
flit after passing modified RAVC router stage shown in Fig. 3 is 
stored into free memory location; consequently, Dynamic VCs 
Allocator will specify the particular VC identifier; hereafter, the 
list labeled with this identifier is nesting the arriving header-flit. 
On the basis of extracted VC identifier, a header-flit will be either 
stored into a new list or at the end of an already existed list. 
However, the data-flits and tail- flit actually inherits the VC-
Identifier of their header-flits; in fact, they do not require to the 
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VC-Allocator unit to dispense a VC identifier. As shown in Fig. 3, 
Head-Pointer (H-P) of each VC points to the location of this flit at 
the shared memory of input channel. The switch allocation 
arbitrates among all the VCs to find the winner VC identifier. 
After departure of a flit pointed with the head-pointer of winner-
VC, the header-pointer of that VC will be updated by the next-
pointer of departed flit. In our structure, the VCs may be 
dynamically regulated according to the traffic conditions. 

 
Fig. 3 Input Channel Structure 

When a new flit arrives, it is inspected whether the new flit comes 
from the safe or faulty router; thereby, the new flit is discarded if 
it is emanated from the faulty router. Fig. 4 illustrates the data-
path of RAVC router. Using Tail-Pointer, Head-Pointer and Next-
Pointer register file, RAVC router makes one cycle read and write 
operation possible. In principal, group of operations shown in Fig. 
5 dependent upon operation phase of RAVC router are executed 
on this input VC data-path. Executing these operations, winner-
incoming flits will be stored in the available slot indicated by the 
Free-Buffer-Tracker Fig. 5 (A1), tail pointer of concerning VC is 
updated to point to the address of incoming flit in the shared-
buffer and finally to keep chain of flits in the VC previous 
Tail_Pointer of this VC must be stored as a Next_Poniter of new 
incoming flit Fig. 5 (B1)(B2)(B3). Afterward, for the departure of 
each flit, there exist other three operations shown in Fig. 5 
(C1)(C2) Where, eqn. (1) reads a flit from the winner VC, eqn. (2) 
revises the head pointer of its VC to point to the next flit, and eqn. 
(3) updates the slot map. Our proposed RAVC router has changed 
the routing stage of conventional VC router due to the effective 
and reliable handling of available buffers. As Fig. 5 depicts, 
keeping the status of neighboring routers as well as the hospitality 
measure of other input channel, incoming flit may be either 
moved to other input channels or handled in the current input 
channel. If all the buffers of current input channel are occupied; in 
other words, there is not any available input buffer for hosting a 
new incoming flit, this input channel instead of discarding this 
new incoming flit transmit it to other input channel. 
As Fig. 5 shows, to avoid the increase in energy consumption, 
RAVC router has adopted a tri-state buffer to switch between the 
incoming flits of a local port or other input ports. The winner-
incoming flit follows the bandwidth allocation and particularly 
routing in case of being header-flit. During the bandwidth 
allocation and routing phase respectively, free-buffer-tracker 
specifies the location of the winner-incoming flits and routing-
unit indicates the appropriate output port of this flit. Routing 
decision and hospitality measurement and concerning incoming 

flits move carried out in parallel in that there is not any 
operational dependency between them. 

 
Fig. 4 RAVC Input Channel Data-Path 

RAVC router supports dynamic VC allocation. During the VC 
allocation stage, the VC-Availability-Tracker and the VC-
Dispenser are in charge of the VC determination to new header-
flits. Since VC-identifier of data-flits and the tail flit has been 
designated previously by transmission of their header-flit also this 
designated VC-identifier has been stamped in these flits by their 
previous router, next and tail-pointer register file of regarding VC-
identifier as shown in Fig. 5(B1) will be updated to the location of 
these flits in the shared buffer which is previously specified by the 
free-buffer-tracker ().  However, VC-Availability-Tracker and VC-
Dispenser specify the VC-Identifier of a header-flit in this stage. 
In principal, this header flit first requests access to the particular 
output port through our modified VC arbitrator; accruing the 
required grant from VC arbitrator, the header-flit sends its request 
to the VC-Availability-Tracker and the VC-Dispenser units. 
Consequently, taking into account number of current available VC 
as well as HOL (Head of Line blocking) condition, these units 
will decide whether to dispense a new VC or determine one of the 
available VC identifier. In case of new VC distribution, Next, 
Head and Tail pointer register file of newly distributed VC are 
updated Fig. 5(B2); however, as illustrated in Fig. 5(B3) if one of 
the current available VC identifiers specified to host this header-
flit, the tail-pointer register file and next-pointer register file of 
this VC will be updated accordingly. In both cases, this router has 
to inform the previous one about the adopted VC-ID; thereby, 
previous router updates its output VC status. Eventually, during 
the switching stage the output port of crossbars will be specified 
among the input ports. Our modified Switch Allocation (SA) unit 
similar to the conventional SA unit will carry out its operation in 
two stages; firstly, during the first stage of SA the winner request 
among variable number of VCs in an input channel will be 
chosen; secondly, the second stage arbitrates among the winner 
requests from each input port for output ports. The SA unit of 
conventional router has been modified to be consistent by our 
dynamic VC planning approach. Therefore, adopting the worst-
case scenario when an input channel dispensed all the allowable 
VCs, which is indeed VCmax, RAVC router apply vmax:1 arbiters 
for each input channel at the first stage. However, the second 
switch arbitration in RAVC router is like the conventional router. 
Moreover, using the output VC status and resorting to the Credit-
Based flow control scheme, switching unit of RAVC router 
handle inter router communication. When a new header-flit 
arrives into the specific input channel, VC dispenser specifies 
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whether it needs to make a new virtual channel for this flit or this 
flit should be placed at the tail of already existing virtual channel. 
 

 
Fig. 5 Our Modified RAVC Router Stages 

VC manager should consider three conditions; first, if there is a 
deadlock in the current network this header flit should be placed 
in the escape virtual channel; secondly, if placing the new header 
at the end of already existing virtual channels, lead to HOL 
blocking conditions the new virtual channel is expected to be 
dispensed by VC manager to accommodate the new incoming flit. 
Eventually, resorting to the expansion probability of particular 
direction, VC dispenser considering the destination direction of 
this new incoming header-flit performs its decision.  

 
Fig. 6 Proposed Virtual Channel Allocator 

The task of particular output channel allocation to header-flit of an 
incoming packet is given to the VC dispenser. Data-flits of a 
packet follow the allocated output channel of the header-flit. As 
Fig. 6 illustrates, supporting the dynamic VC allocation our 
modified VA reduces the number of virtual channel requests for a 
particular output port to one request in first arbitration stage. As a 
consequence of having anywhere between vmin and vmax VCs per 
input port at any given time, our proposed scheme needs larger 
vmax:1 arbiters in comparison to v:1 generic arbiter of convention 
arbiter in the first stage of the allocation. The proposed virtual 

channel uses smaller Stage 2 arbiters.  As Fig. 6 illustrates, on the 
contrary to the conventional router which accept request for each 
output channel, the second arbitration stage in RAVC is account 
for choosing a winner for each output port among all the 
competing input ports. In fact, instead of having (Pout×V) arbiters 
each of which has to accept P×V request, VC allocator at the 
second stage in RAVC router has pout arbiters.  

5. EXPERIMENTAL RESULTS 
To evaluate the effectiveness of our approach, we created generic 
and customizable RTL level description of our Reliability Aware 
Virtual Channel (RAVC) NoC router and conventional VC router 
using VHDL language. First, we find Average Latency of packets 
transferring under different injection rates. In the second phase of 
the performance evaluation, we adopted XY-YX fault tolerant 
routing algorithm as an alternative routing decision [13]. 
Moreover, we assume uniform and transpose traffic patterns. All 
simulations were performed in 36 nodes (6ൈ 6ሻ6) MESH 
network. In our experiments, conventional VC routers have 4 VCs 
each of which has 16 flits capacity. However, our proposed 
RAVC routers have 64 flits buffer with the default of 4 minimum 
VCs yet extendable to 16. In our simulation, we apply two 
different size packets: (1) the 8 flits, and (2)16 flits packets. To 
find the Average Latency under different traffic pattern, test-
benches connected to each router through local injection channels 
as a local Processing Element (PE) generates the number of 
packets somewhere between 10,000 and 100,000 and fills the 
destination of each packet according to the traffic pattern.  
Under uniform traffic pattern, average packet latency of 
conventional VC router and RAVC router in different packet 
injection rate are illustrated in Fig. 7 (A)(B) considering the 
packet size of 8, 16 flits respectively. Averagely, under uniform 
traffic pattern, our proposed RAVC supplies 7.1% improvement 
in Average Packet Latency compared to the conventional VC 
router with the same amount of input buffers. Fig. 7  (C)(D) 
Illustrates the average packet latency of RAVC versus 
conventional router under transpose traffic pattern with respect to 
the packet size of 8, 16 flits; under transpose traffic pattern, such a 
improvement in average packet latency becomes 3.5%. Simply 
stated, resorting to the facts that RAVC router supports dynamic 
VC assignment as well as input buffer sharing; additionally, 
RAVC dispenses more VCs under the high packet injection rate 
leading to the decline in the probability of HOL occurrence 
compare to static VC scheme of traditional router, we can 
construe such a decrease in the average latency and higher 
saturated throughput. In the second round of our simulation, we 
analyzed our MESH network performance in case of failures in 
routers. We assumed that some routers failed during the operation. 
As consequence of instinctive reliability awareness of our RAVC 
router, faulty routers cannot propagate any flits into the network 
and cooperate in saturation of network since input buffers of their 
surrounding routers are not still attainable. In our experiments, we 
assume that state of faulty routers becomes unsafe in their 
surrounding routers. Fig. 7 (E)(F) illustrate the average packet 
latency of RAVC router versus average packet latency of 
conventional router assuming specific number of router failures 
under uniform traffic pattern. On the basis of extracted values 
from our VHDL based simulation environment, in a fault prone 
environment, RAVC leads to 28% and 16% decrease in the 
average packet latency under the uniform and transpose traffic 
pattern, respectively. 
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Fig. 7 Simulation Results 

6. CONCLUSION 
In this paper, we proposed a novel Reliability Aware Virtual 
Channel (RAVC) NoC Router architecture that enables both 
dynamic VC allocation and reliability aware sharing among input 
channels. RAVC router provides 7.1% and 3.1 % average latency 
decrease under uniform and transpose traffic pattern respectively; 
considering the probability of having failures in network, RAVC 
router performs more effectively than conventional VC router 
specially in terms of average packet latency and performance. 
 On the one hand, assigning virtual channel in a dynamic manner 
avoids the occurrence of HOL which impede the performance of 
on-chip network. On the other hand,  avoiding faulty routers from 
packet injections to network reduces the traffic in network due to 
reliability awareness of RAVC lead to decrease in average packet 
latency; moreover, as a side bonus, extra buffers which become 
available in our RAVC routers also cooperates in such a decrease 
in the average latency 
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