
Reliability Aware NoC Router Architecture Using Input
Channel Buffer Sharing

M. H. Neishaburi
McGill University

Montreal, QC, Canada
mh.neishabouri@mail.mcgill.ca

Zeljko Zilic
McGill University

Montreal, QC, Canada
zeljko.zilic@mcgill.ca

ABSTRACT
To address the increasing demand for reliability in on-chip
networks, we proposed a novel Reliability Aware Virtual channel
(RAVC) NoC router micro-architecture that enables both dynamic
virtual channel allocations and the rational sharing among the
buffers of different input channels. In particular, in the case of
failure in routers, the virtual channels of routers surrounding the
faulty routers can be totally recaptured and reassigned to other
input ports. Moreover, our proposed RAVC router isolates the
faulty router from occupying network bandwidth. Experimental
result shows that proposed micro-architecture provides 7.1% and
3.1 % average latency decrease under uniform and transpose
traffic pattern. Considering the existence of failures in routers of
on-chip network, RAVC provides 28% and 16% decrease in the
average packet latency under the uniform and transpose traffic
pattern respectively.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance

General Terms

Reliability
Keywords
Network on Chip, System on Chip, Virtual Channel.

1. INTRODUCTION
Driven by unquenchable demand for having high bandwidth,
throughput and in particular scalable platforms, System-on-Chip
(SoC) designers find on-chip interconnections to be a limiting
factor in terms of the performance and energy consumption [1].
Increases in the resistance of wires due to the decreases in wire
cross-section cause to increase in the latency, stressing out the
problem of traditional interconnect. Expectedly, a signal would
require multiple clock cycles to traverse the length of a large wire
in SoCs. The network-on-chip (NoC) can be used to combat the
delay emanating from slow global wiring, providing scalable, low
power and high-bandwidth communication infrastructure to the
SoCs design. NoCs were outlined as an advance for SoCs. Since
all links in the NoC can operate simultaneously on different data
packets, a high level of parallelism is making it attractive for
replacing previous communication architectures like dedicated

point-to-point signal wires, shared buses, or segmented buses with
bridges.
Since then, it was widely established that NoCs can provide
enhanced throughput and scalability.
As the transistor feature size shrinks, so does the voltage, leaving
less noise margin. Hence, the ability of the network to function in
the presence of component failures, reliability and fault-tolerance
issues become important.
The NoC topologies will need to be considered from this angle.
Network topologies are the configurations of routers and the
Network Interfaces (NIs) to connect to a router. The fundamental
duty of NIs is the interfacing between processing elements and
network infrastructure. In the domain of router architectures, the
comprehensive research has been carried out to enhance the
performance, power, and fault-tolerant mechanisms.
Buffers are the instrumental elements in router input and output
channels. They were shown to consume about 64% of the total
router leakage power [3] making them largest leakage energy
consumers in NoCs. Moreover, in terms of dynamic energy
consumption, buffers are dominant [3]. It was shown in [5] that
far more energy consumption is expected in storing packets in
buffers than transmitting them. On balance, the effective and
resourceful management of buffers and hence input and output
channels in NoC routers has a crucial effect in performance and
efficiency of interconnection networks. In this work, we propose
new NoC router architecture that enables dynamic reconfiguration
of input channels in NoC routers. Our proposed architecture tries
to alleviate the effect of faulty routers and congestion in an NoC.
Intuitively, the crux of our design is in the effective usage of
available buffers, particularly when switches fail. To the best of
our knowledge, this work is the first attempt at sharing among the
buffers of different input channels.
We propose a new micro-architecture for NoC routers that enables
sharing among virtual channels (VCs) of input ports. Addressing
the fault tolerance requirement of our architecture, our suggested
switch can dynamically change the pre-assigned number of VCs
to an input port. In the case of switch failure, the VCs of routers
surrounding the faulty routers can be totally recaptured and
reassigned to the other input ports. Isolating the faulty switch
from receiving incoming packets and the eliminating related
power dissipation is another advantage of our proposed reliability
aware architecture.

2. RELATED WORK
The relationship between network performance and buffer
resources has to be taken into account when trying to reduce
buffer sizes to minimize energy consumption as well as the silicon
area. In fact, flow control policies play a decisive role in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’09, May 10–12, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-522-2/09/05...$5.00

511

management and sizing of buffers [4]. The wormhole flow control
relaxes the constraints on buffer size at each router by controlling
at the granularity of flit, instead of packet. In particular, this flow
control enables more efficient use of buffer space than store-and-
forward and Virtual Cut-Through flow control [9].
Although in wormhole flow control buffers are allocated at the flit
level, a blocked packet can impede the progress of other packets
because physical paths still are allocated at the packet level. Due
to distribution of single packets across the several ports, such a
blocking causes substantial decreases in the performance of NoC.
The application of VC flow control is instrumental to alleviating
the problem of blocking in wormhole flow control.
Assigning multiple virtual paths to the same physical channel is
the essence of VC flow control. Generally, each virtual path has
its own associated buffer queue [10] - not only that VC routers
can increase throughput by up to 40% over wormhole routers
without VCs, but virtual channels also help with deadlock
avoidance. However, the performance of VC flow control worsens
relative to the fixed VC structures. In other words, supposing the
statically-allocated VCs implementation lowers buffer utilization
due to lack of flexibility in buffer size. Practically speaking, low
throughput is expected at high data rates due to lack of VCs,
assuming routers are configured with few deep VCs. For low data
rates, on the other hand, if many shallow VCs are arranged, the
packets are distributed over a large number of routers. Therefore,
contentions and the increase in the latency arise as a consequence
of extra interrupts in continual packet transfers.
In [4] the authors explain the aforementioned facts and show that
the optimal number of VCs depend on the traffic pattern. At low
data rate, increasing VC depths results in better performance. For
high rates, the optimal structure depends on the distributing
patterns. It is advisable to increase VCs under uniform data
patterns, but to decrease VC depth under hotspot patterns, e.g., in
matrix transpose. Hereafter, the dynamic buffer sizing becomes an
instrumental in NoC routers. In [6] an analytical approach for
assigning buffer sizes at design time have been investigated.
However, their proposed technique revolves around assignment of
the size and the number of VCs at the design time that is static. In
fact, supposing a particular application and specific hardware
mapping, they apply their method to find the optimal buffer sizes
applicable to that particular application. On the other hand, within
the realm of NoCs dealing with different workloads and
spontaneous traffic, the runtime management and reconfiguration
of buffer organization are more interesting. In fact, regardless of
the traffic type in the NoC, dynamic scheme can be exploited to
maximize utilization. In [7], a unified and dynamically allocated
buffer structure was presented as Dynamically Allocated Multi-
Queue (DAMQ) buffer; however, utilizing a fixed number of
queues and hence VCs per input port is one limitation of this
architecture. Another disadvantage of their approach specifically
in domain of NoC is the complex control logic of the DAMQ
buffer. Particularly, every read and write operation needs there
cycles to complete, which might be excessive in an on-chip router.
To improve drawbacks of DAMQ in terms of hardware overhead
and overall complexity, DAMQ with self-compacting buffer was
introduced in [7]; using registers which selectively shift some flits
inside the buffer to enable all flits of one VC to occupy a
continuous buffer space was the crux of this approach. The VC
Regulator (ViChaR) which dynamically allocates VCs and buffer
slots in real-time basically has been presented in [12]. Dynamic
Allocations of VCs in this scheme is based on the traffic condition

of the interconnection network. However, this dynamic VCs
allocation scheme lacked efficient structure with little hardware
overhead to support various packet sizes or traffic patterns.
Additionally, the idea of enabling sharing among the buffers of
different input channels which is our innovation in this work has
not been addressed in their proposed scheme. In [11] a novel
dynamic VC architecture to escape the HOL blockings is
introduced. In their scheme, the low overhead link list structure is
used to manage arriving and departing flits. In general, utilizing
the link status and switch arbitration results, their proposed
structure creates variable number of VC at the run-time to
maximize the throughput. However, their proposed architecture
could not perfectly utilize the unused buffers of their neighboring
input channels. To the best of our knowledge, existing dynamic
virtual-channel allocation schemes in the realm of NoC never
address the issue of perfectly utilizing and sharing available
buffers in the input channels of router.

3. PRELIMINARIES
Micro-architecture of the conventional VC NoC router is shown
in Fig .1. The Routing Unit, VC allocator, Switch allocator, input
channels and a Crossbar constitute basics elements of a Virtual
Channel NoC router [14]. In general, NoC routers may have any
number of input and output ports; however, network topology
ultimately determines the number of input and output ports of
each router. In most implementations, the numbers of input and
output ports are five; four inputs from the four cardinal directions
(North, East, South and West) and one from the Network Interface
(NI) which is in charge of restructuring Local Processing Element
(PE) packets to the acceptable format of NoC routers. Using the
destination information in header flit, Routing Unit leads the
header-flit of incoming packet to the appropriate output port. A
unit of information that can be transferred across a physical
channel in a single step or cycle is called flit. Basically, a NI
forms the flit-sized messages before injecting them to the
network. To easily distinguish the type of information carried out
by flits, they are categorized into Header-Flit (H-F) that keeps the
information of the source and the destination, Data-Flits (D-F)
that packs the body of a message and Tail-Flit (T-F), which is the
representative of end of a packet. On the other hand, a routing
algorithm determines the path along which a packet is delivered to
destination node. The routing algorithm can be either
deterministic or adaptive. Ideally, deterministic routing algorithms
always supply the same path between a given source/destination
pair. On the other hand, by utilizing information about network
traffic, adaptive routing algorithms try to avoid congested or
faulty regions of the network [13]. In VC NoC routers, each
physical channel involves the finite number of VCs. Considering
North input channel of Fig. 1, we can define the basic behavior of
VC NoC router. While a header-flit is arriving from the upstream,
its VC identifier (VC_ID) defined with the previous router is
decoded. The header-flit will be buffered in the appropriate VC
according to its decoded VC-ID. Meanwhile, the state of
aforementioned VC will be changed to the routing state. There are
four specific sets of states corresponding to each VC, as shown in
Figure 1. Every header-flit activates the specific request lines of
the Global VC allocator that is directly matched to the result of
the routing unit. Inspecting both the priority of input VC and the
state of requested output VC global-VC-allocator gives output VC
to one of the input channels. Switching step is the next state of an
input VC. During this state, each input VC provisioned by its

512

respective grant from VC-Allocator enters its request to access the
output port through the cross bar.

Fig. 1 Conventional VC Router Architecture

4. PROPOSED ROUTER ARCHITECTURE
The hospitality of an input channel is defined as the tendency of
an input channel to host the arriving flit of other channels.

Equation 1
In Equation1, the VC[i]][dir].Capacity represents the number of
flits in the ith VC at the specific direction. Hence, for each
physical input channel there exists hospitality metric. Because the
number of flits stored in each VC is reserved in the input VC
status, hospitality of each input port can be determined using
already available data in an NoC router; moreover since the input
channel capacity usually is power of two, in RAVC NOC router
simple shifters and adder were used for the calculation of
hospitality.
The probability of VC expansion to accommodate an incoming
header-flit which is supposed to depart in specific direction can be
determined using the Equation 2. In general, when the value of
credit in specific output VC becomes zero concerning VCs at the
destination routers either no longer can accept the new flits due to
congestion or have a small amount of buffers.

][

][

=ir]ExpNewVC[d

][

1

0)i]condition[Otherwise(1;i]condition[0)ir].creditif(VC[i][d

dircurVC

iCondition

num

dircurVCi

i
∑

=

=

←←⇒==

As shown in Fig. 2, when R[2,1] is going to send a packet to the
R[4,4] in an ordinary and non-faulty state the flits of this packet
will pass through R[2,2], R[2,3], R[2,4], R[3,4] and finally R[4,4]
based on the XY routing algorithm. If R[2,3] becomes faulty, by
resorting to a fault tolerant routing algorithm like XY-YX [13],
R[2,2] actually will forward all the incoming flits from R[2,1] to
R[3,2] or R[1,2]. As shown in Figure 2, having extra buffers in
neighboring switches of R[2,3] would be instrumental in
following up the extra traffic. This extra traffic is predictable as a
consequence of having faulty routers in our interconnection
network. In fact, R[3,3] and R[1,3] particularly in the depicted
scenario due to failure in R[2,3] are supposed to received more
flits compared to the non-faulty condition.

Fig. 2 Dynamic Input Ports Buffer Sharing

4.1 Proposed RAVC Router Architecture
To enable dynamic allocation of storage between different VC,
link listed data structures are used to represent VCs in our RAVC
router. Using the Linked list more efficient use of memory is
expected. In fact, many previous studies [11] [12] have shown that
static VC allocation when there are large numbers of VCs leads to
unbalanced loading across VCs. Thus, it is advantageous to
allocate more memory to the busy channels and less to the idle
channels. Fig. 3 shows our proposed input channel architecture.
Moreover, we used four global registers that indicate the condition
of four neighbor routers. Referring to these status registers, the
input channel will be notified about the status of neighbor routers
in particular whether they are safe or faulty. The arriving header-
flit after passing modified RAVC router stage shown in Fig. 3 is
stored into free memory location; consequently, Dynamic VCs
Allocator will specify the particular VC identifier; hereafter, the
list labeled with this identifier is nesting the arriving header-flit.
On the basis of extracted VC identifier, a header-flit will be either
stored into a new list or at the end of an already existed list.
However, the data-flits and tail- flit actually inherits the VC-
Identifier of their header-flits; in fact, they do not require to the

 Equation 2

Crossbar
5 x 5

VC ID

VC ID

VC ID

VC ID

VC ID

Routing
Unit

VC Allocator
(VA)

H_F

T_F

North

Switch
Allocator (SA)

West

South

Local_NI
H_F

N
orth

W
est

E
a st

S
out h

Loc al_N
I

NI: Network Interface
H_F: Header Flit

D_F: Data Flit
T_F: Tail Flit

D_F

Input VC Status

Output VC
Status

G I C

G R O P C
v

Credit_from_north

Credit_from_south

East

)
].[

].][[

(-1=y[dir]Hospitalit

][

1
CapacitydirelInputChann

CapcitydiriVC
dircurVCi

i
∑

=

= { }LSWENdir ,,,,∈

R[1,1] R[1,2]

x

y

R[2,1] R[2,2] R[2,3]

R[3,1]

R[4,1]

R[3,2]

R[4,2] R[4,3]

R[3,3]

R[1,3] R[1,4]

R[2,4]

R[3,4]

R[4,4]

Faulty
Router

513

VC-Allocator unit to dispense a VC identifier. As shown in Fig. 3,
Head-Pointer (H-P) of each VC points to the location of this flit at
the shared memory of input channel. The switch allocation
arbitrates among all the VCs to find the winner VC identifier.
After departure of a flit pointed with the head-pointer of winner-
VC, the header-pointer of that VC will be updated by the next-
pointer of departed flit. In our structure, the VCs may be
dynamically regulated according to the traffic conditions.

Fig. 3 Input Channel Structure

When a new flit arrives, it is inspected whether the new flit comes
from the safe or faulty router; thereby, the new flit is discarded if
it is emanated from the faulty router. Fig. 4 illustrates the data-
path of RAVC router. Using Tail-Pointer, Head-Pointer and Next-
Pointer register file, RAVC router makes one cycle read and write
operation possible. In principal, group of operations shown in Fig.
5 dependent upon operation phase of RAVC router are executed
on this input VC data-path. Executing these operations, winner-
incoming flits will be stored in the available slot indicated by the
Free-Buffer-Tracker Fig. 5 (A1), tail pointer of concerning VC is
updated to point to the address of incoming flit in the shared-
buffer and finally to keep chain of flits in the VC previous
Tail_Pointer of this VC must be stored as a Next_Poniter of new
incoming flit Fig. 5 (B1)(B2)(B3). Afterward, for the departure of
each flit, there exist other three operations shown in Fig. 5
(C1)(C2) Where, eqn. (1) reads a flit from the winner VC, eqn. (2)
revises the head pointer of its VC to point to the next flit, and eqn.
(3) updates the slot map. Our proposed RAVC router has changed
the routing stage of conventional VC router due to the effective
and reliable handling of available buffers. As Fig. 5 depicts,
keeping the status of neighboring routers as well as the hospitality
measure of other input channel, incoming flit may be either
moved to other input channels or handled in the current input
channel. If all the buffers of current input channel are occupied; in
other words, there is not any available input buffer for hosting a
new incoming flit, this input channel instead of discarding this
new incoming flit transmit it to other input channel.
As Fig. 5 shows, to avoid the increase in energy consumption,
RAVC router has adopted a tri-state buffer to switch between the
incoming flits of a local port or other input ports. The winner-
incoming flit follows the bandwidth allocation and particularly
routing in case of being header-flit. During the bandwidth
allocation and routing phase respectively, free-buffer-tracker
specifies the location of the winner-incoming flits and routing-
unit indicates the appropriate output port of this flit. Routing
decision and hospitality measurement and concerning incoming

flits move carried out in parallel in that there is not any
operational dependency between them.

Fig. 4 RAVC Input Channel Data-Path

RAVC router supports dynamic VC allocation. During the VC
allocation stage, the VC-Availability-Tracker and the VC-
Dispenser are in charge of the VC determination to new header-
flits. Since VC-identifier of data-flits and the tail flit has been
designated previously by transmission of their header-flit also this
designated VC-identifier has been stamped in these flits by their
previous router, next and tail-pointer register file of regarding VC-
identifier as shown in Fig. 5(B1) will be updated to the location of
these flits in the shared buffer which is previously specified by the
free-buffer-tracker (). However, VC-Availability-Tracker and VC-
Dispenser specify the VC-Identifier of a header-flit in this stage.
In principal, this header flit first requests access to the particular
output port through our modified VC arbitrator; accruing the
required grant from VC arbitrator, the header-flit sends its request
to the VC-Availability-Tracker and the VC-Dispenser units.
Consequently, taking into account number of current available VC
as well as HOL (Head of Line blocking) condition, these units
will decide whether to dispense a new VC or determine one of the
available VC identifier. In case of new VC distribution, Next,
Head and Tail pointer register file of newly distributed VC are
updated Fig. 5(B2); however, as illustrated in Fig. 5(B3) if one of
the current available VC identifiers specified to host this header-
flit, the tail-pointer register file and next-pointer register file of
this VC will be updated accordingly. In both cases, this router has
to inform the previous one about the adopted VC-ID; thereby,
previous router updates its output VC status. Eventually, during
the switching stage the output port of crossbars will be specified
among the input ports. Our modified Switch Allocation (SA) unit
similar to the conventional SA unit will carry out its operation in
two stages; firstly, during the first stage of SA the winner request
among variable number of VCs in an input channel will be
chosen; secondly, the second stage arbitrates among the winner
requests from each input port for output ports. The SA unit of
conventional router has been modified to be consistent by our
dynamic VC planning approach. Therefore, adopting the worst-
case scenario when an input channel dispensed all the allowable
VCs, which is indeed VCmax, RAVC router apply vmax:1 arbiters
for each input channel at the first stage. However, the second
switch arbitration in RAVC router is like the conventional router.
Moreover, using the output VC status and resorting to the Credit-
Based flow control scheme, switching unit of RAVC router
handle inter router communication. When a new header-flit
arrives into the specific input channel, VC dispenser specifies

null N_P

null N_P

VC0

VC1

VC H_PT_P

Shared Memory

Flit Arrival

VC0
VC1

VCN

T_P: Tail Pointer
H_P: Head Pointer

N_P

null
VCnOther input channels

North Input
Channel

Input Virtual Channels Status

Flit Departure

DIR
DIR: Output Direction

S
W

NUM
3
2

1

state
Neighboring

Routers Status
S
W

Safe
Safe

N Safe
E Safe

VC2

N_P N_P

VC2

null

E 2

North Input Channel

1

Tail_Pointers
(T_P)

Free Buffer
Tracker

Available Slot

W_addr

R_addr

4

Head_Pointers
(H_P)

Shared Memory

1

2

3

2

Register-File

Winner-Incoming Flits
From

RAVC Routing Stage
Available Slot

O_vcid new_vcid
cur_vcid

4
new_vcid

Outgoing_Flit

 Switch Arbitrator

winnder_vcid

winnder_vcid

address

address

data

data

data

data

Register-File

Next_Pointers
(N_P)

address

3

Register-File

514

whether it needs to make a new virtual channel for this flit or this
flit should be placed at the tail of already existing virtual channel.

Fig. 5 Our Modified RAVC Router Stages

VC manager should consider three conditions; first, if there is a
deadlock in the current network this header flit should be placed
in the escape virtual channel; secondly, if placing the new header
at the end of already existing virtual channels, lead to HOL
blocking conditions the new virtual channel is expected to be
dispensed by VC manager to accommodate the new incoming flit.
Eventually, resorting to the expansion probability of particular
direction, VC dispenser considering the destination direction of
this new incoming header-flit performs its decision.

Fig. 6 Proposed Virtual Channel Allocator

The task of particular output channel allocation to header-flit of an
incoming packet is given to the VC dispenser. Data-flits of a
packet follow the allocated output channel of the header-flit. As
Fig. 6 illustrates, supporting the dynamic VC allocation our
modified VA reduces the number of virtual channel requests for a
particular output port to one request in first arbitration stage. As a
consequence of having anywhere between vmin and vmax VCs per
input port at any given time, our proposed scheme needs larger
vmax:1 arbiters in comparison to v:1 generic arbiter of convention
arbiter in the first stage of the allocation. The proposed virtual

channel uses smaller Stage 2 arbiters. As Fig. 6 illustrates, on the
contrary to the conventional router which accept request for each
output channel, the second arbitration stage in RAVC is account
for choosing a winner for each output port among all the
competing input ports. In fact, instead of having (Pout×V) arbiters
each of which has to accept P×V request, VC allocator at the
second stage in RAVC router has pout arbiters.

5. EXPERIMENTAL RESULTS
To evaluate the effectiveness of our approach, we created generic
and customizable RTL level description of our Reliability Aware
Virtual Channel (RAVC) NoC router and conventional VC router
using VHDL language. First, we find Average Latency of packets
transferring under different injection rates. In the second phase of
the performance evaluation, we adopted XY-YX fault tolerant
routing algorithm as an alternative routing decision [13].
Moreover, we assume uniform and transpose traffic patterns. All
simulations were performed in 36 nodes (6ൈ 6ሻ6) MESH
network. In our experiments, conventional VC routers have 4 VCs
each of which has 16 flits capacity. However, our proposed
RAVC routers have 64 flits buffer with the default of 4 minimum
VCs yet extendable to 16. In our simulation, we apply two
different size packets: (1) the 8 flits, and (2)16 flits packets. To
find the Average Latency under different traffic pattern, test-
benches connected to each router through local injection channels
as a local Processing Element (PE) generates the number of
packets somewhere between 10,000 and 100,000 and fills the
destination of each packet according to the traffic pattern.
Under uniform traffic pattern, average packet latency of
conventional VC router and RAVC router in different packet
injection rate are illustrated in Fig. 7 (A)(B) considering the
packet size of 8, 16 flits respectively. Averagely, under uniform
traffic pattern, our proposed RAVC supplies 7.1% improvement
in Average Packet Latency compared to the conventional VC
router with the same amount of input buffers. Fig. 7 (C)(D)
Illustrates the average packet latency of RAVC versus
conventional router under transpose traffic pattern with respect to
the packet size of 8, 16 flits; under transpose traffic pattern, such a
improvement in average packet latency becomes 3.5%. Simply
stated, resorting to the facts that RAVC router supports dynamic
VC assignment as well as input buffer sharing; additionally,
RAVC dispenses more VCs under the high packet injection rate
leading to the decline in the probability of HOL occurrence
compare to static VC scheme of traditional router, we can
construe such a decrease in the average latency and higher
saturated throughput. In the second round of our simulation, we
analyzed our MESH network performance in case of failures in
routers. We assumed that some routers failed during the operation.
As consequence of instinctive reliability awareness of our RAVC
router, faulty routers cannot propagate any flits into the network
and cooperate in saturation of network since input buffers of their
surrounding routers are not still attainable. In our experiments, we
assume that state of faulty routers becomes unsafe in their
surrounding routers. Fig. 7 (E)(F) illustrate the average packet
latency of RAVC router versus average packet latency of
conventional router assuming specific number of router failures
under uniform traffic pattern. On the basis of extracted values
from our VHDL based simulation environment, in a fault prone
environment, RAVC leads to 28% and 16% decrease in the
average packet latency under the uniform and transpose traffic
pattern, respectively.

Local Port
Incoming Flits

1BW Allocation
 / Routing

Free-Buffer
Tracker

Other Input Ports
Hospitality

Neighbor
Status

Write Index
Host

Request For New VC
Through VC Allocation Unit

Credit out

Flits[Available_Slot()] = Winner-Incomming-Flits

VC[O_vcid].T_P = Available_Slot()
Next_Pointer[VC[O_vcid].T_P] = Available_Slot()

VC availability
Tracker

CurVCNUMber

VC Dispenser

Is there deadlock with Current VCs?
CurVCnumber<Vcmax?
Possibilitiy of HOL by not dispensing new VC?
Expansion Probability of Particular Output
Direction

4:1
Arbiter

Other Input Ports
Incoming flits

Winner
Incoming Flits

1

2
3

FreeBufferTracker[VC[winner_vcid].H_P] = null

1

2
3

Routing
State

VC
Allocation

Available_Slot()

Header-Flit?NoO_vcid Yes

2
3

Next_Pointer[VC[new_vcid].T_P] = Available_Slot()
VC[new_vcid].T_P = Available_Slot()

New VC dispensed

1
2
3 VC[cur_vcid].T_P = Available_Slot()

New VC is not dispensed
Next_Pointer[VC[cur_vcid].T_P] = Available_Slot()

4 VC[new_vcid].H_P = Available_Slot()

Switching StageSwitching

1 Outgoing_Flit = Flits[VC[winnder_vcid].H_P]

winnder_vcid<>previous_winnder_vcid

VC[winner_vcid].H_P <= N_P[winner_vcid]

VC[new_vcid].H_P::== Head_Pointerr[new_vcid]

FreeBufferTracker[VC[winner_vcid].N_P] = null
2
1 Outgoing_Flit = Flits[VC[winnder_vcid].N_P]

VC[winner_vcid].N_P <= N_P[winner_vcid]

B1

A1

B2

B3

winnder_vcid=previous_winnder_vcid

C1
C2

Credit out
new_vcid

2
3

1

Vmax:1
Arbiterpo

Vm ax:1
Arbiterp1 pout

Input Port1

Fi
rs

t S
ta

ge

Vmax:1
Arbiterpo

Vm ax:1
Arbiter

p1 pout

Input Port P i

Fi
rs

t S
ta

ge

p i

P i:1
Arbiter

p1

P i:1
Arbiter

poutpout

S
ec

on
d

S
ta

ge

515

Fig. 7 Simulation Results

6. CONCLUSION
In this paper, we proposed a novel Reliability Aware Virtual
Channel (RAVC) NoC Router architecture that enables both
dynamic VC allocation and reliability aware sharing among input
channels. RAVC router provides 7.1% and 3.1 % average latency
decrease under uniform and transpose traffic pattern respectively;
considering the probability of having failures in network, RAVC
router performs more effectively than conventional VC router
specially in terms of average packet latency and performance.
 On the one hand, assigning virtual channel in a dynamic manner
avoids the occurrence of HOL which impede the performance of
on-chip network. On the other hand, avoiding faulty routers from
packet injections to network reduces the traffic in network due to
reliability awareness of RAVC lead to decrease in average packet
latency; moreover, as a side bonus, extra buffers which become
available in our RAVC routers also cooperates in such a decrease
in the average latency

7. REFERENCES
[1] L. Benini and G. D. Micheli, "Networks on Chips: A New

SoC Paradigm," IEEE Computer, vol. 35, pp. 70-78, 2002.
[2] S. Li, L. S. Peh, and N. K. Jha, "Dynamic voltage scaling

with links for power optimization of interconnection
networks," in Proceedings of the 9th International
Symposium on High-Performance Computer Architecture
(HPCA), pp. 91-102, 2003.

[3] W. Hangsheng, L. S. Peh, and S. Malik, "Power-driven
design of router microarchitectures in on-chip networks," in
Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 105-116,
2003.

[4] M. Rezazad and H. Sarbazi-azad, "The effect of virtual
channel organization on the performance of interconnection
networks, in Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, 2005.

[5] T. T. Ye, L. Benini, and G. De Micheli, "Analysis of power
consumption on switch fabrics in network routers," in
Proceedings of the 39th Design Automation Conference
(DAC), pp. 524-529, 2002.

[6] H. Jingcao and R. Marculescu, "Application-specific buffer
space allocation for networks-on-chip router design," in
Proceedings of the IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 354-361, 2004.

[7] G. L. Frazier and Y. Tamir, "The design and implementation
of a multiqueue buffer for VLSI communication switches,"
in Proceedings of the IEEE International Conference on
Computer Design (ICCD), pp. 466-471, 1989.

[8] L. S. Peh and W. J. Dally, "A delay model for router
microarchitectures," IEEE Micro, vol. 21, pp. 26-34, 2001.

[9] Y. M. Boura and C. R. Das, "Performance analysis of
buffering schemes in wormhole routers," IEEE Transactions
on Computers, vol. 46, pp. 687-694, 1997

[10] W. J. Dally, "Virtual-channel flow control," in Proceedings
of the 17th Annual International Symposium on Computer
Architecture (ISCA), pp. 60-68, 1990.

[11] M. Lai, Z. Wang, L. Gao, H. Lu, K. Dai, "A Dynamically-
Allocated Virtual Channel Architecture with Congestion
Awareness for On-Chip Routers," in Proceedings of the 46th
Design Automation Conference (DAC), pp. 630-633, 2008.

[12] A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, S. Yousif,
R. Das, “ViChaR: A Dynamic Virtual Channel Regulator for
Network-on-chip Router, 39th Micro, 2006.

[13] J. Kim, C. Nicopoulos, D. Park, N. Vijaykrishnan, M. S.
Yousif, and C. R. Das, "A Gracefully Degrading and Energy-
Efficient Modular Router Architecture for On-Chip
Networks," in Proc. of the ISCA, 2006.

[14] L. S. Peh and W. J. Dally, "A delay model and speculative
architecture for pipelined routers," in Proceedings of the 7th
International Symposium on High Performance Computer
Architecture (HPCA), pp. 255-266, 2001.

516

