
Real-Time Address Trace Compression for Emulated and
Real System-on-Chip Processor Core Debugging

Bojan Mihajlović
McGill University

Dept. of Electrical and Computer Engineering
Montreal, Quebec, Canada

bojan.mihajlovic@mcgill.ca

Željko Žilić
McGill University

Dept. of Electrical and Computer Engineering
Montreal, Quebec, Canada
zeljko.zilic@mcgill.ca

ABSTRACT

In the multicore era, capturing execution traces of processors
is indispensable to debugging complex software. The inabil-
ity to transfer vast amounts of trace data off-chip without
significant slow-down has impeded the debugging of such
software, in both pre-silicon emulation and in real designs.
We consider on-chip trace compression performed in hard-
ware to reduce data volume, using techniques that exploit in-
herent higher-order redundancy in address trace data. While
hardware trace compression is often restricted to poor or
moderate performance due to area and memory constraints,
we present a parameterizable scheme that leverages the re-
sources already found on existing platforms. Harnessing re-
sources such as existing trace buffers on CPUs, and unused
embedded memory on FPGA emulation platforms, our trace
compression scheme requires only a small additional hard-
ware area to achieve superior compression ratios.

Categories and Subject Descriptors: E.4 [Coding and
Information Theory]: Data compaction and compression

General Terms: Algorithms, Verification

Keywords: Emulation, Software debugging

1. INTRODUCTION
Modern systems-on-chip (SoCs) have evolved significant-

ly in recent years. Multiple processors (MPSoCs), memory
controllers, and graphics processing units (GPUs) are in-
creasingly found on-chip, often running in different clock
domains to optimize their performance and power profiles.
Fully utilizing the available resources of MPSoCs requires
that programmers create multi-threaded, often interdepen-
dent software suited to multiprocessors. Debugging such
software can potentially be impossible using traditional de-
bugging methods, which were created around a single pro-
cessor core in mind. It has already been recognized that
system-centric, rather than processor-centric solutions are
needed to address future software debug challenges [10]. Since
traditional methods violate timing requirements in multi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’11, May 2–4, 2011, Lausanne, Switzerland.
Copyright 2011 ACM 978-1-4503-0667-6/11/05 ...$10.00.

threaded software, non-invasive methods of debugging soft-
ware are being studied as replacements. A dedicated de-
bug infrastructure, also referred to as on-chip emulation [13]
should be used to allow modern SoC software to execute at-
speed while transparently logging debug events.

On-chip emulation places debug hardware inside the chip,
aiming to transparently capture relevant data in real-time
when user-configurable triggers are activated. Captured data
is known as a trace, the most useful of which is an address
trace (or execution trace) consisting of executed instruction
addresses. It has long been established that examining such
a trace can help determine behaviors that lead to software
faults [8]. Such analysis is commonly performed off-line in
a remote debugging scenario, depicted in Figure 1 for either
real SoC or FPGA-emulated processor cores.

Figure 1: Trace-based Debugging Scenario

Due to its hardware cost, on-chip emulation has histori-
cally been used to debug software unsuited to other debug
methods, namely hard real-time software [15]. However, it is
now being considered as a solution for debugging the multi-
threaded software increasingly seen on MPSoCs. Traditional
debugging methods rely on execution control to achieve a
necessary observability while software is executing. In such
a scenario, software execution is stopped and registers are
observed before execution is resumed. This is unsuitable for
multiprocessors because multi-threaded software often con-
tains interdependent threads, where halting a single thread
would alter timing and potentially cause or mask faults.

One of the problems with address tracing is in the im-
mense amount of data that must be either stored on-chip or
transferred off-chip in real-time. Consider an example of a
program counter (PC) trace of a 32-bit processor, capable of
1 clock per instruction (CPI), that is emulated on an FPGA
at 100 MHz. The resulting 400 MB/s of data would quickly
fill an on-chip trace buffer, or exceed the bandwidth of all
but the most expensive communication links. When tracing

331

anything but the smallest portions of code, a solution to this
problem requires that the volume of trace data be reduced.
That would allow the data to be transferred off-chip with
links of modest bandwidth. When an adequate reduction of
trace data is not possible, it typically means that the system
must be slowed down to accommodate the speed at which
traces can be extracted. This problem can be seen in [6],
where the authors report that trace extraction lasted 34x
longer than execution time for an FPGA-emulated proces-
sor. Likewise, work in [7] demonstrates that system emula-
tion speed is reduced 10x with tracing enabled. The speed
of trace extraction can then be seen as the bottleneck of
multi-threaded software debugging (or verification). If trace
extraction can be sped up, debugging time can be reduced.

This paper presents a method for compressing address
traces in real-time that capitalizes on the inherent higher-
order redundancy of trace streams. While other compres-
sion methods avoid using on-chip memory, our method uses
memory that is already available as a compression dictio-
nary. Many modern ASIC SoC designs incorporate a trace
buffer memory into which traces can be captured and stored.
If this memory can instead be used as a dictionary, and in-
creased trace compression ratios realized, compressed trace
data can be continuously streamed off-chip in real-time. Whi-
le our design can be implemented on either ASICs or FP-
GAs, it presents some distinct advantages when used with an
FPGA emulation design flow. Due to the increasing promi-
nence of FPGA emulation in architectural exploration [7]
and validation [6], our proposed scheme also capitalizes on
the embedded SRAM memories found in modern FPGAs
used for SoC prototyping. These memories can be under-
utilized when the emulated design does not require 100% of
available FPGA resources, which is typically the case. We
present a compression scheme that can scale to a range of
dictionary sizes in order to exploit as much embedded SRAM
as is available. The algorithm is shown to improve compres-
sion ratios without significant hardware cost, and enables
real-time trace compression and extraction.

2. RELATED WORK
Address trace compression is a topic that has lately re-

ceived significant attention. Traditionally, the most capable
trace compression schemes, such as [5], work by compress-
ing traces in software by utilizing techniques that are able
to eliminate data redundancy at the cost of memory usage,
algorithmic complexity, and consequently, processing time.
Software trace compression techniques have the luxury of
being able to implement a multitude of compression tech-
niques and pick the smallest representation as the final out-
put. Multi-pass algorithms and transforms are also possible
when there are no time constraints, and the resulting data
can be coded using a minimum-length code. Such software
methods are, however, not suitable for compressing real-time
traces during at-speed execution. Rather, they are adapted
to compressing traces that have already been collected.

Real-time address trace compression is typically imple-
mented in hardware and faces increased constraints over
software methods. To guarantee sufficient performance, al-
gorithms must be of relatively modest complexity and be
capable of being pipelined or of having other performance
enhancements applied. The lack of sizable on-chip memory
also limits the types of algorithms that can be used.

Prior work in real-time address trace compression has

ranged from relatively simple methods requiring little hard-
ware area, to advanced multi-stage methods. Simple tech-
niques widely employ differential address encoding that costs
little hardware area, but suffers from poor performance and
does not enable at-speed tracing. Advanced techniques offer
better performance by utilizing the ubiquitous Lempel-Ziv
(LZ) [18] coding variants, or even low-complexity transforms
such as Move-to-Front (MTF), in addition to differential
techniques. In [11], the authors use a 3-stage technique
which filters non-sequential addresses, encodes remaining
addresses as differences, then applies LZ compression. In [17],
consecutive addresses are first reduced to a combination of a
starting address and length, where least significant bits (LS-
Bits) of the address are encoded as a difference, and a two-
level MTF scheme is applied to both the length and the most
significant bits (MSBits) of the address. Although geared to-
ward embedded logic analyzers, encoders based upon both
MTF and LZ methods are proposed in [1]. Current commer-
cial tools include ARM Embedded Trace Macrocell (ETM)
[2] and Infineon Multi-Core Debug Solution (MCDS) [12],
both of which only support the use of trace buffers. While
both tools employ differential address encoding, ETM also
eliminates sequential addresses.

Due to memory limitations, most of the existing tech-
niques have been unable to exploit higher-order data redun-
dancy, caused by temporal and spatial locality over large
periods of time and volume of space, respectively. Our tech-
nique differs in that it is able to garner experience by “re-
membering” more of the addresses and their sequences that
pass through the compressor. Longer program executions
should therefore benefit by exploiting the experience gar-
nered over time to further reduce redundancy in encoding.

3. PROPOSED COMPRESSION SCHEME
The address trace compression scheme proposed here is

designed with a particular software debugging scenario in
mind. As seen in Figure 1, an emulated or real SoC con-
taining a processor core (known as a target) together with a
trace compression module, is connected to a host machine.
The host is responsible for controlling software execution on
the target and collecting its execution traces. Both the SoC
and the compression module use some part of the embed-
ded SRAM available on-board the FPGA or ASIC. Using a
software debugger on the host, a tracing session is initiated
by loading a program onto the target and starting its exe-
cution. Traces are collected in real-time, after which they
are decompressed off-line by host software, allowing it to see
the execution path taken by the target. To achieve this sce-
nario, the trace data needs to be small enough to transfer
from target to host in real-time through the debug link. It
also needs to be small enough for the host to store in real-
time onto a storage medium. While the speed of software
decompression is not as important a consideration, the de-
compression of our scheme is conducive to a multi-threaded
software implementation on the host. After address traces
are decompressed, they can be sent back to the software de-
bugger for inspection, and optionally fed into an automated
performance analysis or profiling tool.

While software trace compression methods are computa-
tionally intense and use large amounts of memory, hardware-
based trace compression must meet several constraints. Trace
compression must occur in real-time if data is to be imme-
diately transferred off-chip, must not require more than the

332

Figure 2: Multi-Stage Compression Scheme

small amounts of available on-chip memory, and its algo-
rithm must be well-suited to hardware implementation in
order to meet hardware area constraints. Our trace com-
pression scheme, Figure 2, is designed to meet the above con-
straints for the described debug scenarios. While our scheme
could be adapted to any processor core, we specifically tar-
get the characteristics of ubiquitous fixed instruction-length
(RISC) processors to attain additional compression.

For debug scenarios involving both real and emulated cores,
we investigate a parameterizable scheme suited to differing
availabilities of hardware resources. In Figure 2, the varia-
tion between versions is represented by the 2-tuple (s, m),
where 2s is the size of the Finite Context Method address
space, andm is the number of elements in the Move-to-Front
array. Parameterization allows several options for harness-
ing leftover hardware area and memory on emulated SoCs,
while ASIC designs can strike the appropriate area, speed,
and cost trade-off. Scheme versions v0 to v4 considered in
the remainder of the article correspond to (s, m) = (16, 256),
(16, 128), (14, 128), (14, 64), and (12, 64), respectively.

3.1 Consecutive Address Elimination
Since processors execute instructions consecutively until a

branch is reached, the structure of an execution trace typi-
cally resembles iterations of consecutive addresses followed
by a branch target address (BTA). A BTA can be seen as
a deviation from the consecutive flow of execution. The ob-
vious redundancy of recording consecutive addresses can be
eliminated if only BTAs are recorded along with a length
denoting the number of consecutive instructions executed
thereafter. Our first compression stage involves the elimina-
tion of consecutive addresses, as seen in Table 1, which also
demonstrates why recording the length term is necessary.
At the second BTA of the example, there are two possible
execution paths to the next BTA. For the host to determine
the path taken, it is necessary to also record the length.

Although the input to this stage is a 32-bit address, the
output is the 30 MSBits of the address and an 8-bit length.
On 32-bit fixed instruction-length processors, the 2 LSBits
of an address are redundant and can be ignored. An 8-bit
length term is used because our experimental benchmarks
do not exceed a length of 255, as confirmed by us and [17].

3.2 Finite Context Method
Originally used in software-based trace compression, the

Finite Context Method (FCM) [16] exploits sequential local-

Table 1: Example of CAE with 16-bit Addresses

Pre-CAE Post-CAE

Address Instruction BTA Length

0xa120 add 0xa120 2
0xa122 sub
0xa124 jmp 0xb144

0xb144 load 0xb144 2
0xb146 sub or

0xb148 bnz 0xc298 0xb144 4
0xb14c xor
0xb150 jmp 0xc298

0xc298 jmp 0xd422 0xc298 0

ity when sets of instructions are repeatedly executed. Based
upon the n number of previously executed instructions, a
prediction of the next instruction is made. The method op-
erates similar to a cache, such that there is a miss the first
time a set of instructions is encountered, and a hit for every
subsequent encounter that matches the prediction.

In versions v0 and v1 of our implementation, depicted in
Figure 3, a 16-bit search key is constructed by applying an
exclusive-or (XOR) between staggered 16-bit portions of the
last 4 instruction addresses (h1–h4) and the 4 LSBits of the
length term (L). Versions v2 and v3 use the same scheme to
construct a search key from 14 bits of each address, while v4
uses 12 bits. By constructing the search key in this way, we
aim to obtain a unique value when a set of address-length
(AL) combinations is processed in a particular order. By
including the length term in the key, loops where a branch
is taken are made to generate different keys from ones where
branches are not taken. In v0 and v1, the key is used to
address a 304 kB prediction table in SRAM which stores
predicted AL combinations, each consisting of the 30 MSBits
of the address concatenated with an 8-bit length. Versions
v2 and v3 address 76 kB tables, while v4 a 19 kB table. On
every cycle, a new prediction is written to the table based
upon the previous 4 input ALs, while a new prediction is
simultaneously read for the newest AL. The storage of the
prediction table in a dual-ported SRAM is essential to this
operation. Both the predicted and input ALs are forwarded
to the MTF/AE stage.

3.3 Move-to-Front & Address Encoding
This compression stage can be seen as an combination of

two separate operations. The first implements a Move-to-
Front (MTF) dictionary for ALs which are not correctly pre-
dicted at the FCM stage. The second encodes AL combina-
tions as the smallest available representation before passing
them to further compression stages.

Our MTF dictionary contains elements of 38-bits wide
containing AL combinations, in depths of 256 elements for
versions v0 and v1, 128 elements for v2 and v3, and 64 ele-
ments for v3. If the predicted AL does not match the input
AL from the FCM stage, an MTF array search is initiated.
Using parallel comparators, each element of the MTF array
is compared with the input AL. If there is a match, the ar-
ray index of the matching element is output. The element
is then moved to the top of the array, and the remaining
elements shifted down to take up its old position. If there
is no MTF array match, the AL is placed at the top of the

333

Figure 3: Finite Context Method –Versions v0 & v1

array, and the array shifted down by an element, thereby
eliminating the least-recently-used (LRU) element.

Encoding of ALs is performed as per Table 2 by splitting
them into two parts: a prefix byte and 1–5 data bytes. If
the input AL matches the predicted AL, the output is a sin-
gle 0x00 prefix byte, which represents a correct prediction.
Otherwise, if the AL is located in the MTF array, the output
is a 0x05 prefix byte along with the array index as the data
byte. Failing both the previous possibilities, the size of the
mispredicted AL is minimized by employing differential ad-
dress encoding, which is demonstrated in Table 3 with 16-bit
addresses (although 32-bit addresses are used in practice).

Differential address encoding also takes advantage of the
fact that the addresses of a 32-bit word-aligned, fixed-length
instruction processor have two redundant LSBits, just as a
similar 16-bit processor would have a single redundant LS-
Bit. Ignoring these bits, the differential encoding scheme
compares the last input address with the current input ad-
dress. From the 30-bit addresses, the scheme will output the
minimum number of bytes of the input address that differ
from the last address. Thus, the address could be encoded
as an 8-bit, 16-bit, 24-bit, or 32-bit value, along with a prefix
byte of 0x01, 0x02, 0x03, or 0x04, respectively. The prefix
represents the number of difference address bytes to follow,
which are in-turn followed by the single-byte length term.

Table 2: Address Encoding Scheme

Prefix
Data Byte(s) Meaning

Byte

00 – correct prediction
01 addr[9:2] + len[7:0] 1 byte

2 bytes
3 bytes
4 bytes

difference
02 addr[17:2] + len[7:0] from
03 addr[25:2] + len[7:0] previous
04 addr[31:2] + len[7:0] address
05 mtf index[7:0] found in MTF array

3.4 Data Stream Serializer
Since the data stream of the MTF/AE stage may reach up

to 5 bytes in a single cycle, it must be serialized before be-
ing handed to the LZ stage. One solution is to use a small

buffer which stores data from the MTF/AE stage, taking
advantage of the fact that data output greater than 1 byte
is infrequent. While this would typically suffice, for the sake
of simplicity and robustness we feed the output into a seri-
alizer stage that is instead made to operate at 5x the clock
frequency of the previous stages.

3.5 Run-length and Prefix Encoding
Of the possible prefix bytes in the MTF/AE stage (seen

in Table 2), some can be observed to occur much more fre-
quently than others. This property can be used to further
compress the prefixes, by encoding the most frequently oc-
curring prefixes with the shortest codes. In general, static
encoding methods presume a fixed set of frequencies over
time, and dynamic methods alter the encoding as frequen-
cies change over time. Since we observed an overwhelming
frequency pattern across a range of traces, the pre-computed
static Huffman Tree seen in Figure 4 is used. The short-
est single-bit code is assigned to a correct FCM prediction,
which implies a probability of occurrence of 0.5. In addition,
it can be observed that predictions are generally delivered
in bursts. Rather than encoding each prediction as a single
bit over a long span, a simple Run-Length Encoding (RLE)
is applied to compress sequences of correct predictions.

The RLE operates by identifying sequences of up to 256
correct predictions and replacing them by a single byte.
While there is no change to the prefix stream if there are
3 predictions or less, 4 or more will result in data output
being paused, and a count performed on the predictions to
follow. This will continue until the first non-prediction pre-
fix is encountered, or the maximum count of 256 is reached.
A byte containing the count will then be output. At best,
this allows a sequence of 260 predictions to be represented
by 12 bits (four single bits followed by a 1-byte count), and
at worst also encodes a sequence of 4 predictions in 12-bits.

Figure 4: Huffman Tree for Prefix Encoding

3.6 Lempel-Ziv Encoding of Data Stream
The final compression stage is used to extract any non-

obvious or vestigial redundancy that remains in the data
stream of the MTF/AE stage. The input to this stage con-
sists of MTF indices and differential AL combinations of
2–5 bytes. Since previous stages focused on compression at
address-level granularity, applying a final compression stage
at byte-level granularity can especially identify repeating
combinations of input elements. For this purpose, the orig-
inal Lempel-Ziv algorithm (LZ77) [18] is selected because it
lends itself to a simple, yet effective hardware implementa-

334

Table 3: Example of Differential Address Encoding – 16-bit Addresses

Original Original Effective Effective Predicted by Diff. from Output Output
Address Address (binary) Address† Address (binary)† FCM/MTF? Prev.Addr. Prefix Data

0xa120 1010 0001 0010 0000 0x5090 101 0000 1001 0000 Yes N/A 0x00 N/A
0xa144 1010 0001 0100 0100 0x50a2 101 0000 1010 0010 ∗ No 1 byte 0x01 0xa2+ length

0xc298 1100 0010 1001 1000 0x614c 110 0001 0100 1100 ∗ No 2 bytes 0x02 0x614c+ length

0xc332 1100 0011 0011 0010 0x6199 110 0001 1001 1001 ∗ No 1 byte 0x01 0x99+ length
†after ignoring the redundant LSBit of each 16-bit address, ∗boxed area denotes LSByte(s) that differ from the last input

Table 4: MiBench Compression Ratio Comparison

Benchmark

Instr. Compression Ratio

Count Others Our Scheme (s, m)

(mil.) gzip bzip2 [17] [14] v0 (16, 256) v1 (16, 128) v2 (14, 128) v3 (14, 64) v4 (12, 64)

blowfish enc 781 94 322 113 99 144 127 127 94 91
crc32 111 215 1195 N/A N/A 8662 8660 8660 8660 8660
fft 37 73 128 159 N/A 171 171 137 170 150
jpeg comp 94 84 283 353 148 287 286 224 285 282
jpeg decomp 23 47 176 613 189 448 446 444 426 416
sha 119 160 373 654 440 720 720 720 720 720
stringsearch 4 60 165 83 24 119 119 119 113 109
tiff2bw 158 93 386 2808 235 4803 4790 3280 4588 4212
tiff2rgba 191 75 503 5335 407 7651 7619 7614 7577 6817
tiffmedian 595 103 371 2713 414 2337 2336 2311 2303 2291

Overall 2113 81 257 236 181 322 290 289 224 217

tion. Even though compression is not guaranteed through
this algorithm, in practice we found compression rates rang-
ing from approximately -10% to 500% on the output of the
MTF/AE stage. Our design operates on byte-wise elements,
and implements a dictionary array of 256 elements. When
an input byte is received, a parallel comparator searches the
array for matching elements and flags all of those that match
in a tag array consisting of 1 bit per element. The dictio-
nary array is then shifted by 1 element and the input byte
is added to the top. If there are flagged elements, then only
they are searched as the next input is received. In this way,
a sequence of matching bytes in the dictionary can be found
by incrementally searching the array. When a sequence can
no longer be matched, or if no match is initially found, a
3-byte output is issued that includes the original matching
array index, the number of elements successfully matched
(up to 256), and the new input byte.

4. EXPERIMENTAL RESULTS
The performance of our compression scheme was tested on

applications of the MiBench [9] benchmark suite, which al-
lowed a comparison to be made to the works of [17] and [14].
The suite includes programs that approximate typical office,
telecommunications, security, and consumer workloads that
have been used in the past to evaluate address trace com-
pression performance. Execution traces were collected na-
tively using an Apple PowerMac G4 with a 1.25 GHz Pow-
erPC 7455, which is a 32-bit fixed instruction-length pro-
cessor. Benchmarks were executed under Linux SMP kernel
2.6.32-24. Strictly for the purposes of data collection, a GDB
script was used to record the PC register contents in ASCII.
While this method of trace recording is relatively slow, it is
accurate and portable to other architectures.

A VHDL description of the compression scheme was simu-
lated in ModelSim SE-64 v6.5c. Results were verified by us-
ing a decompression program executed in MATLAB R2010a
to decompress each trace and compare it to the original.

In Table 4, all versions of our compression scheme are
compared with general-purpose software compressors gzip
v1.3.12 and bzip2 v1.0.5, as well as with the works of [17]
and [14]. Compression ratios are derived by dividing the size
of the original trace by the size of the compressed trace.

Our scheme can be seen to generally outperform the oth-
ers, aside from the tiffmedian and jpeg applications. The
final row of the table represents the average performance in
a mixed-execution scenario where all included benchmarks
are run in a sequence. Our version v0 represents an overall
compression performance improvement of 44% over [14] and
27% over [17], while outperforming both general-purpose al-
gorithms. Likewise, versions v1–v4 are able to maintain
strong compression ratios with much less memory usage than
v0. All versions outperform the commercial tools ETM and
MCDS, which are reported to reach up to 80x [2] and 20x
[12] compression on unspecified workloads, respectively. In
general, the use of differing benchmarks between schemes in
the literature makes it difficult to directly compare compres-
sion performance.

To gauge the size of the design on an FPGA, hardware
synthesis was performed in Altera Quartus II v9.1. Logic
utilization for every version of the scheme, including a per-
stage breakdown for v0, can be seen in Table 5 for an Altera
Stratix III (EP3SL200F1152C2) device. Effective emulation
speed would match reported clock rates if a small buffer is
used in the Serializer stage, or would be 1/5th the reported
speeds if the Serializer and LZ stages are instead clocked at
5x the main clock. The trade-off between clock speed and

335

MTF array size is apparent due to the structure of the long
MTF shift register. The schemes represent between 2–5% of
available ALUT resources for this device, and between 3–8%
of available logic registers.

Table 5: Altera Stratix III Logic Utilization

Version (s, m) ALUTs Regs.
Memory Speed
(kB) (MHz)

v0 (16, 256) 7859 12597 304 68
CAE 65 108 – 261
FCM 63 146 304 325
MTF/AE 5305 9808 – 75
Ser. 155 113 – 275
RL 112 86 – 277
LZ77 2183 2369 – 119

v1 (16, 128) 5210 7735 304 99
v2 (14, 128) 5170 7724 76 102
v3 (14, 64) 3830 5285 76 131
v4 (12, 64) 3839 5289 19 139

4.1 Usage Scenario
The ubiquitous IEEE 1149.1 (JTAG) interface is widely

used for software debugging, but is limited to a clock speed
of approximately 100MHz, which allows a maximum the-
oretical transfer rate of 12.5MB/s. Consider the example
from Section 1, of a 32-bit emulated processor capable of
1CPI and clocked at 100MHz, which produces 400MB/s
of address trace data. Without trace compression, the sys-
tem must be clocked at 3MHz to enable a single thread of
address trace data to be outputted. With the compression
ratio of our version v2, emulating the SoC at full speed only
requires an average of 1.38MB/s, which is well within the
bandwidth of the JTAG port. Given a method of interleav-
ing between cores, it allows at-speed simultaneous emulation
of up to 9 cores over a single JTAG link. In a real MPSoC,
version v0 would likewise allow up to a 1GHz, 1CPI core
to be traced via JTAG.

Assuming the probability of a software fault f is P (f) =
10−13, at 100MHz it would take an average of 28 hours
for a single fault to manifest itself. In our debug scenario, a
continuous trace could be collected for this duration without
slowing down emulation speed. Without trace compression,
it would require an average of 39 days for the fault to appear.

5. CONCLUSION AND FUTURE WORK
In this paper we have presented a parameterizable mi-

croarchitecture for address trace compression, suited to im-
plementation on ASICs and modern FPGAs. Our method
offers better overall performance than other schemes by ex-
ploiting higher-order redundancy in address trace streams.
The design occupies modest area by harnessing unused em-
bedded memory on emulation platforms and the trace buffer
typically found on CPUs. The result is a dramatically smaller
volume of trace data through the debug-link, allowing real-
time address tracing of a 1GHz processor or 9 emulated
FPGA cores via a single JTAG link. As a result, software
debugging can be accelerated by an order of magnitude over
uncompressed trace extraction. In future, we plan to com-
bine our software debugging efforts with assertion-based de-
bugging [3], as part of a testing, monitoring, and debugging
infrastructure for SoCs and networks-on-chip [4].

6. REFERENCES
[1] E. Anis and N. Nicolici. On using lossless compression

of debug data in embedded logic analysis. In IEEE
International Test Conference, 2007, pages 1–10, 2007.

[2] ARM Ltd. CoreSight Trace Macrocells.
http://www.arm.com/products/system-ip.

[3] M. Boulé, J. Chenard, and Z. Zilic. Adding debug
enhancements to assertion checkers for hardware
emulation and silicon debug. In International
Conference on Computer Design, pages 294–299, 2006.

[4] S. Bourduas, J. Chenard, and Z. Zilic. A
Quality-Driven design approach for NoCs. IEEE
Design & Test of Computers, 25(5):416–428, 2008.

[5] M. Burtscher, I. Ganusov, S. Jackson, J. Ke,
P. Ratanaworabhan, and N. Sam. The VPC
trace-compression algorithms. IEEE Transactions on
Computers, 54(11):1329–1344, 2005.

[6] E. Chung and J. Hoe. High-Level design and
validation of the BlueSPARC multithreaded processor.
IEEE Transactions on CAD, 29(10):1459–1470, 2010.

[7] E. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and
K. Mai. A complexity-effective architecture for
accelerating full-system multiprocessor simulations
using FPGAs. In Proceedings of the International
Symposium on FPGAs, pages 77–86, 2008.

[8] P. A. Emrath, S. Chosh, and D. A. Padua. Event
synchronization analysis for debugging parallel
programs. In Supercomputing. ACM/IEEE Conference
on, pages 580–588, 1989.

[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and R. Brown. MiBench: a free,
commercially representative embedded benchmark
suite. In IEEE International Workshop on Workload
Characterization, pages 3–14, 2001.

[10] A. Hopkins and K. McDonald-Maier. Debug support
for complex systems on-chip: a review. IEEProc. of
Computers&Digital Techniques, 153(4):197–207, 2006.

[11] C. Kao, S. Huang, and I. Huang. A hardware
approach to Real-Time program trace compression for
embedded processors. IEEE Transactions on Circuits
and Systems I: Regular Papers, 54(3):530–543, 2007.

[12] A. Mayer, H. Siebert, and C. Lipsky. Multi-core debug
solution IP. White paper, IPExtreme, 2007.

[13] A. Mayer, H. Siebert, and K. McDonald-Maier.
Boosting debugging support for complex systems on
chip. Computer, 40(4):76–81, 2007.

[14] M. Milenkovic and M. Burtscher. Algorithms and
hardware structures for unobtrusive real-time
compression of instruction and data address traces. In
Data Compression Conference, pages 283–292, 2007.

[15] B. Plattner. Real-Time execution monitoring. IEEE
Trans. Software Engineering, SE-10(6):756–764, 1984.

[16] Y. Sazeides and J. Smith. The predictability of data
values. In Microarchitecture., IEEE/ACM
International Symposium on, pages 248–258, 1997.

[17] V. Uzelac and A. Milenkovic. A real-time program
trace compressor utilizing double move-to-front
method. In DAC’09, pages 738–743, 2009.

[18] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

336

