
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010 1177

Optimization of Imprecise Circuits Represented by
Taylor Series and Real-Valued Polynomials

Yu Pang, Member, IEEE, Kartazyna Radecka, Member, IEEE, and Zeljko Zilic, Senior Member, IEEE

Abstract—Arithmetic circuits in general do not match speci-
fications exactly, leading to different implementations within al-
lowed imprecision. We present a technique to search for the least
expensive fixed-point implementations for a given error bound.
The method is practical in real applications and overcomes
traditional precision analysis pessimism, as it allows simultaneous
selection of multiple word lengths and even some function
approximation, primarily based on Taylor series. Starting from
real-valued representation, such as Taylor series, we rely on
arithmetic transform to explore maximum imprecision by a
branch-and-bound search algorithm to investigate imprecision.
We also adopt a new tight-bound interval scheme, and derive a
precision optimization algorithm that explores multiple precision
parameters to get an implementation with smallest area cost.

Index Terms—Arithmetic imprecision, arithmetic transform,
fixed-point arithmetic, optimization, polynomials, Taylor series.

I. Introduction

ARITHMETIC circuits introduce additional complexity
to the already challenging design process. As imple-

mentations only approximate the specification, the precision
verification and optimization of a given function requires an
exploration of the imprecision in the whole domain of the
function definition.

It is generally accepted that an imprecision error measured
as an arithmetic difference between an implementation and the
specification is deemed suitable if it lies within an acceptable
error bound. This margin of implementation correctness causes
many leading verification methods, such as equivalence check-
ing, to be inadequately equipped in cases of imprecise arith-
metic implementations. Formal methods have not been helpful
for verification with imprecision [1], not to mention that the
binary decision diagrams are not appealing for arithmetic
functions [2], as well as a variety of bit-level representations.

From the design perspective, however, the imprecision can
provide yet another optimization resource, similar in nature to
the notion of “don’t cares” in logic synthesis. In particular, as
implementations match specifications within error bounds, one
can search for the least expensive implementation within the
allowed imprecision. Fig. 1 illustrates two implementations,
Imp1 and Imp2, differing from the specification Spec by
errorse1 and e2, respectively. If the error is within the allowed

Manuscript received October 23, 2009; revised February 4, 2010. Date of
current version July 21, 2010. This paper was recommended by Associate
Editor R. Camposano.

The authors are with the Department of Electrical and Computer Engineer-
ing, McGill University, Montreal, QC H3A 2K6, Canada (e-mail: yu.pang@
mail.mcgill.ca; katarzyna.radecka@mcgill.ca; zejko.zilic@mcgill.ca).

Digital Object Identifier 10.1109/TCAD.2010.2049154

error bound E, then any such implementation is deemed
acceptable, but the least costly one is preferable.

As looking into individual bits is not conducive to exploring
arithmetic imprecision, suitable forms need to be derived
such that they involve word-level rather than bit-level function
values. One such representation is arithmetic transform (AT),
introduced in Definition 2, which we use to reason not
only about the precision, but also as a link to real-valued
specifications.

Infinite-length Taylor series are a typical real-valued func-
tion representations of transcendental and other functions of
importance in engineering. Their implementations are inher-
ently approximated, as only a finite number of terms can be
realized in hardware. For instance, a common transcendental
function sin(X) is realized by a fixed number of terms of its
Taylor series expansion

sin (X) = X − X3/3! + X5/5! − X7/7! + · · · .
Depending on the required precision, the number of terms

and the word lengths of inputs/outputs and parameters will
vary. For instance, one method can yield a six-term, 16-bit
inputs floating-point approximation of sin(X), while the others
ascertain that there is an implementation of sin (X) by five
terms and 18-bit words within the given error bound. The wor-
thy goal is to find the combination of the approximation and
precision parameters leading to the optimal implementation.
We will primarily be concerned with the area minimization,
but the speed and power performance will also gain from the
precision optimization.

Various methods have been derived to reason about the
approximate realizations of real-valued functions. Tradition-
ally, one mostly relies on dynamic methods, which employ
simulations to analyze the imprecision between the speci-
fication and the implementation [3]–[8]. In this paper, we
propose a new AT-based method, which performs the static
analysis in ascertaining whether the existing implementation is
in agreement with the specification. Our approach will explore
multiple precision parameters concurrently.

A substantial effort has been directed toward finding ade-
quate bit-width parameters for imprecise fixed-point circuits.
Much of the common engineering practice consists of un-
dertaking a sequence of bit-width decisions, leading to the
over-estimate of the imprecision and, consequently, to sub-
optimal solutions. Additionally, the explorations of function
approximations are most commonly not an integral part of the
precision optimization.

0278-0070/$26.00 c© 2010 IEEE

1178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010

Fig. 1. Comparison of two implementations.

By using real-valued representations such as Taylor series,
and having the ability to investigate statically the difference
between implementations, we propose a simple scheme to
optimize imprecise fixed-point circuits. Toward that, we rely
on the earlier demonstrated scheme [20] to efficiently convert
Taylor series and other real-valued polynomials to ATs. The
AT can efficiently represent both specifications and imple-
mentations, making the verification process simpler and more
elegant. In consequence, the imprecision represented as the
absolute difference between AT polynomials of specifications
and implementations can be easily and effectively determined.

In this paper, we first elaborate on the way to compute
arithmetic imprecision, in Section III. Next, in Section IV,
we define a tight-bound interval analysis which offers more
accurate results than the original interval analysis. Finally, we
propose an algorithm for an optimized implementation of real-
valued specifications, such as Taylor series, with the smallest
number of AT polynomial terms.

II. Background

In optimization of imprecise arithmetic circuits, one needs
to repeatedly undertake the precision analysis throughout the
search for the optimal solution. The precision analysis has
to ascertain whether the implementation matches the specifi-
cation within the given error bound over the whole domain
of interest. This question can be addressed by the dynamic
analysis, based on simulations, or by the static analysis,
relying on formal representations of a specification and an
implementation.

Dynamic analysis has been applied in most precision op-
timization schemes—work in [3]–[8] present the straightfor-
ward simulation-based techniques to assign bit-widths. The
simplicity of this approach makes it prevalent; however, one
has to enumerate and simulate all possible input values to
provably complete the job. Work in [4] presents an ap-
proach for combined word-length optimization to minimize the
hardware implementation cost. The presented algorithm finds
the word-length sensitivity throughout fixed-point simulations
of a signal flow graph, and conducts the final word-length
optimization by iteratively modifying the word-length of the
synthesized hardware model. Gaffar et al. [6] utilize the
automatic differentiation to compute the sensitivities of outputs
to the bit-widths of various operands in a design. Such a
sensitivity analysis allows the exploration and comparison of
fixed-point and floating-point implementations. Shi et al. [7]
set up a statistical model to estimate hardware resources in
terms of perturbation theory. A tool that automates the floating-
point to fixed-point conversion is based on a simulation using

Simulink. This method, however, imposes the requirement for
a large set of input vectors.

Fang et al. [9] take advantage of affine arithmetic (AA)
modeling to analyze range and precision. The AA model is
a derivation of the interval arithmetic (IA) borrowed from
numerical analysis. In AA, the quantities of interest are
represented as linear combinations (affine forms) of certain
primitive variables, which stand for sources of uncertainty in
the data or approximations made during the computation. In
AA, each quantity x is represented by a formula

X = x0 + x1ε1 + x2ε2 + · · · + xnεn

where x0, x1, . . . , xn are floating-point numbers, and
ε1, ε2, . . . , εn are symbolic variables whose values are only
known to lie in the range [−1,+1]. Pu and Ha [10] apply AA
to find the most suitable bit-width-to-error tradeoff. Work in
[11] adopts the static analysis to investigate bit-widths due to
truncated and rounded data, and explore hardware area and
delay in field-programmable gate array (FPGA) for different
bit-widths. Work in [12] extends [11] to provide a method for
optimizing word-lengths of hardware designs with fixed-point
arithmetic based on analytical error models that guarantee
accuracy. AA has an advantage of easy computation, but
overestimates the error bound like IA and is unnecessarily
pessimistic. Our method will be able to get more exact results
due to the static analysis from [20] based on AT that verifies
whether an imprecise circuit satisfies error bound. Using AT,
a branch-and-bound algorithm searches effectively for the
imprecision error, which we exploit as an underlying static
analysis. Therefore, as AA tightens the error bound relative to
IA, the AT can get the best analysis.

In [13], authors set up models for error source dependence.
In these models, the dependence is approximated by linear
functions (AA) or by general polynomials (Taylor series
methods). It was shown that the optimal way to decrease the
excessive bit-width is to use implicit polynomial dependence.

Constantinides et al. [14] propose Synoptix—an optimiza-
tion technique targeting linear time-invariant digital signal
processing systems using their resource binding technique.
Synoptix is based on saturation arithmetic to perform the bit-
width optimizations.

Sivaram and Kalla [15] focus on polynomials with integer
coefficients and integer variables to shrink hardware area. The
algebraic properties of polynomials over finite rings are used
to express datapaths by its equivalent computation leading
to simplified polynomials. An approach is presented to area
optimization of arithmetic datapaths. The polynomial feature
restricts the application and inherently does not deal with
imprecise computation.

Ahmadi and Zwolinski [16] address the bit-width assign-
ment in hardware implementation in the context of high-
level synthesis. In order to surpass the pessimism of IA, they
introduce a symbolic noise analysis (SNA), which is based
on modeling of the error bounds by an assumed probability
distribution function over a known range. In comparison to
SNA which assumes more localized error distributions, IA is
pessimistic by assuming the uniform distribution.

PANG et al.: OPTIMIZATION OF IMPRECISE CIRCUITS REPRESENTED BY TAYLOR SERIES AND REAL-VALUED POLYNOMIALS 1179

A new technique SAT-Modulo theory is used in [17] to ex-
plore range analysis in bit-width allocation which is significant
to influence hardware cost. It determines bit-widths for finite
precision implementation of numerical calculations, and can
get more accurate bounds estimation than IA and AA, in turn
yielding smaller bit-widths.

The above works mostly undertake the optimization of a
single bit-width with a target of hardware area. There was
also a limited consideration of function approximation and
its effect on the precision. We note that authors in [18] and
[19] have dealt with approximating a function by piecewise
polynomials. They evaluate several segments separately for
bit-width optimization and precision to reduce area and la-
tency. As many circuits rely on function approximations, in
this paper, we demonstrate the imprecise circuit optimization
for real-valued specifications that simultaneously considers
multiple bit-widths as well as the function approximation by
finite Taylor series. Since our main object is Taylor series
where the expansions of different degrees lead to the different
approximations, we mainly focus on this scheme in this
paper.

III. Introducing Basic Algorithms

In this section, we introduce three algorithms aiming to
compute the imprecision in arithmetic circuits.

Real-valued functions can be described by Taylor series as
follows:

Definition 1: A real and differentiable function f (X) can
be represented as a Taylor series over an interval I in the
neighborhood of the initial value X0

f (X) =
∞∑
n=0

1

n!
(X − X0)nf (n)(X0).

The finite Taylor expansion restricted to the first n+1 terms
is

f (X0) + Xf ′(X0) +
X2

2!
f ′′(X0) + · · · +

(X − X0)n

n!
f (n)(X0)

and hence the approximation error given in terms of a point
ϕ in the interval I is

Rn(X) =
f (n+1)(ϕ)

(N + 1)!
(X − X0)n+1. (1)

The effect of the Taylor series truncation is easy to evaluate,
as Taylor series come with the provable bound on the approx-
imation error. The remainder Rn(X) of the truncation has an
explicit expression in terms of the (n + 1)th derivative at the
intermediate point ε in the given interval I.

In addition to the function approximation due to the finite
number of Taylor terms, it is necessary to replace real-value
parameters (inputs, outputs, coefficients, etc.) by their finite
word-length approximations. This, in consequence, leads to
the imprecision errors.

For analysis of the imprecision error due to finite word-
length arithmetic, we adopt AT, which has been success-
fully used for precision verification [24]. AT is an instance
of spectral representations, where the spectral coefficients

contain function information that is global over the do-
main of definition, and by that allow a number of prop-
erties to be more easily deduced than in the Boolean do-
main.

Definition 2: AT is a polynomial representing a pseudo-
Boolean function f : Bm → w with an arithmetic operation
“+,” word-level coefficients c, binary inputs x1, x2, . . . , xm and
binary exponents i1, i2, . . . , im

AT (f) =
1∑

i1=0

1∑
i2=0

· · ·
1∑

im=0

ci1i2...imx
i1
1 x

i2
2 . . . xim

m .

AT represents functions at word-level while the inputs
are kept binary. Such I/O format of the transform is well
suited, as word-level outputs are instrumental for analyzing
the imprecision, while having binary inputs helps in organiz-
ing an efficient search for the maximal imprecision. When
evaluating the arithmetic imprecision, one can find examples
where all the bits are wrong, yet the implementation is
considered precise, as well as the cases when few bits are
wrong, but the implementation is imprecise. As an example
of the former case, two fixed-point values encoded in bi-
nary as 011· · ·1 and 100· · ·0 differ in all bits, yet they can
be made arbitrarily close, with increase in the number of
bits. The word-level function values, however, can directly
capture the notion of distance used in the underlying arith-
metic.

Finding the implementation imprecision involves the search
for the maximum value over the function domain. Hence,
having inputs at a binary level is useful for organizing an
efficient search, leading eventually to a fast branch-and-bound
algorithm [20].

AT is canonical, and will be used to directly represent
approximation and imprecision errors coming from the finite
Taylor series function representations. The correspondence
between Taylor and AT representation is illustrated by the
following lemma:

Lemma 1: Consider a finite Taylor polynomial around X0 =
0 where the variable X will be represented as an m-bit
unsigned fractional number. By denoting f

(i)
0 = f (i)(X0), we

have

f (X) = f0 + Xf ′
0 +

X2

2!
f ′′

0 + · · · +
xn−1

(n − 1)!
f

(n−1)
0 .

The AT of f (X) is expanded from the Taylor polynomial
as

AT [f (X)] = f [AT (X)]

= f0 + f ′
0

(
m−1∑
i=0

2−(i+1)xi

)
+ · · · +

f
(n−1)
0

(n − 1)!

(
m−1∑
i=0

2−(i+1)xi

)n−1

.

Proof: The transform of an m-bit unsigned fractional
number X is AT (X) =

∑m−1
i=0 2−(i+1)xi. Since AT is linear, that

is, AT (f1 +f2) = AT (f1)+AT (f2) and AT (C∗f) = C∗AT (f),

1180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010

where C is a constant, we can obtain

AT [f (X)] = AT (f0 + Xf ′
0 +

X2

2!
f ′′

0 + · · · +
Xn−1

(n − 1)!
f

(n−1)
0)

= AT (f0) + AT (Xf ′
0) + · · · + AT

(
Xn−1

(n − 1)!

)
f

(n−1)
0

= f0 + f ′
0AT (X) +

f ′′
0

2!
AT (X2) + · · · +

f
(n−1)
0

(n − 1)
AT (Xn−1)

= f [AT (X)].

Lemma 1 denotes that AT [f (X)] results from substituting
expanded bit-level variables for the word-level variable X in
f (X). By combining coefficients of isomorphic terms in the
expanded polynomial, the AT representation in Definition 2 is
obtained, thus leading to the conversion of Taylor expansions
to AT.

While Lemma 1 might seem to lead to a simple realization
of the conversion between Taylor and AT, in reality the process
could be time and memory-consuming. Next, we show an
efficient algorithm to realize such a conversion.

A. Algorithm for Taylor Series Conversion

In order to evaluate the imprecision error using AT, the
specification should be translated into AT as well. In this
section, we describe the conversion of Taylor series into AT
by expansion from Lemma 1. A straightforward method for
generating AT [f (X)] replaces each monomial in Taylor series
f (X) by its defining AT, followed by the consolidation of AT
terms. Although the overall conversion procedure is concep-
tually simple, the expansion of the real-valued quantities from
Taylor series into word-level AT terms can lead to a large
intermediate polynomial, similar to what is known to happen
in symbolic computing.

By laws of Boolean algebra, xn
i = xi for positive n,

causing many of the expanded monomials of the intermediate
polynomial to be identical. Hence, they are isomorphic and
can be combined to form a simplified AT polynomial.

B. AT Construction from Multi-Variate Polynomials

To extend the AT construction to polynomials over multiple
variables, we require the ordering between the variables. For
a given order, we define the index, which is a unique mapping
for each term. The index function will facilitate the combina-
tion of isomorphic terms in an intermediate polynomial.

Definition 3: Let the term consist of p bit-level literals
bp−1 . . . b0. Let every bit br belong to the word-level variable
Wr, that is mr-bit wide. Then, the term index of the AT term
is defined as

term index =
p−1∑
r=0

2
(br+

∑wr−1

q=0
mq)

. (2)

Example 1: Consider AT over three word-level variables
X, Y, and Z consisting of 3, 4, and 3 bits, respectively.
Let X be the least significant variable indexed as “0,” and
Z be the most significant variables indexed as “2.” For the
three bit-level literal term z2z1x0, the word-level variables to
which the respective literals belong, are (W2, W2, W0) = (2,
2, 0). The index of the term is obtained as the sum of

Fig. 2. Algorithm to convert a real-valued multivariate polynomial.

the three literal indices. First, the computation for x0 pro-
duces its index 20 = 1, since b0 is 0 and W0 is 0. Then,
z1contributes 21 + (3 + 4) = 256, since b1 is 1 and W2 is 2,
so m0 + m1 = 3 + 4 = 7. Finally, z2 produces 22+(3+4) = 512,
because b2 is 2 and W2 is 2. Therefore, the term index for the
AT term z2z1x0 is 512 + 256 + 1 = 769.

Fig. 2 describes the algorithm to produce AT over multi-
ple word-level variables from a real-valued polynomial. The
algorithm first generates ATs for each monomial, and then
performs additions of the isomorphic intermediate monomials,
leading to the final transform. The function Expand−Term
expands a single word-level polynomial term into its AT.
The procedure Convert−Univar−AT [21] obtains ATs for
all word-level variables in the term. Then, the Multiply−AT
multiplies out the resulting univariate ATs into the AT for
multivariate word-level variables, as per Lemma 1. Note
that Multiply−AT follows the conversion of a word-level
variable that reduces the number of terms. Hence, the size of
resulting AT can be kept under control by avoiding storing
expanded terms. In each iteration the algorithm adjusts term
indices and combines isomorphic terms. Each AT term input to
the Multiply− AT is assigned a unique index from Definition
3, which guarantees linear ordering among terms.

The function Add−AT adds two AT polynomials in a canon-
ical way. In this procedure, the isomorphic term combination
and the term ordering by index occur concurrently.

PANG et al.: OPTIMIZATION OF IMPRECISE CIRCUITS REPRESENTED BY TAYLOR SERIES AND REAL-VALUED POLYNOMIALS 1181

When comparing terms’ indices, the AT term with a smaller
index is moved forward in the ordered list. If two terms have
identical index functions, they are isomorphic, and hence their
coefficients are accumulated.

Example 2: Consider the polynomial over word-level vari-
ables X and Y consisting of 2 and 3 bits, respectively

F (X, Y) = 2X3Y + X2Y 2.

Let Y be the more significant word-level variable, i.e., the
input vector is (YX) = (y2y1y0x1x0). The AT expansions of
X3 and Y present in the first term 2X3Y are

AT (X3) = (2x1 + x0)3 = x0 + 8x1 + 18x1x0 andAT (Y) = 4y2

+ 2y1 + y0.

The AT transform of the term 2X3Y is then the product of
the above two AT polynomials

AT (2X3Y) = 2y0x0 + 16y0x1 + 36y0x1x0 + 4y1x0 + 32y1x1

+72y1x1x0 + 8y2x0 + 64y2x1 + 144y2x1x0.

By Definition 3, the term indices of the expanded
AT (2X3Y) are

(5, 6, 7, 9, 10, 11, 17, 18, 19).

In the second term X2Y 2 of F (X, Y), expansions of X2 and
Y 2 are

AT (X2) = x0 + 4x1 + 4x1x0

AT (Y 2) = y0 + 4y1 + 4y1y0 + 16y2 + 8y2y0 + 16y2y1.

Their multiplication results in the AT (X2Y 2)

AT (X2Y 2)=y0x0 + 4y0x1+4y0x1x0+4y1x0+16y1x1+16y1x1x0

+4y1y0x0 + 16y1y0x1 + 16y1y0x1x0 + 16y2x0 + 64y2x1

+64y2x1x0 + 8y2y0x0 + 32y2y0x1 + 32y2y0x1x0 + 16y2y1x0

+64y2y1x1 + 64y2y1x1x0.

Its term indices are

(5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27).

The addition subroutine Add−AT matches the terms with
the same indices to compute the final AT (2X3Y + X2Y 2)

AT (2X3Y + X2Y 2) = 3y0x0 + 20y0x1 + 40y0x1x0 + 8y1x0

+48y1x1 + 88y1x1x0 + 16y1y0x1 + 16y1y0x1x0

+24y2x0 + 128y2x1 + 208y2x1x0 + 8y2y0x0 + 32y2y0x1

+32y2y0x1x0 + 16y2y1x0 + 64y2y1x1 + 64y2y1x1x0.

C. Imprecision Searching Algorithm

As arithmetic imprecision is inevitable, the implementation
is considered correct if it fits the specification within some
given bound spanning across the whole domain of function
definition. Since the arithmetic discrepancy depends on the
input value assignments, one cannot, in general, find the impre-
cision without finding the maximum of arithmetic differences
between specifications and implementations over the whole
domain.

A static method for value analysis using simulated annealing
is proposed in [11]. This method, however, has no means to

guarantee that local minima will be avoided. In this paper, we
rely on the alternative solution, which utilizes the suitability
of AT in the representation and exploration of the imprecision.
The expansion from word-level variables to bit-level variables
and the binary branch-and-bound searching algorithm [20] find
the imprecision exactly, while IA and AA are approximate
and based on word-level variables so they cannot account
for interaction between the bits. Therefore, the AT method
guarantees higher accuracy.

Definition 4: The error AT polynomial (ATe) is a dif-
ference between AT polynomials of the specification and
the implementation. The imprecision is defined as the max-
imum absolute value of ATe over the domain of the
function.

In this paper, we focus on determining the imprecision for
an implementation derived from Taylor series; however, the
methods apply to all polynomial real-valued specifications.
Search for the maximum imprecision will serve as a key
component in confirming whether two given implementations
f1 and f2 are interchangeable with respect to precision re-
quirements. This problem is stated as follows.

Problem 1: Compute imprecision among two implementa-
tions.
Inputs: f1(X), n1, m1, f2(X), n2, m2.
Output: imprecision.

Here, n and m represent the number of Taylor terms and
the input bit-width, respectively.

In the case of AT polynomial, a static precision analysis can
be helped by a provable branch-and-bound scheme, as shown
in [24] and [21]. The solution to this problem, and the benefits
of the static precision analysis, can be then extended to Taylor
series specifications. For that, it suffices to convert the Taylor
series to AT, Section III-A, and then rely on the algorithm
from [21] for the efficient search for the maximum absolute
value of an error AT polynomial.

IV. Implementation Optimization

Given the real-valued specification and a precision error
bound, we want to find the area-optimized implementation.

Problem 2: Generic imprecise circuit optimization.
Inputs: f, I, X0, E.
Given: Distanced(f1, f2), Area−cost(f).
Constraint: d(f, f̃) ≥ E over I.
Goal: min(Area−cost(f̃)).
Output: f̃ .

Our objective is introduced by Problem 2, where f : Rn →
R and f̃ : Wn → W represent the real-valued specification
and fixed-point, word-level (W) implementation, respectively.
The imprecision is the maximal absolute difference between f
and f̃ over a given interval I around point X0. Also available
is the area cost function, Area−cost. The goal is to find an
implementation f̃ of minimum area, within the imprecision
bound E.

The distance d(f, g) between two functions f and g is
defined in L∞ norm as the maximal absolute value of the
arithmetic difference

d(f, g) = max |f (X) − g(X)|
X∈I

.

1182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010

Fig. 3. Imprecision due to the combined sources.

Other distances, such as a sum of squares, could be used
when dealing with imprecise implementations.

The concrete instance of Problem 2 considered in this paper
deals with the case where the specification is given by the
Taylor series or real-valued polynomials. The solution will
be sought by applying the static precision analysis performed
over AT representations. Next, we analyze how the precision
parameters influence the overall implementation.

A. Precision Parameters Analysis

Determining the set of parameters needed to achieve a
sufficiently precise circuit is a challenge requiring a well
structured precision analysis. The traditional method of using
simulations over various values of the parameters is expen-
sive and not guaranteed to produce the optimal result. In
this section, we propose the static imprecision analysis. We
perform the analysis of an arithmetic imprecision caused by
all approximations and finite bit widths in the implementations
of real-valued specifications such as Taylor series example
in Fig. 3. Here, sin(X) function imprecision is caused by
finite word lengths of the input, coefficients and output, as
well as due to the Taylor series truncation. In summing such
precision errors, we will repeatedly use the triangle inequality:
d(x, z) = d(x, y) + d(y, z).

1) Errors due to Function Approximation: In realizing
real-valued functions by arithmetic circuits, an algorithm
might be employed to approximate, rather than exactly im-
plement the function. For instance, when using the first n
terms of a Taylor series to represent a transcendental function,
the approximation error is provably bounded by a remainder
Rn(X), (1). For a function defined in interval I, this truncation
error bound et translates into

et = max |Rn−1(X)|
X∈I

. (3)

Example 3: Consider the following function f (X) =
cos(X). In the interval [0, 1], its five-term Taylor approxi-
mation calculated around X0 = 0 is

Taylor(cos X) = 1 − 1

2
X2 +

1

24
X4.

Note that the second and fourth term is zero. The error
bound is

et = max |R4(X)| = max | 1

120
sin ϕX5|

≤
∣∣∣∣ 1

120
sin 1

∣∣∣∣ = 0.007.

Given the error bound E, the minimal number of Taylor
terms is the smallest integer n such that the error et resulting
from considering only the first n terms of Taylor series lies

within the imprecision bound, i.e., et < E. Such a finite
truncation will have the least number of terms within an
acceptable imprecision bound over the given interval I. Note
from (1) that for bounding purposes, instead of finding the
exact maximum of the (n + 1)st derivative in the interval I, an
upper bound on the derivative can be used.

B. Input Bit-Width and Quantization Error

In fixed-point implementations, a real-valued input variable
X is restrained to a finite word-length vector representation
affecting the final outcome. As an insufficiently precise value
can result from using too few bits, it is crucial to find an
appropriate bit-width for the acceptable overall error. In this
section, we present the analysis schemes adopted by us to
determine the quantization error.

1) Effects of Finite-Input Bit-Width—Interval Analysis:
Theoretically, an argument of a real-valued function is an
infinitely precise real-valued input Xth which is, in reality,
replaced by the quantized input X. The resulting quantization
error can determined by means of the classical interval anal-
ysis.

In our scheme, we present the interval analysis in terms of
AT. For simplicity, the original interval I is normalized to [0,
1] causing the input X to be scaled down. In consequence,
instead of dealing with the input bit-width, we consider the
number of Fractional Bits (FBs). The input range is divided
into uniform 2FB intervals of the size 2−FB. Hence, the value
Xth lies between two consecutively quantized numbers and the
relation between Xth and X is then

|Xth − X| ≤ 2−(FB+1)

⇒ x − 2(FB+1) ≤ Xth ≤ X + 2−(FB+1). (4)

By replacing Xth with m FBs of X in accordance with (4),
we obtain the ATs for the theoretical fth and quantized f Taylor
functions (given X0 = 0)

fth =
n−1∑
i=0

CiX
i
th =

n−1∑
i=0

Ci

m−1∑
k=0

2−(K+1)xm ± 2−m−1i (5)

f =
n−1∑
i=0

CiX
i =

n−1∑
i=0

Ci

(
m−1∑
k=0

2−(K+1)xk

)i

(6)

where Ci is a Taylor coefficient equal to
f i

th(X0)

i!
.

For functions fth and f, the AT polynomials AT (fth) and
AT (f) are on the right-hand side of (5) and (6), respectively.
The bound ei on the effects of input quantization of half a ulp
(unit in the last place) to the output precision is obtained by
the AT formulation as follows. The error polynomial AT (fei)
is determined as a difference between AT (fth) and AT (f)

AT (fei) = AT (fth) − AT (f) =

= AT

(
n∑

i=0
Ci

[(
m−1∑
k=0

2−(k+1)xk

)
± 2−m−1

]i
)

−AT

(
n∑

i=0
Ci

(
m−1∑
k=0

2−(k+1)xk

)i
)

. (7)

PANG et al.: OPTIMIZATION OF IMPRECISE CIRCUITS REPRESENTED BY TAYLOR SERIES AND REAL-VALUED POLYNOMIALS 1183

Fig. 4. Computation of input quantization error.

The maximum value of AT (fei) in (7) gives the error bound
ei. In practice, ei can be obtained by an efficient branch-and-
bound search algorithm tuned for this application.

Fig. 4 shows the use of interval analysis by AT to estimate
the error due to the input quantization. The method invokes
the conversion algorithm Convert−AT [21]. The maximum
mismatch ei between fth and f is obtained by the imprecision
search algorithm Search−Imprecision [21].

2) Tight-Bound Interval Scheme: The interval analysis
unavoidably overestimates the error bound. Therefore, in order
to obtain better results, we propose a tight-bound interval
scheme for which AT is especially suitable. Our approach
employs an auxiliary, higher precision “reference implementa-
tion” which has the input bit-width extended beyond the actual
implementation. The tight-bound analysis determines the exact
mismatch εhp between the implementation and the auxiliary
reference. Due to the finite bit-width of the reference, there
is also a residual error εI−TB of the reference implementation,
easily obtained by interval analysis. That error can be made
significantly smaller, though, by extending the reference’s
input bit-width. The overall error bound is obtained by triangle
inequality as ε ≤ εhp + εI−TB.

Example 4: Assume that m = 8 bits is used to represent
a fractional number. Let f and fth represent the quantized
function and the theoretical value, respectively. Using the
interval analysis the quantization error is estimated to be

|f − fth| = εI = �(2−8).

Now, we apply the tight-bound method to improve the
precision analysis. For this, we use the auxiliary reference
implementation with the input bit-width t = 17 bits. The error
relative to the reference is

|f − fhp| = εhp.

Then, the quantization error of the auxiliary implementation
alone is estimated by the interval analysis to be

|fhp − fth| ≤ εI−TB = �(2−17).

Finally, from the triangle inequality, it follows that:

|f − fth| ≤ |f − fhp| + |fhp − fth| = εhp + εI−TB. (8)

C. Feasible Implementation and Optimization for Taylor
Series

The parameters analysis technique presented in the previous
section can be directly applied to finding a feasible imple-
mentation of Taylor series representation of a function f (X)
defined in interval I around X0. The problem is stated below.

Fig. 5. Sequential method to fit error bound.

Problem 3: Feasible precision parameters.
Inputs: f (X), X0, I, E.

Constraints: et + ei + ec + eo < E, ∀X ∈ L.
Outputs: n, m, q, o.

Lemma 2: The algorithm in Fig. 5, consisting of the in-
dependent precision parameter selections applied sequentially,
such that in each step the total imprecision is smaller than E
leads to the solution of Problem 3.

Proof: Let the algorithm first choose the number of Taylor
terms n, such that the approximation error et is smaller than E.
Then, the bit-widths m, q and o are selected one at the time,
taking into account the sums of imprecision obtained so far.
The algorithm clearly terminates with the resulting imprecision
being at most E. At each step the precision parameter can
be chosen to make the error due to that parameter arbitrarily
small, and hence the overall error bound not exceeding E.
Hence, at the end, we obtain et + ei + ec + eo < E, which is
the goal set in Problem 3.

This approach is based on sequences of isolated consid-
erations of individual precision parameters. Since the Taylor
terms will affect ei and ec in terms of (7), it is explored first.
The input variable has more area impact than the coefficients
because of the higher exponents, so it is explored next.
However, the method is clearly insufficient for finding an
optimal solution. In the remainder of this section we propose
a search algorithm for obtaining precision parameters for
minimum cost of implementation under the assumption that
the overall imprecision remains within a given bound E.

1) AT Size as a Cost Function: We want to guide our
search algorithm using a technology-independent area cost
function that will allow us to realistically compare the candi-
dates for the optimal solution. While the exact area of a circuit
is not known before mapping it to a given technology, the
technology mapping is a time consuming process that cannot
be incorporated to a static analysis. It becomes then necessary
to find a suitable area cost function.

1184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010

Fig. 6. Basic sensitivity concept.

The size of AT polynomial can be used as a cost function
because AT performs bit-level operations by its definition that
is the same as arithmetic circuits, so increase of AT size means
more binary operations and requires more area. Therefore, AT
size is taken to reflect the area.

When implementing Taylor series specifications, the area
clearly increases monotonically in both the number of Taylor
terms n and the input bit-width m. In particular, the larger
input bit-width m demands the wider datapath, whose cost
grows at least linearly, i.e., as o(m), by the arguments of circuit
complexity theory. Furthermore, the number of Taylor terms
n affects the implementation cost in two ways. On top of the
obvious demands on hardware to realize n Taylor terms, note
that inputs are raised to exponents which grow with n.

As the number of AT polynomial terms exhibits the same
tendency as the one just described, we use |terms(AT (f))| as
the cost function to be minimized. The size of AT is obtained
by directly expanding the n-term Taylor polynomial over the
m-bit input. One can show that the number of AT terms is

|terms(AT (fn,m)| =
n∑

i=1

(
m
i

)
. (9)

It is hard to know in advance which factor has more effect
on area since the Taylor terms and the input bit-width are
involved in the interplay and determine AT size jointly by (9).

D. Error Sensitivity

For the number of Taylor n, the error bound from (1) can be
readily used to determine et. After that, the input error must
be such than E − et, which helps to explore the suitable input
bit-width. The information on error sensitivity will facilitate
the calculation of input bit-width.

Traditionally, sensitivity introduced in [6] is defined as (10)
and Fig. 6 to describe the influence that a small change �X

of X has on the output Y
�Y ≈ f ′(X)�X. (10)

where f ′(X) is the derivative of f (X).
In order to use sensitivity to investigate the input quantiza-

tion error and find the suitable input bit-width, we re-define
the sensitivity.

Definition 5: The sensitivity is a numerical value to de-
scribe the influence that a small change of X has on the output
Y in condition of the worst case

�Y = AT (f ′(X))max ∗ 2−m−1. (11)

The sensitivity reflects the output change in terms of tiny
input turbulence. It has the same essence as the representation
by (5) and (6), so sensitivity can be used as a substitution.

The performance bottleneck to determine the optimized
implementation is the procedure must repeat to invoke the
conversion algorithm when searching different Taylor terms
and input bit. In each flow, it must require invoking the
conversion algorithm twice and need to do subtraction of two
AT polynomials as (5) and (6) to get the input error in order
to confirm whether the input bit-width is satisfied. Of course,
the complex procedure will spend a lot of time and memory.
However, if using sensitivity, as long as f ′(X) is converted
to AT (f ′(X)) and using branch-bound algorithm finds the
maximum value to match the worst case, the sensitivity is
calculated by its multiplication with �X. Here �X is 2−m−1,
i.e., half of the ulp. We can see this procedure only invokes
the conversion algorithm one time to transform f ′(X) into
AT (f ′(X)). The advantage is obvious. While the sensitivity is
obtained, combined with the input error bound, it is easy to
conclude the suitable input bit-width.

Similarly, searching for an appropriate bit-width of the
Taylor coefficients Ci is guided through the corresponding sen-
sitivity, readily calculated from Taylor series, the conversion
algorithm and the searching algorithm.

1) Algorithm for Optimizing Parameters: Consider now
the problem of finding an implementation of minimum AT
size, where all the disparate causes of imprecision are not
exceeding the given bound.

Problem 4: Precision parameter optimization.
Inputs: f (X), X0, I, E.
Constraints: imprecision< E, ∀X∈I.
Outputs: n, m /* terms; input bit-width.
Goal: minimum|terms(AT (f))| /* polynomial size.

In deriving a thorough search scheme, we concurrently
explore multiple precision parameters. In Section IV-A, we
saw that coefficients and output bit-widths impact overall
precision via multiplication by a constant and the direct
rounding, respectively. As they both have less effect on the
area, we focus on the number of Taylor terms and the input
bit-widths.

Fig. 7 describes the algorithm optimizing the number of
Taylor terms and the input bit-width. A pair (n, m) is referred
to as a node, representing a combination of a number of Taylor
terms n and an input bit-width m used in each search step.
In the first iteration, the algorithm gets the smallest number
of Taylor terms for given error bound, and obtains input bit-
width by sensitivity computation (Steps 1–5). To explore the
search space, it suffices to consecutively increase the set of
Taylor terms, while simultaneously exploring alternative the
input bit-widths (Steps 6 and 7). If the new node can satisfy
the error bound E, the newly computed number of Taylor terms
is assumed, and the algorithm continues to decrease input
bit-width until the current node breaks the bound. When it
happens, the algorithm backtracks to the previous node and
stores it (Steps 9 and 10). The procedure is repeated until the
change of bit-widths are exhausted, while ei > E (Step 8).

Since Taylor series cannot be compared directly, it is neces-
sary to use AT for comparison because of easy computation of
(9), so in above procedure the conversion algorithm is invoked
to achieve the goal. The searching algorithm is helpful to
find the quantization error represented by AT polynomials. A

PANG et al.: OPTIMIZATION OF IMPRECISE CIRCUITS REPRESENTED BY TAYLOR SERIES AND REAL-VALUED POLYNOMIALS 1185

Fig. 7. Algorithm to find optimized parameters for Taylor series.

subroutine Compare−AT−size is called to compare AT size
of each stored node and select the one with the smallest AT
representation. In fact, while the algorithm begins with the
largest et value (within the total bound E), at which time
ei is smallest, in subsequent steps, when et is shrunk and
concurrently ei is enlarged until ei reaches the largest value, the
procedure explores the search space, while eliminating nodes
that will have larger AT than already obtained solutions.

Finally, the two remaining parameters, i.e., the bit-width of
the Taylor coefficients (q) and the output bit-width (o) are
ready to be calculated. The bit-width of Taylor coefficients q
is computed using the notion of sensitivity, while the output
bit-width o is straightforwardly calculated using the expression
o = −log2(E− et − ei − ec) + 1 (Steps 13 and 14). Note that at
this point all the error parameters in the above equation can
be determined using the optimal values of n, m and q.

The algorithm provides a branch-and-bound exploration of
the space of all potential optimized nodes. When the error
bound E is exceeded, the complete subtree of the search tree
is safely abandoned. Further, the search is guided by the
sensitivity function, as a heuristic to speed up the search.
At each node, the error ei from (11) is computed in the
subroutine Get−input−error, which uses the sensitivity
definition. The transform of the first order derivative of f (X)
is obtained in terms of the Taylor terms n and input bit-width
m. Then, the imprecision search algorithm is invoked to get its
maximum mismatch, so the sensitivity is calculated through
multiplication of the maximum mismatch and �X, i.e., 2−m−1.

Fig. 8. Search for optimized parameters in Example 5.

As a result, the conversion algorithm is invoked only once
to get AT of f ′(X), while the use of (5)–(7) would call the
algorithm twice. The following example illustrates the use of
the precision optimization algorithm.

Example 5: Consider an implementation of sin(x) repre-
sented by Taylor series. Due to the given error bound 0.0002,
the algorithm finds the least number of Taylor terms to be 4,
and the corresponding input bit-width to be 14 on the condition
of the Taylor terms. Therefore, the initial node is (4, 14).

The algorithm adds then one Taylor term and cuts one
input bit at the same time, hence generating a new node (5,
13). By using the sensitivity, ei is estimated fast, and as this
node satisfies the error bound, input bits are decreased again.
However, when the node reached (5, 11), the error addition of
et and ei is beyond the bound but ei is smaller than the bound,
and the algorithm backtracks to the previous node (5, 12).
The node (5, 13) is redundant because its AT terms number
is obviously larger than the node (5, 12), and the node (5,
11) is an invalid node. The procedure is repeated with Taylor
terms increased to 6 giving the node (6, 11) which satisfies
the bound. The input error ei of the next node (7, 10) breaks
through the error bound so it is an invalid node, which means
the smallest input bit-width is 11 regardless of the increase in
the number of Taylor terms, so the algorithm stops.

Fig. 8 indicates three nodes (4, 14), (5, 12), and (6, 11)
that satisfy the given error bound. Then the procedure
Compare−AT−size is called to select the node with the
smallest AT size, so the node (6, 11) is the optimized param-
eters for Taylor terms and input bit-width.

From this example, we see that starting from an initial fea-
sible implementation, the algorithm proceeds with generating
nodes of improved parameters, and then checks whether such
new nodes are within the error bound. In each search step, the
sensitivity is used to accelerate calculation of the input quanti-
zation error, drastically improving the performance. When the
error bound is exceeded, the backtracking technique returns
the previously determined feasible solutions, and no solution
will be missed.

E. Precision Optimization for Multivariate Polynomials

Although the optimizing algorithm can find the implemen-
tation with the smallest area, it can only process Taylor series,
that is, limited to one word-level variable. The limitation con-
fines further applications since many real-valued polynomials
comprise word-level variables beyond one, the optimization

1186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010

Fig. 9. Algorithm to find optimized parameters for real-valued polynomials
over multiple variables.

algorithm needs extension to process it. In this paper, we solve
the problem and present an algorithm to handle the case of
specifications given over several word-level variables.

A set of bit-widths for each variable is referred as a node in
Fig. 9. The algorithm firstly gets sensitivity for each variable
as in Steps 1–5, and obtains the initial node and final node by
using sensitivity as in Steps 6 and 7. The initial node makes
the first variable get minimum bit-width and the final node
makes the last variable get minimum bit-width.

Beginning from the initial node, the algorithm shrinks the
error generated by the first variable, by increasing its bit-width.
At the same time bit-width of the followed variable decreases
which will potentially enlarge the error. The procedure prop-
agates the input error within the error bound from the first
variable to the last variable in sequence. When the final node
is reached, the loop stops and all possible nodes are traversed
as in Steps 8–14. While all intermediate nodes are obtained,
the redundant nodes are deleted in Step 15.

If two nodes only differ in one variable and other variables
have same bit widths, the node which has more bits is the
redundant node. For example, if the two nodes have three
variables consisting of (12, 13, 12) and (12, 14, 12) bits
respectively, only one variable is different and the node of
(12, 14, 12) is deleted as a redundant node. The optimized
bit-widths for variables are selected by comparing AT sizes of
obtained nodes and choosing the smallest one as in Step 16.

Example 6: Consider a function F with three word-level
variables and the given error bound is 0.006

F (X, Y, Z) = 2X2 + 3YZ − 4Z3 + XYZ.

By using sensitivity the initial node is obtained as (14, 16,
18) which means that the error generated by X has the largest
value within the error bound, and the final node is (18, 16,
13) which means that the error generated by Z has the largest
value within the error bound. Fig. 10 describes the two nodes
and the error is generated by each variable.

Fig. 10. Error of each variable for the initial node and final node.

Fig. 11. Two intermediate nodes from the initial node.

Fig. 12. Overview of the tool ISTSP.

Now the algorithm begins with the initial node to increase
bit-width of Y and decrease bit-width of Z, etc., e[Y] is shrunk
and e[Z] is augmented. The new obtained node is (14, 17, 16)
and since the bit-width of Z cannot be cut down any more.
Bit-width of X has to be increased to “15” and bit-widths of
Y and Z are computed again. Consequently, the node changes
to (15, 15, 15). The two nodes are shown in Fig. 11.

The algorithm continues to calculate intermediate nodes
until it reaches the final node. It removes the redundant nodes
and obtains a search path to represent each node. The path is
shown as

(14, 16, 18) → (14, 17, 16) → (15, 15, 15) → (15, 16, 14) →
(16, 14, 16) → (16, 15, 14) → (17, 14, 15) → (17, 17, 13) →
(18, 16, 13).

The AT size of each node is calculated and a node with the
smallest size is chosen as the optimized node. In this example
the optimized node is (16, 15, 14).

V. Experimental Results

To help investigate various aspects of imprecise circuits, a
tool, Fig. 12, is developed and run on a 512 MB, 2.4 GHz Intel
Celeron machine under Linux. The tool addresses Problems
1–4, and the experiments are performed as follows.

A. Benchmarks

In order to assess the performance of our algorithms, we
try several benchmarks, as described next.

PANG et al.: OPTIMIZATION OF IMPRECISE CIRCUITS REPRESENTED BY TAYLOR SERIES AND REAL-VALUED POLYNOMIALS 1187

TABLE I

Error and Performance of Various Circuits Under Different Criteria

Case Imp Degree 1 Imp Degree 2 Imp Bit 1 Imp Bit 2 Error AT Terms Imprecision Time (s) Space (MB)
cos(x) 8 8 20 16 224 747 1.2e1-5 7.98 66.6
cos(x) 8 8 24 20 1 007 676 7.52e−7 38.84 347.3
cos(x) 10 8 24 20 615 115 2.75e−7 44.16 71
cos(x) 10 8 24 24 4 533 805 2.76e−7 214.9 523.5
B-splines 3 3 20 16 654 2.86e−5 0.375 0.38
B-splines 3 3 24 20 974 1.79e−6 6.2 0.46
B-splines 3 3 28 24 1356 1.12e−7 114.4 0.55
Chebyshev 8 8 20 16 224 747 9.15e−4 7.9 75.6
Chebyshev 8 8 24 20 1 007 676 5.72e−5 38.73 347
Chebyshev 9 9 20 16 381 267 0.0012 21.1 145
Chebyshev 9 9 24 20 2 147 220 7.24e−5 132.6 599
Filter 4 4 (16, 16, 16) (16, 16, 14) 11 549 19.39 2.13 55.2
Filter 4 4 (20, 20, 20) (18, 18, 18) 307 909 3.83 23.5 221.1
Filter 4 4 (20, 20, 20) (20, 18, 18) 68 156 2.36 16 144.5
DCT 1 1 16 8 512 15.62 0.08 0.24
DCT 1 1 16 10 512 3.86 0.11 0.27
DCT 1 1 16 12 512 0.92 0.13 0.29
Box–Muller (5, 4) (4, 4) (10, 10) (8, 8) 219_001 0.013 4.65 38.2
Box–Muller (5, 6) (5, 4) (12, 12) (10, 10) 613 567 0.0068 18.3 86.5

1) Imprecise Cosine Circuit Implementation: In ASICs
or FPGAs, the pipelined implementation of a cosine circuit
represented by finite terms of Taylor series often uses the
Horner’s polynomial evaluation

f (X) =
N−1∑
i=0

(−1)i
X2i

(2i)!
= 1+X2

(
− 1

2!
+ X2

(
1

4!
+ X2(· · ·)

))
.

B. B-splines

Four uniform cubic B-spline basic functions B0, B1, B2 and
B3 are defined by

B0(u) = −1

6
u3 +

1

2
u2 − 1

2u
+

1

6
B1(u) =

1

2
u3 − u2 +

2

3

B2(u) = −1

2
u3 +

1

2
u2 +

1

2
u =

1

6
B3(u) = −1

6
u3

where u = [0, 1]. We use different bits to represent u to
implement this design and observe imprecision effects.

1) Chebyshev Polynomial: A sequence of orthogonal poly-
nomials known as the Chebyshev polynomials is defined by
the recurrence relation

T0(X) = 1 T1(X) = 1 Tn+1(X) = 2XTn(X − Tn−1(X).

According to the relation, we get

T8(X) = 128X8 − 256X6 + 160X4 − 32X2 + 1

T9(X) = 256X9 − 576X7 + 432X5 − 120X3 + 9X.

2) Implementations of Cubic Filter: Cubic filters generally
have more than one multiple word-level variable such as
benchmarks from University of Utah [15]. Our AT-based
method will be used to find the optimal bit-widths and avoid
the time-consuming exhaustive simulations. We consider a
filter module over three word-level variables

F (X, Y, Z)=16384X4+Y 4 + 57344Z4+64767XY 3+16127Y 2Z2

+8965X3Z+19275X2YZ+51903XYZ + 32768X2Y+40960Z2

+32768XY 2 + 49152X2 + 4869Y.

3) Discrete Cosine Transform (DCT): We consider the 8 ×
8 DCT implementation, where the input is an 8-bit unsigned
integer, and the output is encoded by 11 bits. Coefficients for a
DCT module are fractional numbers often quantized by 8–16
bits.

4) Box–Muller Implementation: Box–Muller algorithm for
generating Gaussian random variable is critical to a number
of applications such as accurate bit error rate testers. It uses
the following expression:

Y (X1, X2) = (Y1(X1) ∗ Y2(X2) =
√

−2 ln X1 ∗ cos 2πX2.

We represent it by a finite number of Taylor series terms
Y1(X1) =

√−2 ln X1 around X1 = 0.5 and Y2(X2) =
cos 2πX2 around X2 = 0

Y1(X1) = 1.17741 − 1.6984(X1 − 0.5) + 0.4733(X1 − 0.5)2

−1.582(X1 − 0.5)3 + 1.0198(X1 − 0.5)4 − 3.3284(X1 − 0.5)5

+2.7848(X1 − 0.5)6

Y2(X2) =
∞∑
i=0

(−1)i
(2πX2)2i

(2i)!
.

The implementation consists of two Taylor series and two
word-level variables. Imprecisions in two variables affect each
other, so it is difficult to evaluate imprecision and get the
optimized implementation by past univariate explorations.

C. Verification of Imprecise Implementations

In this section, we run experiments for comparing imple-
mentations in the package shown as Fig. 12. This imprecision
search module is critical to assess both the conversion and the
imprecision verification algorithms, so it is worth to investigate
it standalone. Error AT polynomials are derived from two
implemented AT polynomials, from which imprecision can be
obtained by a search. The module has advantages of being fast
and space-efficient, as we now show.

Table I displays imprecision based on different degrees and
input bits. It is obvious that imprecision reduces along with
increase of the Taylor degree and input bits. Running time
is acceptable even for large number of terms. This module
hence supplies a strong capability to calculate imprecision
of implementations that engineers can take advantage of, to
match any implementations arbitrarily and rapidly. The ob-
tained results also help in understanding whether the existing
module implementations can be reused.

D. Performance of Implementation Optimization

We implemented the precision optimization algorithms as
Figs. 7 and 9. More bits imply that the results are more
precise, i.e., the implemented function value is closer to

1188 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010

TABLE II

Optimized Implementations and Performance for Different Error Bounds

Circuit Error Bound n m q o et ei ec eo Node AT Terms Imprecision Time [s] Mem [MB]
cos(x)/S 5e−4 5 13 14 11 2.76e−6 5.96e−5 1.23e−4 2.44e−4 – 7098 4.29e−4 1.56 1.86
cos (x)/O 5e−4 4 11 15 14 1.67e−4 2.38e−4 6.15e−5 3.05e−5 4 1486 4.97e−4 1.33 1.52
cos(x)/S 3e−4 5 14 13 15 2.76e−6 3.03e−5 2.46e−4 1.53e−5 – 12 910 2.94e−4 2.56 3.01
cos(x)/O 3e−4 4 12 18 17 1.67e−4 1.19e−4 7.69e−6 3.8e−6 7 2509 2.97e−4 1.58 2.13
exp(x)/S 3e−4 8 14 15 13 2.48e−5 8.42e−5 1.07e−4 6.1e−5 – 9908 2.77e−4 1.98 2.34
exp (x)/O 3e−4 7 14 18 17 1.98e−4 8.42e−5 1.31e−5 3.7e−6 6 6476 2.95e−4 2.37 2.86
B-spline/S 7e−4 – 11 11 15 – 2.45e−4 2.43e−4 1.5e−5 – 231 5.03e−4 0.09 0.18
B-spline/O 7e−4 – 10 12 13 – 4.91e−4 1.22e−4 6.1e−5 1 175 6.74e−4 0.08 0.11
Cheby/O 3e−2 – 12 – 7 – 2.57e−2 – 3.91e−3 1 3797 2.96e−2 1.42 1.53
Cheby/O 1e−2 – 14 – 8 – 6.54e−3 – 1.95e−3 1 12 911 8.49e−3 3.84 5.14
Cheby/O 3e−3 – 16 – 9 – 1.64e−3 – 9.77e−4 1 39 203 2.62e−3 9 15.2
DCT/O 20 – – 8 – – – 15.71 – 1 512 15.71 0.08 0.13
DCT/O 4 – – 10 – – 3.92 – 1 512 3.92 0.11 0.14
DCT/O 1 – – 12 – – – 0.98 – 1 512 0.98 0.13 0.15
Filter/S 50 (14, 14, 14) – 27.6 – – – 47 865 27.6 6.7 8.9
Filter/O 50 (13, 13, 13) – 49.3 – – 21 37 636 49.3 11.9 25.4
Filter/S 35 (15, 14, 15) – 19.5 – – – 51 391 19.5 9.2 12.3
Filter/O 35 (13, 14, 14) – 32.4 – – 14 45 232 32.4 18.9 25.5
Box–Mul/S 5e−3 (5, 6) (12, 12) 11 8 1.3e−3 5.8e−4 6.6e−4 1.95e−3 – 2 153 903 4.5e−3 2.68 1.58
Box–Mul/O 5e−3 (5, 6) (11, 11) 11 10 1.3e−3 2.4e−3 6.8e−4 4.9e−4 13 1 620 432 4.9e−3 5.22 6.87
Box–Mul/S 1e−3 (7, 6) (12, 13) 12 11 4.2e−5 2.8e−4 3.3e−4 2.5e−4 – 9 725 892 9e−4 7.46 4.92
Box–Mul/O 1e−3 (6, 6) (12, 12) 13 12 3.6e−4 3.2e−4 1.6e−4 1.2e−4 17 5 938 969 9.6e−4 13.3 17.6

TABLE III

Result Comparison with the Paper [12]

Case Precision Time Area [12] Time Area

[12] (Slices) (s) (Slices)
B-spline 8 0.12 1368 0.07 1132

16 0.19 2188 0.15 2056
DCT 8 0.89 3598 0.08 857

16 0.51 5069 0.17 1481
Degree 4 polynomial 8 1.9 803 0.96 763

16 2.0 1921 1.55 1208

the originally specified data output; however, the precision
comes at the cost of area, but also of the speed and energy
consumption. So choosing an appropriate length to represent
coefficients is worth the effort. Two elementary functions
(cos(x) and exp(x)) given by Taylor series, two circuits
(B-spline, Chebyshev) represented by polynomials with one
variable are used as benchmarks to assess the effectiveness
of Fig. 7. Three circuits (cubic filter, DCT and Box–Muller)
verify the algorithm to find optimized implementations of
polynomials with multiple input variables in Fig. 9.

Column 2 in Table II gives different error bounds for various
functions; Columns 3–10 list obtained parameters and corre-
sponding errors for implementations optimized for the bounds.
Columns 11 and 12 show how many nodes are investigated in
the whole procedure and the number of obtained AT terms;
Column 13 gives total imprecision, always smaller than the
given error bound. Time and space requirements are reported
in Columns 14 and 15.

For comparison, we invoke the sequential algorithm for
solving the Problem 3, a feasible implementation for compari-
son purpose. By considering the precision parameters sequen-
tially, it mimics often applied schemes for setting precision
parameters in isolation. The label “/S” in Column 1 indicates
that this sequential assignment algorithm is used while the
label “/O” points to the optimization algorithm detailed here.
The optimized algorithm traverses more nodes to investigate
the real-valued polynomials with multiple variables such as
cubic filters and Box–Muller than Taylor series. Please notice
that no unique group of parameters satisfies the error bound;
changing one parameter would affect others (such as rows 2
and 3, 4 and 5). These rows have different parameters, and all
fit the given error bound indicated by Column 2.

It is clear that even when the given error bound is small
and bit-widths are large, our algorithm is fast and memory-
efficient. In many cases the exact optimization algorithm is
faster than the sequential algorithm.

TABLE IV

Error Comparison of AA and Our Method

Case n m AA Ours
sin(X) 3 9 1.52e−2 1.1e−3
sin(X) 3 11 1.52e−2 2.7e−4
sin(X) 4 10 1.57e−2 5.46e−4
sin(X) 4 12 1.57e−2 1.37e−4
sin(X) ∗ exp(X) 4 8 6.7e−2 1.5e−2
sin(X) ∗ exp(X) 4 11 6.7e−2 1.9e−3
sin(X) ∗ exp(X) 5 8 8.9e−2 1.48e−2
sin(X) ∗ exp(X) 5 11 8.9e−2 1.87e−3

TABLE V

Hardware Area of Optimized Circuits

Circuit E Taylor Input Coef. Area Saving

Terms [bits] [bits] [Slice]
cos(X)/S 3e−4 5 13 14 1037 –
cos(X)/I 3e−4 5 12 15 965 6.9%
cos (X)/O 3e−4 4 12 16 746 28.1%
exp(X)/S 3e−4 8 14 15 1179 –
exp(X)/I 3e−4 8 14 13 1136 3.6%
exp (X)/O 3e−4 7 14 16 933 20.9%
Cheby/S 3e−3 – 20 – 1906 –
Cheby/O 3e−3 – 16 – 1439 24.5%
DCT/S 4 – – 14 1162 –
DCT/O 4 – – 10 894 23.1%
Filter/S 35 – 15, 15, 15 – 3036 7.6%
Filter/O 35 – 13, 14, 14 – 2725 17%
Muller/S 1e−3 (7, 6) 13, 14 13 4327 –
Muller/I 1e−3 (7, 6) 12, 11 12 3986 7.9%
Muller/O 1e−3 (6, 6) 12, 12 13 3759 13.1%

In comparison with the best similar methods, we consider
work in [12] that utilizes a multi-stage approach to get
8-bit and 16-bit output precision. Its benchmarks are real-
valued polynomials where input word-length is considered—it
cannot deal with Taylor series and function approximation. We
concern not only the input but coefficients and the output.

Table III compares results with those in [12]. Our algorithm
achieves higher speed and smaller area. We also notice that
benchmarks in [11] and [12] have lower degrees than ours. We
can handle functions with higher degrees, such as Chebyshev
polynomials of degree 9, effortlessly. Furthermore, our algo-
rithms are able to process functions with multiple variables.
Cubic filters and Box–Muller, which are more difficult for
verification and optimization, are used to prove it. We facilitate
a more complex exploration of combining as many factors as
possible when investigating imprecision and approximation to
the specification.

Table IV compares the errors obtained by AA and our
method for the same number of Taylor terms and input bit-
widths, listed in Columns 2 and 3. The error obtained by our
method is far smaller than that of AA, which is an indicator of
better accuracy compared to past explorations. Therefore, AT
is better to determine whether an implementation is suitable
for the specification.

PANG et al.: OPTIMIZATION OF IMPRECISE CIRCUITS REPRESENTED BY TAYLOR SERIES AND REAL-VALUED POLYNOMIALS 1189

Fig. 13. (a)–(c) Hardware area of Taylor series and real-valued polynomials
in different Taylor terms and input bits.

VI. Area of Mapped Optimized Hardware

While the optimization algorithm produces precision pa-
rameters for a minimal size AT polynomial, the exact area
of the resulting circuit depends on the technology used
in mapping circuits. We perform further experiments with
mapping on FPGAs to evaluate the real area impact of the
proposed optimization algorithm. In this section, we use the
Xilinx Virtex-4 XC4VLX100-12 FPGA, with the ISE tool
(version 8.1), the same as in [12], to fairly compare the
results.

Table V compares area of the FPGA implementations that
satisfy the given error bound E, shown in the second column.
The rows labeled “/I” use the tight-bound interval method for
input and coefficient bit-width, to improve on the sequential
algorithm [26], labeled with “/S.” This new case produces less
input and coefficient bits than the sequential algorithm. The
rows labeled “/O” invoke the optimization algorithm that uses
the tight interval method from this paper.

The results achieve about 5% area reduction over the
optimization algorithm reported in [26] (as “/O”), which uses

the plain interval method, for transcendental functions such as
cos(X) and exp(X). The optimization algorithm in combination
with the tight interval method can save the area by up to
30% over the sequential exploration of individual precision
parameters.

Fig. 13 describes achievable FPGA hardware area for bench-
mark circuits using different combinations of Taylor terms and
input bits. Such a tabulation facilitates the exploration of trade-
offs between precision and complexity. Shown in Fig. 13(b)
are B-spline and Chebyshev polynomial results from [12]
for comparison. Our optimization requires less hardware. The
benchmarks such as B-splines or Chebyshev polynomial take
80% area of circuits in [12], for the same precision, the same
FPGA, which are mapped with the same synthesis tools.

VII. Conclusion and Future Work

Generally, specifications and implementations do not match
exactly for arithmetic circuits, so the flexibility due to the
allowed imprecision can be used for the benefit of simplifying
the circuits. For real-valued specifications, such as Taylor
Series or polynomials, we used AT to explore the solution
space within allowed arithmetic imprecision. The basic al-
gorithms were proposed to convert both Taylor Series and
multivariate real-valued polynomials into ATs, and seek the
maximum mismatch. They compute discrepancy between two
implementations efficiently.

An error analysis is a necessary step to match specifications
within the given error bound. It has traditionally been com-
plicated, hard to automate, and did not account for disparate
approximation and quantization parameters contributing to the
overall error, which is what we have overcome here by an
AT-based static analysis that is compact and also allows the
improvements to the interval analysis, via tight-bound interval
analysis.

We achieved optimization of implementations from Taylor
series specifications and real-valued polynomial specifications.
The work easily incorporates disparate factors that cause
the arithmetic error. As traditionally designers apply separate
isolated error bounding techniques for mostly the word-length
parameters contributing to the imprecision, we are unique in
searching for the optimized implementation given a totality of
approximation and quantization effects. The use of the inter-
mediate AT is essential to achieve the task through automation.
Algorithms are devised to determine precision parameters that
guarantee sufficient precision with a minimal AT polynomial
size. The proposed techniques can be applied to wider classes
of real and complex-valued function specifications, not just the
Taylor expansions.

Currently, the exploration only handles a high-level rep-
resentation so it does not consider truncation error of inter-
mediate signals. The limitation of our approach consists of
inability of processing rational functions, since operations such
as divisions cannot be handled directly. In the future, the work
presented here will add the factor of intermediate variables
and be extended to cover rational functions, and incorporate
the error range analysis and related optimizations stemming
from range constraints, all in a single unified method.

1190 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 8, AUGUST 2010

References

[1] J. Smith and G. De Micheli, “Polynomial circuit models for component
matching in high-level synthesis,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 9, no. 6, pp. 783–800, Dec. 2001.

[2] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita, “A formal
approach for debugging arithmetic circuits,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 28, no. 5, pp. 742–754, May
2009.

[3] S. Kim and W. Sung, “Fixed-point error analysis and word length
optimization of 8 × 8 IDCT,” IEEE Trans. Circuits Syst. Video Tech.,
vol. 8, no. 8, pp. 935–940, Dec. 1998.

[4] K. Kum and W. Sung, “Combined word-length optimization and
highlevel synthesis of digital signal processing systems,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 8, pp. 921–930,
Aug. 2001.

[5] M. Willems, V. Bürgens, H. Keding, T. Grötker, and H. Meyr, “System
level fixed-point design based on an interpolative approach,” in Proc.
Design Autom. Conf., 1997, pp. 293–298.

[6] A. Gaffar, O. Mencer, W. Luk, and P. Cheung, “Unifying bit-width
optimisation for fixed-point and floating-point designs,” in Proc. IEEE
Symp. FCCM, 2004, pp. 79–88.

[7] C. Shi and R. Brodersen, “Automated fixed-point data-type optimization
tool for signal processing and communication systems,” in Proc. Design
Automat. Conf., 2004, pp. 478–483.

[8] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Precision and
error analysis of MATLAB applications during automated synthesis for
FPGAs,” in Proc. DATE, 2001, pp. 722–728.

[9] C. Fang, R. Rutenbar, and T. Chen, “Fast, accurate static analysis for
fixed-point finite-precision effects in DSP designs,” in Proc. ICCAD,
2003, pp. 275–282.

[10] Y. Pu and Y. Ha, “An automated, efficient and static bit-width opti-
mization methodology toward maximum bit-width-to-error tradeoff with
affine model,” in Proc. Asia South Pacific Design Automat. Conf., Jan.
24–27, 2006. p. 6.

[11] D.-U. Lee, A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and
G. Constatinides, “Accuracy-guaranteed bit-width optimization,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 10, pp.
1990–2000, Oct. 2006.

[12] W. G. Osborne, J. Coutinho, R. Cheung, W. Luk, and O. Mencer,
“Instrumented multi-stage word-length optimization,” in Proc. Field-
Program. Technol., Dec. 2007, pp. 89–96.

[13] N. S. Nedialkov, V. Kreinovich, and S. A. Starks, “Interval arithmetic,
affine arithmetic, Taylor series methods: Why, what next?” Numerical
Algorithms, vol. 37, nos. 1–4, pp. 325–336, 2004.

[14] G. Constantinides, P. Cheung, and W. Luk, “Wordlength optimiza-
tion for linear digital signal processing,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 10, pp. 1432–1442, Oct.
2003.

[15] S. Gopalakrishnan and P. Kalla, “Optimization of polynomial datapaths
using finite ring algebra,” ACM Trans. Design Automat. Electron. Syst.,
vol. 12, no. 4, pp. 1–49, Sep. 2007.

[16] A. Ahmadi and M. Zwolinski, “Symbolic noise analysis approach to
computational hardware optimization,” in Proc. 45th ACM/IEEE DAC,
vols. 8–13. Jun. 2008, pp. 391–396.

[17] A. Kinsman and N. Nicolici, “Finite precision bit-width allocation using
SAT-modulo theory,” in Proc. DATE Conf. Exhibit., Apr. 20–24, 2009,
pp. 1106–1111.

[18] D.-U. Lee, A.A. Gaffar, O. Mencer, and W. Luk, “Optimizing hardware
function evaluation,” IEEE Trans. Comput., vol. 54, no. 12, pp. 1520–
1531, Dec. 2005.

[19] D. Lee and J. D. Villasenor, “A bit-width optimization methodology for
polynomial-based function evaluation,” IEEE Trans. Comput., vol. 56,
no. 4, pp. 567–571, Apr. 2007.

[20] K. Radecka and Z. Zilic, “Arithmetic transforms for compositions
of sequential and imprecise datapaths,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 25, no. 7, pp. 1382–1391, Jul.
2006.

[21] P. Yu, K. Radecka, and Z. Zilic, “Arithmetic transforms of imprecise
datapaths by Taylor series conversion,” in Proc. IEEE ICECS, 2006,
pp. 696–699.

[22] S. Wadekar and A. Parker, “Accuracy sensitive word-length selection
for algorithm optimization,” in Proc. IEEE Int. Conf. Computer Design,
1998, pp. 54–61.

[23] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens,
“A methodology and design environment for DSP ASIC fixed point
refinement,” in Proc. ACM/IEEE DATE, 1999, pp. 271–276.

[24] K. Radecka and Z. Zilic, “Specifying and verifying imprecise circuits
by arithmetic transforms,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design, 2002, pp. 128–131.

[25] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic. London, UK: Academic Press, 1985.

[26] Y. Pang, K. Radecka, “Optimizing imprecise fixed-point arithmetic
circuits specified by Taylor Series through arithmetic transform,” in Proc.
45th ACM/IEEE DAC, Jun. 2008, pp. 397–402.

[27] D. Menard and O. Sentieys, “Automatic evaluation of the accuracy
of fixed-point algorithms,” in Proc. ACM/IEEE DATE Conf., 2002,
pp. 1530–1591.

[28] S. Kim, K. Kum, and W. Sung, “Fixed-point optimization utility for C
and C++ based digital signal processing programs,” in Proc. Workshop
VLSI Signal Process., Nov. 1995, pp. 197–206.

[29] W. Sung and K. I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,” IEEE Trans.
Signal Process., vol. 43, no. 12, pp. 3087–3090, Dec. 1995.

[30] J.-I. Choi, H.-S. Jun, and S.-Y. Hwang, “Efficient hardware optimization
algorithm for fixed point digital signal processing ASIC design,” Inst.
Elect. Eng. Electron. Lett., vol. 32, no. 11, pp. 992–994, May 1996.

[31] M. A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic
word length optimization procedures,” in Proc. IEEE Int. Symp. Circuits
Syst., vol. 2. 2002, pp. 612–615.

[32] K. Han and B. L. Evans, “Wordlength optimization using sensitivity
information,” EURASIP J. Appl. Signal Process. Spec. Issue Design
Methods DSP Syst., vol. 2006, no. 5, pp. 1–14, Jan. 2006.

Yu Pang (M’09) received the B.S. degree in electri-
cal engineering from Sichuan University, Sichuan,
China, in 2000, and the M.S. degree (honors) in
communication and information engineering from
the University of Electronic Science and Technology
of China, Sichuan, in 2003. He is currently working
toward the Ph.D. degree from the Department of
Electrical and Computer Engineering, McGill Uni-
versity, Montreal, QC, Canada.

He was a Teaching and Research Assistant
throughout his B.S. and M.S. studies. His current

research interests include high-performance VLSI design and verification,
communications, reversible logic and parallel computing.

Katarzyna Radecka (S’00–M’02) received the
B.Eng., M.Eng., and Ph.D. degrees from McGill
University, Montreal, QC, Canada, in 1995, 1996,
and 2003, respectively.

She was with Nortel, Ottawa, Canada, from 1995
to 1996, with Lucent Technologies, Allentown, PA,
from 1996 to 1998, and with Concordia Univer-
sity, Montreal, from 2002 to 2007. She is currently
with McGill University. Her current interests include
arithmetic circuits, verification and test of hardware
and software. She has published over 50 publications

and has authored the book, Verification by Error Modeling: Using Testing
Methods for Hardware Verification (Norwell, MA: Kluwer).

Zeljko Zilic (S’91–M’97–SM’07) received the
Ph.D. degree from the University of Toronto,
Toronto, Ontario, Canada, in 1997.

From 1997 to 1998, he was a Technical Staff Mem-
ber with FPGA Division, Microelectronics Group,
Lucent Technologies, Allentown, PA. Currently, he
is an Associate Professor with the Department of
Electrical and Computer Engineering, McGill Uni-
versity, Montreal, QC, Canada. He is researching
various aspects of system design, test and verifi-
cation. He has published over 200 research papers,

holds four patents in the area of clock and power management, and has co-
authored the books, Verification by Error Modeling (Norwell, MA: Kluwer,
2003) and Generating Hardware Assertion Checkers (Berlin, Germany:
Springer, 2008).

Dr. Zilic is a recipient of a Chercheur Strategique Research Chair from
the Province of Quebec. He received the Myril B. Reed Best Paper Award
from IEEE International Midwest Symposium on Circuits and Systems in
2001, the Best Paper Award from Design and Verification Conference in 2005,
and several Honorary Mention Awards. For his undergraduate teaching, the
National Council of Deans of Engineering and Applied Science and Sandford
Fleming Foundation awarded him with the Wighton Fellowship in 2006.

