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It has become indispensable to locate circuit defects and find the root-cause of errors as soon as the pro-
totype of a system (first-silicon) gets ready. Various Design-for-Debug (DfD) solutions have been intro-
duced as a means to increase the observability and controllability of internal signals, resulting to a
speed-up in debugging process and a decrease in the time-to-market of new products. Assertion Based
Verification (ABV) is one of the instrumental pre-silicon verification techniques. Once assertions are con-
verted to hardware modules and incorporated into a debug infrastructure, the post-silicon debug can
benefit from the additional observability provided by such assertions. In this paper, we first propose a
new algorithm that generates clusters of assertion-checkers; in our proposed clustering algorithm, we
resort to a graph partitioning algorithm to find the assertion-checkers that can be placed inside a cluster.
The proposed method generates the clusters of assertion-checkers by means of exploring the logic-cones
set of each assertion-checker. Moreover, coverage metrics for different configurations of clusters are
defined. Then, we introduce several mechanisms through which the clusters of assertion-checkers can
be incorporated into the DfD infrastructures. In our experiments, several case studies such as AXI bus,
PCI bus protocol and a memory controller are considered; thereafter, the proposed debug infrastructure
containing clusters of assertion-checkers is embedded into such case studies. It turns out that contrary to
a non-clustering approach of placing assertion-checkers into a design the clustering algorithm along with
the proposed method for incorporating assertion-checker clusters into a debug infrastructure lead to the
better results in terms of the energy consumption and design coverage.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

With the rapid development of semiconductor technology,
increasingly complex systems are being integrated into a single
chip. Driven by high demands for a large set of new features, the
design errors and bugs have become prevalent and difficult to
track. The increase in the time-to-market of new products as a con-
sequence of unpredictable bugs may cause a significant loss of
market share, or even complete loss of revenue [1]. Hence, to en-
sure that new products can meet the strict time-to-market dead-
line, finding these defects and bugs in a timely and cost-effective
manner is a must. Pre-silicon verification techniques which
broadly belong to functional (dynamic) or formal (static) methods
have been around for decades; however, such techniques cannot
nowadays ensure that a post-fabricated IC, usually referred to as
‘‘first-silicon’’, works perfectly.

Almost two-thirds of newly manufactured SoC products suffer
from the undetected defects and bugs in the first-silicon [1]. Fac-
tors such as the incorrect interpretation of specifications, human
mistakes, design misinterpretations and errors in CAD tools can
be designated as potential reasons for the failure in verification
and possible defects in silicon. Plus, the issues such as the lack of
accurate models for a complex design, the ‘‘electrical’’ bugs caused
by crosstalk or power drops, and design marginalities make a
through design validation and debugging much more difficult in
the pre-silicon than in the post-silicon phase. For instance, due to
the complexity of full-chip simulation, bugs may escape from sim-
ulation-based verification as many corner cases could be missed.
Therefore, once the first-silicon becomes available, it is required
to identify any bug resulting from either design errors, electrical
faults or the issues related to Process–Voltage–Temperature
(PVT) corners. It has been observed that close to 50% of the total
development cycles for a new product is spent on validating the
system behaviors after the availability of the first silicon [3].

The post-silicon validation as a means to identify and localize
design errors and bugs has gained a lot of attention in industry.
Post-silicon validation is the process of applying input stimulus
to the design, and it can be performed at the system operational
speed. The so-called ‘‘deep states’’ and corner cases would more
likely be exercised and thus there will be a better chance to catch
hard-to-detect bugs. Although post-silicon validation mechanisms
can offer a raw performance in terms of the execution speed of test
cases, they need to be improved in order to increase the real-time
observability of the signals. Therefore, there is a huge demand for
new methods that enable faster and more accurate debugging.

Assertion-Based Verification (ABV) is one of the instrumental
pre-silicon verification techniques. Armed with temporal logic
and extended regular expressions, PSL (Property Specification Lan-
guage, IEEE 1850 standard) [22] and SVA (System Verilog Asser-
tions) [23] are the modern verification languages to describe the
expected behaviors of a design. Any deviations from the expected
behaviors are captured by means of placing sufficient assertion in-
side a CUD (Circuit under Debug); thus increasing the visibility
within the CUD, and enabling accurate debugging.

To expand the functionality of assertions beyond pre-silicon
verification, a checker generator tool must be employed to convert
assertions to hardware modules. Consequently, such modules
must be incorporated efficiently in a debug infrastructure.
cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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In the context of post-silicon debugging, assertions must be syn-
thesized before one can integrate them inside a design. An individual
assertion once converted into a circuitry is referred to as an ‘‘asser-
tion-checker’’ or a checker. In the remaining of this paper, we use the
term ‘‘assertion-checker’’ to refer to hardware-based assertions.
Here, we have used the MBAC checker generator which can produce
assertion-checkers from either PSL or SVA assertions [8] .

Post-silicon validation involves three major activities: (1) detect-
ing errors through embedded DfD (Design-for-Debug) infrastruc-
tures by means of applying a proper stimulus, (2) localizing and
identifying the root cause of problems, (3) correcting or bypassing
errors. The post-silicon bug localization step involves identifying
the location-time pair of bugs and is the most time-consuming step.

For incorporating assertion-checkers and capturing their viola-
tion signals, a debug module inside a CUD must be equipped with
a suitable debug infrastructure [3,18]. As system complexity in-
creases, more assertions are needed to ensure that corner cases
of a design can be covered. In general, the more assertion checkers
embedded inside a CUD, the higher the hardware overhead and en-
ergy consumption related to the debug infrastructure [8].

In this work, we have discovered that by grouping assertion-
checkers and placing them inside clusters, the integration of asser-
tions inside a circuit becomes easier. Plus, having clusters of asser-
tion-checkers, and controlling each cluster selectively during the
debug and normal operational mode causes lower energy con-
sumption. Moreover, the time-consuming process of identifying
the root-causes of failures will be significantly reduced by selec-
tively offloading the related information of the clusters that con-
tain fired assertions. In this paper, we extend the concepts and
definitions explored in [6] and provide the implementation details
and comprehensive comparison with the previous work. The prior
work on post-silicon debugging that centers around the use of
assertion-checkers is described in Section 2. Section 3 provides
the definitions and concepts required throughout the paper. The
proposed assertion-checkers clustering algorithm will be discussed
in Section 4. A discussion on the generalities of the proposed clus-
tering algorithm and how to employ it is presented in Section 5.
The integration mechanism of assertion-checker clusters into dif-
ferent debug infrastructures along with experimental results is
provided in Section 6. Finally, Section 7 concludes the paper.

1.1. Contributions

The unique contributions of this paper towards the efficient
assertion-based debug are following:

� Introduction of a general assertion-checker clustering algorithm.
� Integration of the assertion-checker cluster into different debug

infrastructures.
� Introduction of Shared Debug Unit (SDU) as a new debug infra-

structure suited for SoCs debugging.

2. Related work

Post-silicon debugging can be performed using two major
schemes: (1) real-time trace-based methods, (2) run-stop scan-
based techniques. Previous studies have considered a wide range
of different implementations for such infrastructures [4,5,10,13].
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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The primary goal in a scan-based debug approach is to reuse the
internal scan chains that are being used during the manufacturing
test. Whenever a specific programmable trigger or breakpoint
module fires, all the internal states and signals are captured by
means of available scan chains; thereafter, the captured data are
offloaded using the ‘scan-out’ operation. Finally, to find out the ex-
act causes of failures, a post-processing algorithm is applied to the
offloaded data [15]. Due to the consecutive stops and resumptions,
the scan-based debug technique cannot provide the required de-
bug information in a real-time fashion [5]. Plus, this debugging
scheme is slow and intrusive [5,24].

A trace buffer serves as a temporary space to keep the snapshot
of a system under debug, including its signals and states, whenever
a particular event occurs [17]. Trace buffers have been widely used
in legacy debug and logic analysis systems [18,24]. For instance, as
a multi-core debug solution for an AMBA based SoC, ARM pre-
sented CoreSight [24]. CoreSight uses Embedded Trace Microcell
(ETM) as a debug core supporting modules and probe AMBA bus
directly. As shown in Fig. 1, the Cross Trigger Interface (CTI) broad-
casts trigger requests among embedded cores by means of the
Cross Trigger Matrix (CTM). The registers inside the CTI and CTM
blocks indicate the trigger conditions as well as trigger mapping,
and they are programmed through IEEE 1149.1 (JTAG).

The proposed debug infrastructure in this work is orthogonal to
the ARM CoreSight debug scheme. Triggers and breakpoint module
inside an embedded core need to transfer their signals to the CTI
unit. Once an assertion-checker detects an illegal sequence of
events, it also raises an output signal. Therefore, an assertion-
checker can be treated as a trigger unit. The only difference be-
tween assertion-checkers and regular hardware triggers and
breakpoints is that hardware based triggers are programmable by
means of a debugger tool, whereas assertion-checkers are usually
hardcoded. During the validation of a complex system which in-
cludes multiple-cores, we need to trace the status of assertion-
checkers placed inside cores. Therefore, a debug infrastructure
must be equipped with an enhanced debugging module which
makes the output of assertion-checkers transparent to a debugger
tool. As illustrated in Fig. 1, once the proposed infrastructure is
interfaced with the CTI and ETM, it can be used as a trigger unit in-
side a system.

A trigger generator tool, ZiMH, is presented in [7]. This tool ex-
ploits the hierarchical properties of a system as a means to gener-
ate a trigger circuit. The generated circuit provides instrumental
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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trace information for root cause analysis. However, this study does
not provide a solution for incorporating this trigger unit inside a
system. A so-called assertion processor, along with synthesized
assertions, is incorporated on a chip in [13,14]. These studies nei-
ther provide coverage metrics nor an automated method for inte-
grating assertion-checkers inside a design. The authors in [16]
exploit the fact that it is not necessary to observe the error-free
state. Instead, they have introduced the ‘‘suspect window’’ and pre-
sented a method for determining its boundaries.

The integration of assertion-checkers in a scan-based run-stop
debug infrastructure and in a debug trace infrastructure has been
investigated in [3]. One conclusion of that work is that grouping
assertion-checkers together and controlling each group through a
single debug register results in a reduction in hardware overhead
of debugging infrastructure, involved in transferring the violation
signals of assertion-checkers to the trace-buffer. This study, how-
ever, provides no applicable solution for the clustering of related
assertion-checkers. The work in [20] applies the time-multiplexing
to a set of assertion-checkers in the debug infrastructure, which is
related to the clustering in the sense that the checkers are grouped
together in each time instance, but the clustering approach is not
the focus of that work.

The integration of the proposed method in this paper in a form
of hybrid HW/SW mechanism, such as a mechanism proposed in
[31] can be instrumental as a means to reduce the effect of electri-
cal errors in the SoCs, running Real-Time Operating Systems
(RTOS). Moreover, Network on Chips (NoCs) routers should also
be aware of the importance of design errors and faults [32–34],
making the incorporation of debug infrastructures inside such rou-
ters an instrumental technique [29,30].

In this work, we present a mechanism to group assertion-check-
ers and place them inside clusters. The assertion-checkers can be
efficiently integrated into a debug circuitry by means of our pro-
posed mechanisms. Plus, the proposed debug environment in this
paper addresses the reusability needs of SoC debugging.
3. Preliminaries

3.1. Assertions

An assertion is a statement that indicates how a given circuit
should behave under different circumstances. Assertion-Based
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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Verification (ABV) has become one of the most important and effi-
cient RTL verification techniques, and has gained a lot of attention
in industry for pre-silicon verification [2].

Assertions represent a complex range of behaviors. System
designers are able to define both expected and prohibited behaviors
of a design using a wide range of Boolean expressions along with
extended regular expressions and a large set of temporal operators.
Verification languages such as PSL (Property Specification Language,
IEEE 1850 standard) [22] and SVA (System Verilog Assertions)
support assertions and enable Assertion Based Verification [23].

Assertion languages have a complex set of syntax and semantics
that are beyond the scope of this paper. To demonstrate how an
assertion works, an example of an Assertion (A1) written in PSL is:

A1 ¼ assert alwaysð$roseðreqÞj ) req½�0 : 3�; req&grantÞ; ð1Þ

This assertion monitors the functionality of an arbiter. It states
that the arbiter is expected to grant the bus to the client whose re-
quest signal ‘req’ is active within three clock cycles. The client must
also keep its request signal active until it receives the ‘grant’ signal.
The ‘grant’ signal indicates that access to the bus is given to the cli-
ent. This assertion will fire if either the client or the arbiter cannot
satisfy one of the previously mentioned conditions. The operator
‘|)’ is a temporal implication, with pre and post conditions
appearing as the antecedent and consequent, respectively. The
function ‘rose(b)’ becomes true in case of any changes in the signal
‘b’ that make it ‘1’. In this example, the post-condition involves two
sequences that are concatenated by means of a temporal concate-
nation ‘‘;’’. The first sequence is a repetition range, whereas the sec-
ond sequence is a Boolean expression.
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3.2. Checker generator

Checker generator is a tool for producing assertion-checkers. An
assertion-checker is a synthesized form of assertion(s). Assertion-
checkers are permanent circuits that can be added to the design
in order to perform on-line silicon monitoring, self-test and diag-
nosis assistance during the lifespan of the IC [8,12]. Here, we use
the tool MBAC for checker generation [8]. The MBAC checker gen-
erator matches each assertion statement with its related automa-
ton, either by a direct optimized production, or by applying a set
of rewrite rules [9]. Thereby, various automata for properties and
sequences are generated using this checker generator.

A generated automaton is a directed graph, in which vertices
are the states and edges among states hold conditions for transi-
tions among the states. Fig. 2 shows the generated automaton
from the SVA assertion in Eq. (1). Transitions are labeled with
Boolean expressions, built of combination of signals involved in
the property. It has been shown in [8] that every property in
PSL and SVA can be converted to an equivalent finite automaton
in a recursive manner. An assertion violation signals triggers
whenever an automaton representing an assertion reaches its
final state. For instance, the violation signal of our sample asser-
tion is triggered, once its automaton in Fig. 2 reaches the final
state ‘S5’.

In the pre-silicon verification, employing a large number of
assertions is not a big issue. But, when it comes to the post-silicon
verification, the situation is utterly changed. Given the fact that
assertions are synthesized to hardware units during the post-sili-
con verification, the related hardware overhead and energy con-
sumption should be acceptable.

3.3. Netlist graph

Due to an abundant use of memory elements such as flip-flops
in industrial circuits, once a bug occurs errors will be recorded in
some flip-flops [16]. Therefore, to capture a bug, it is sufficient to
monitor flip-flop outputs during the debug. Fig. 3 shows a sample
circuit and its corresponding netlist graph. Let CUDG = (V,E) be a
I
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directed graph associated with the given circuit netlist. Every ver-
tex vi e V in this graph is related to a flip-flop in the circuit netlist.
The combinational parts of a circuit among storage units are repre-
sented by edges. For instance, there is an edge among vertices D, G
and F in Fig. 3a. The vertices associated to primary outputs {H, I} are
marked as ‘‘sink node’’.

3.4. Definitions

Definition 1. Let G = (V,E) be the ‘‘Fan-in Cone Graph’’ of a primary
output. This graph is directed and each vertex vi e V represents a
storage element (Flip-flop) inside a given circuit. Let eij be a
directed edge from the vertex vi to vj in this graph, any changes to
the storage element that corresponds to vi can modify the storage
element related to vj in the next cycle. In this graph, the node
associated with the primary output is called the ‘‘sink’’ node. To
extract the ‘‘Fan-in Cone Graph’’ of a particular output, the given
netlist graph is traversed starting from its ‘‘sink’’ node using
‘‘Depth-First-Search’’ (DFS) algorithm.
Definition 2. Let G�oi
= (V,E) be a ‘‘Weighted Fan-in Cone Graph’’ of

a primary output oi. This graph is a weighted directed graph gener-
ated from the ‘‘Fan-in Cone Graph’’ of the primary output oi. The
weight of each directed edge is placed on its head node. As shown
in Fig. 4, the weight of vi e V denoted by w(vi) shows the number of
paths from vi to the ‘‘sink’’ which is the vertex related to the oi. The
set of vertices adjacent to the vi e V is denoted by adjacent-set (vi).
The number of edges that leaves the given vertex vi e V is denoted
by out-degree (vi). As shown in Eq. (1), the weight of the sink node
is equal to ‘‘1’’; the weight of other vertices is computed by means
of Eq. (2).

wðsinkÞ ¼ 1 ð2Þ

wðv iÞ ¼ maxðout � degreeðv iÞ þ
X

vj2adjacent�setðv iÞ
wðv jÞÞ ð3Þ
Definition 3. We define the concept of ‘‘Fan-in cone coverage of a
primary output with respect to a vertex’’ denoted by CovðG�oi

jv iÞ,
where vi e V is a vertex in the ‘‘Weighted Fan-in Cone Graph’’ of the
primary output oi. As Eq. (3) shows, this term denotes the number
of paths which are covered by monitoring the particular vertex vi

over all available paths to the sink node (oi).

CovðG�oi
jv iÞ ¼

wðv iÞ
rvk2V wðvkÞ

ð4Þ
Definition 4. A Finite Automaton (FA) associated with an asser-
tion-checker is a tuple FA = (Q,R,d, I,F), where ‘Q’ is a nonempty
finite set of states, ‘R’ is a set of symbols that represent Booleans
expressions and signals such as primary inputs, outputs and the
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intermediate signals inside a CUD. In this FA, d # Q � R � Q is a
transition function consisting of a subset of triples from {(s,r,d) |
s e Q, r e R, d e Q’’}. As explained in Section 3.2, the MBAC checker
generator synthesizes assertions by means of assigning an FA to
them [8]. It is important to note that, in order to find the ‘‘fan-in
cone set’’ of each assertion-checker, the fan-in cone graph of each
primary outputs should be explored. As explained in Definition 1,
given the fact that Goi ðV ; EÞ be the ‘‘Fan-in Cone Graph’’ of a
primary output oi, where, each eij e E represents a directed edge
from the vertex vi to vj. This directed edge denotes the existence of
a combinational unit among the storage elements associated with
vi and vj. It was shown in Definition 4 that transitions from
different states inside an assertion-checker occur due to a change
in the signals that are elements of the set R. Such a set consists of
the signals and Boolean expressions.
Definition 5. Let CHðijojÞ be the fan-in cone set of assertion-checkeri

with respect to the primary output oj, where CHðijojÞ # G�oj
ðVÞ. The

set of vertices inside the weighted fan-in cone of the primary out-
put oi is denoted by G�oj

ðVÞ. The vertices in this set that may cause
changes in the state of the FA associated with the particular asser-
tion-checkeri are placed inside its fan-in cone set w.r.t the primary
output oj. As shown in Eq. (4), the union of CHðijojÞ over all primary
outputs is the ‘‘Fan-in cone set of the assertion-checkeri’’ and is
denoted by CHi.

CHi ¼
[

oj2primary outputs

CHðijojÞ ð5Þ
Definition 6. The Maximum Coverage of the assertion-checkeri

whose ‘‘Fan-in cone set’’ is CHi is denoted by Cov(CHi). To compute
the ‘‘Maximum Coverage of the assertion-checkeri’’, we resort to
the ‘‘Fan-in cone coverage of a primary output with respect to a
vertex’’, explained in Definition 3 and denoted by CovðG�oi

jv iÞ. The
Cov(CHi) can be computed using Eq. (5). We can also use Eq. (6) to
find the ‘‘Maximum coverage of an assertion checker with respect
to a particular primary output’’.

CovðCHiÞ ¼
X

v i2CHi

½max½CovðG�oi
jv iÞ�; 8oj 2 Primary outputs� ð6Þ

CovðCHðijojÞÞ ¼
X
½CovðG�oi

�jv iÞ8v i 2 CHðijojÞ ð7Þ
Definition 7. The CM = (V,E) is the ‘‘Checker Map Graph’’. This
graph is undirected and weighted. There is a vertex vi e V associ-
ated with each assertion-checker. The existence of common
elements in the ‘‘fan-in cone set’’ of any pair of assertion-checkers
is denoted by an edge between the corresponding vertices; the
weight of this edge indicates the number of common elements in
the ‘‘Fan-in cone set’’ of those two assertion-checkers.
1 I

E
G

D

A B

C

1

2

2

1

33

H

F G

D E

A B

C

1
1

1
12

3 3)

weighted fan-in cone graph of primary outputs.

r debug using clusters of assertion-checkers. Microelectron Reliab (2012),

http://dx.doi.org/10.1016/j.microrel.2012.04.016


Directed Graph extraction 
from gate-level netlist of the 

given circuit

Extracting the Weighted Fan-
in cone graph for each 

primary output 

Finding the Fan-in cone set of
assertion-checkers and their 

intersection 

Clustering assertion-checkers
and incorporating them inside

debug infrastructures

1

2

3

4

A H

B

C
E

G

D

I

F

1 I

E
G

D

A B

C

1

2

2
1

33

H

F G

D E

A B

C

1 1

1
12

3 3

1 I

E
G

D

A B

C

1

2

2
1

3

H

F G

D E

A B

C

1 1

1
12

3 3
Ch1 Ch1

Ch2

Cluster 1
A0A1...Am-1 Cluster S

Ams..Ams-1 Wired Or

EN Slave port

D
AP

EN
Cluster S
Ams..Ams-1

Internal Trace Buffer

Fig. 5. Process of assertion-checkers clustering.

1 I

E
G

D

A B

1
2

1

33

H

F G

D E

B

C

1 1

1
12

3 3

C
2

Bug

Bug

P1 P2

P3

P1
P2

A
Arbiter

grnt

Fig. 6. Weighted fan-in cone graph of primary outputs.

6 M.H. Neishaburi, Z. Zilic / Microelectronics Reliability xxx (2012) xxx–xxx
4. The proposed assertion-checker clustering algorithm

The proposed assertion-checkers clustering method, as shown
in Fig. 5, consists of four steps. At the first step, a directed graph
from the net-list of a circuit is created. As explained in Section 3.4,
each vertex in this graph represents a storage element (Flip-Flop)
inside the CUD. A directed edge between two vertices indicates
that there exists a combinational logic or wire between the
storage elements. The Weighted Fan-in Cone Graph for each
primary output, Definition 2, is extracted in the second step in
Fig. 5.

The Weighted Fan-in Cone Graph is generated from the ‘‘Fan-in
Cone Graph’’ of a primary output. Inside the graph associated with
a particular primary output, the weight of a vertex indicates the
number of paths from that vertex to the primary output. The
weighted fan-in cone graph of the primary outputs in the sample
circuit in Fig. 3 is shown in Fig. 6.

As the left graph in Fig. 6 demonstrates, if a bug happens in the
storage element related to the vertex ‘‘A’’, such a bug appears at the
output ‘‘I’’ through three different paths. Likewise, the output ‘‘H’’
can be affected by two different paths once a bug occurs inside
the storage element related to the vertex ‘‘D’’. Assume, for example,
that the right graph in Fig. 6 corresponds to an arbiter, expected to
provide the ‘grant’ signal. This ‘grant’ signal is connected to the
combinational circuit among the vertices ‘‘A’’ and ‘‘B’’. In the right
graph in Fig. 6, there are two different paths, P1 and P2, in which a
bug can reach the output.

The next step in the clustering finds the Fan-in cone set of asser-
tion-checkers. Having produced the Weighted Fan-in cone graph of
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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primary outputs, we can obtain the Fan-in cone set. Fig. 7 illus-
trates the fan-in cone graphs of primary outputs and assertion-
checkers inside the example CUD. Every superimposed dashed area
in this figure represents an assertion-checker. Dashed lines bound
the storage elements that may impact assertion-checkers output.
As per Definition 4, the vertices in the ‘‘Fan-in cone graph’’ of pri-
mary outputs that lead to a transition to the states corresponding
to an assertion-checker are placed in its Fan-in cone set. An asser-
tion-checker can be influenced from the vertices placed in different
‘‘Fan-in cone graphs’’. For that, we make use of the ‘‘Fan-in cone set
of an assertion-checker with respect to a primary output’’.

For instance, the assertion-checker 1 ‘‘Ch1’’ in Fig. 7 can trigger
due to the changes in the storage elements associated with vertices
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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{A, B, D} and {A,B,D,F} located in the ‘‘Weighted fan-in cone
graphs’’ of the primary output ‘‘I’’ and ‘‘H’’, respectively. Hence,
the Fan-in cone set of this assertion-checker with respect to ‘‘I’’/
‘‘H’’ denoted by Ch1|I/Ch1|H is {A,B,D}, {A,B,D,F}, respectively. As
per Fig. 7, the Fan-in cone of the assertion-checker1 denoted by
Ch1 is the union of Ch1|I and Ch1|H, i.e., {A,B,D,F}. The maximum
coverage Cov(Ch1) is computed using Eq. (5). Likewise, the
Cov(Ch2) is obtained as Max[Cov(G1|’F’), Cov(G2|’F’)] = Max [0,1/
13] = 1/13.

Having specified the ‘‘Fan-in cone’’ set of assertion-checkers, in
the next step, we place such assertion-checkers into clusters using
a graph partitioning algorithm. Here, we make use of the CM
(Checker Map) graph presented in Definition 7. As it was explained
in Section 3.4, this graph is a weighted graph. The weight of the
edge eij, connecting the vertices vi and vj, indicates the number of
common elements in the ‘‘Fan-in cone set’’ of the assertion-check-
ers corresponding to the vi and vj, respectively. For instance, the CM
graph for the circuit in Fig. 7 has two nodes {a1,a2} that are con-
nected using an edge with the weight ‘‘1’’. Fig. 8 shows our pro-
posed algorithms to create clusters of assertion-checkers based
upon a Checker Map graph. The Cluster-Generator needs to contin-
uously update the given CM graph. The update procedure is shown
on the right-hand side of Fig. 8.
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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This algorithm takes as inputs the CM graph, the maximum
number of clusters allowed to be placed inside a debug infrastruc-
ture, denoted by ‘‘Max_Cluster’’, and the maximum number of
assertion-checkers that can be placed inside a cluster, marked by
‘‘Max_Checker’’. In other words, the number of clusters that this
algorithm can produce cannot exceed the ‘‘Max_Cluster’’. This
algorithm should also consider ‘‘Max_Checker’’ as the maximum
number of assertion-checkers allowed to be placed inside each
cluster.

As shown in Fig. 9, the edge with the heaviest weight will be se-
lected at each step. The salient property of this scheme is that the
larger the weight of an edge, the higher the probability of the vio-
lation in the related assertion-checkers and the chance of extract-
ing the required debugging details to spatially isolate the candidate
error sites.

Once an edge with the heaviest weight is found, two nodes con-
nected by this edge are chosen as a candidate to merge. Thereafter,
the partitioning procedure checks whether by merging related
nodes the maximum number of assertion-checkers exceeds. For
example, since the weight of the edge between a1 and a2 is larger
than that of the others in Fig. 9B, these two nodes will be merged to-
gether. To combine these nodes, we have to ensure that the number
of elements in the new cluster {a1,a2} is smaller than the maximum
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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number of allowable elements in each cluster. After merging these
nodes, the algorithm should update the CM graph. To update the
CM graph, any edge connected to the vertices ‘‘a1’’ or ‘‘a2’’, should
go to the new composite node or cluster {a1,a2}. Having updated
the CM graph, the iterative partition algorithm continues by merg-
ing the node ‘‘a3’’ and ‘‘a4’’ as in Fig. 9C. In the next iteration,
Fig. 9D, the edge with the largest weight is selected again. However,
since after merging two concerning clusters {a1,a2}, {a3,a4} the
number of elements in the new cluster exceeds the maximum num-
ber of allowable elements, the ‘‘Cluster-Generator’’ algorithm re-
fuses to merge these two clusters. Consequently, the next largest
edge is selected as shown in Fig. 10A. The partitioning algorithm
based on the merge and update procedure continues until it creates
the demanded number of clusters. The final clusters obtained by
applying the iterative partitioning algorithm is shown in Fig. 10D,
where there clusters of assertions-checkers are created. After
obtaining clusters of assertion-checkers, we have to incorporate
them into the debug infrastructure inside a CUD.
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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5. How to use the clustering algorithm and how to obtain
coverage metrics for clusters

To allow corrections of silicon bugs or to bypass faulty modules,
reconfigurable elements or programmable-logic fabric are increas-
ingly being placed into ASICs [20,21]. Such reconfigurable units can
be used to implement debugging circuitry. Example of an SoC con-
taining reconfigurable elements is shown in Fig. 11. As this figure
demonstrates connections to the reconfigurable fabric are not
shared uniformly among cores. In other words, in a typical SoC de-
sign, various Intellectual Property (IP) cores have different levels of
trust. For instance, IP cores provided by third vendors with the
prior successful tape-outs are considered more trustable than a
new developed IP core [11]. Therefore, reconfigurable resources
as a means to correct and bypass errors are dedicated in a non-uni-
form fashion among cores.

For example, Core3 and Core4 shown in Fig. 11 might have been
used previously or taken from a third vendor; thus, a limited
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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number of monitoring points are shared with the reconfigurable
fabric, whereas a larger number of monitoring points are assigned
to Core1 and Core2 which are new developed IPs. A debug circuitry
built into a reconfigurable fabric can communicate with a CUD by
means of monitoring points.
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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Although the main purpose of embedding programmable logic
cores on SoCs is to provide post-fabrication flexibility for the de-
sign, such programmable cores are the best candidates to host
assertion-checkers. However, when it comes to incorporating
assertion-checkers into programmable modules, we have to be
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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aware of the silicon area constraints. It is important to note that
the ‘‘Cluster-Generator’’ algorithm shown in Fig. 8 can be easily
modified to consider the area constraints. In particular, the area
constrain should replace the ‘‘Max_Checker’’ in the ‘‘Cluster_Gen-
erator’’ algorithm shown in the left hand side of Fig. 8.

A wide range of assertion-checkers in IP cores are typically uti-
lized to monitor the local properties. Such assertion-checkers, as
shown in Fig. 11, are typically laid inside the cores. Global asser-
tion-checkers of an SoC as a means to monitor interaction among
cores are built into the reconfigurable fabrics.

It is important to consider that to cluster local assertion-check-
ers inside a core using the proposed ‘‘Cluster_Generator’’ algorithm
in Section 4, the input and outputs of that particular module
should be considered as primary input and outputs. For example,
to cluster the local assertion-checkers inside the ‘‘Arithmetic’’
module in Core 1, shown in Fig. 11, the netlist graph among the in-
puts and outputs of this module should be generated.

The fan-in cone set and the maximum coverage of each asser-
tion-checker are explained in Definitions 5 and 6, respectively.
Once assertion-checkers are placed inside different clusters and a
list of available monitoring points is specified, we can find the
maximum coverage of each cluster. A monitoring point is a place
which can be observed by a debug circuitry through a monitoring
port. The maximum coverage of each cluster based on the coverage
of assertion-checkers integrated into that cluster and the maxi-
mum number of monitoring points can be computed using the
algorithm presented in Fig. 12.
6. Integration of assertion-checkers in a circuit under debug
and experimental results

To integrate clusters of assertion-checkers into a debug infra-
structure, two key issues should be resolved. First, the way that
such clusters can be accessed needs to be defined; secondly, a
mechanism through which the violation signals of these clusters
can be transferred outside to a debugger tool must be established.
Existing on-chip debug solutions, such as a scan-based run-stop
debug and a debug trace infrastructure must be equipped with
clusters of assertion-checkers. By incorporating clusters of asser-
tion-checkers in existing debug infrastructure, we can ensure com-
patibility and reduce the impact on the debug tool support. In this
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section, we will show how clusters of assertions-checkers can be
incorporated in a scan-based run-stop and a trace-based debug
infrastructure.
6.1. Integration of clusters in a scan-based run-stop debug
infrastructure

Having partitioned assertion-checkers based on their fan-in
cone sets, we have to incorporate them inside a debug infrastruc-
ture. Fig. 13 illustrates how such clusters can be integrated into a
scan-based debug infrastructure. The TAP controller is compliant
with JTAG (Joint Test Action Group) IEEE Specification 1149.1. The
controller manages the debug environment via instructions and
data transfers to the on-chip registers from an external debug host.
Moreover, it provides control to all user-defined debug circuits.

In our method, once an assertion-checker inside a cluster trig-
gers, that cluster informs the TAP controller by raising an interrupt
signal. The CUD stops working and switches to the debug mode;
consequently, an external debugger connected to the system via
the TAP port can scan-out the chain of debug status registers and
check the state of the corresponding clusters. A Cluster Status Reg-
ister (CST) is associated with each cluster. This register is in charge
of holding the status of the assertion-checkers. As shown in Fig. 13,
the size of this register is equal to the number of assertion-check-
ers inside a cluster. The violation signals of the assertion-checkers
placed inside a cluster must be stayed active to make sure that an
external debug tool can access them.

As a means to control clusters, we equipped them with an en-
able register. The TAP controller in Fig. 13 activates each cluster
through the chain of EN registers. It provides the required flexibil-
ity to enable or disable a particular assertion-checker cluster. Plus,
clusters are able to transform their violation signals by means of
CST registers, which are daisy-chained together.

The first disadvantage of incorporating assertion-checker clus-
ters into a scan-based run-stop debug infrastructure is that scan-
ning out the serial debug status register is slow. JTAG is not a
fast serial interface (the upper limit of transfers is typically less
than 100 MHz) and was not designed to support data transfers
for any real-time analysis, so it provides limited bandwidth
[3,19]. The inability to transfer vast amounts of trace data off-chip
without significant slow-down impedes the debugging of a design.
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Secondly, once a debug infrastructure switches to debug mode
no longer can serve to other clusters. Since a debug session may
take up to thousands of clock cycles, the cluster containing the
assertion-checkers related to the other parts of a design stay idle
for a large period of time; furthermore, an assertion-checker must
keep its violation signal active until it gets captured, leading to an
inability to detect multiple failures in the same assertion-checkers.

6.2. Integration of clusters in real-time trace-based debug
infrastructures

In a real-time trace-based debugging scheme, currently being
used in commercially available ICs such as ARM family [24],
embedded memories are used as a means to record and trace sig-
nals. That leads to the higher observability in designs and allows
embedded software to execute at-speed while transparently log-
ging debug events.

As mentioned before, one limitation of incorporating assertion-
checkers cluster into a scan-based run stop debug infrastructure is
that an assertion-checkers, placed inside a cluster, should keep its
violation signals active until it become processed by an external
debugger; hence, multiple violations of the same assertion-checker
are not detectable. For instance, since the overlapped sequences of
events that lead to a failure cause consecutive violations in the
assertion-checker controlling such sequences, it is not possible to
detect such failures by means of the chain of clusters ruled by a
TAP controller.

Debug trace infrastructure can be used effectively as a means to
log more accurately assertion-checker clusters status. In other
words, embedding violating assertions into the debug trace makes
it possible to trace the status of assertion-checkers per clock cycle.
Therefore, such a debugging scheme allows logging of multiple vio-
lations of the same assertion-checkers. However, due to the limited
width of the debug trace channel, we have to provide a mechanism
to effectively store clusters information. Fig. 14a shows our meth-
od to integrate clusters into real-time debug trace infrastructure.
The ‘‘Cluster-Generator’’ algorithm from Section 4 determines
which assertion-checker belongs to which cluster. It is important
to note that the value of ‘S’ is the maximum number of affordable
clusters, and ‘M’ is the maximum number of assertion-checkers
that can be placed in a cluster.

A unique cluster identifier has been assigned to each cluster.
Once an assertion-checker inside a cluster gets fire the debug infra-
structure should transfer related detail to a trace buffer. As Fig. 14
shows, the ‘‘wired-or’’ signal of a cluster gets triggered as soon as
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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the assertion-checker(s) hosted by it fire; thereafter, the status of
all assertion-checkers inside that particular cluster will be copied
to the trace register. The data that needs to be transferred to the
trace buffer is the Cluster’s Identifier and the Cluster Status Register
(CSR) containing violation signals of the assertion-checkers placed
inside the fired cluster; the former requires bandwidth of M=Max_-
Checker bits, while the latter needs S = [log2(Max_Cluster)] bits.

For example, as shown in Fig. 14a, once one of the assertion-
checkers in the cluster 2 triggers, the related cluster identifier
along with the violation information of that cluster are placed in-
side the trace-register to be stored into the embedded trace mem-
ory. When a trace buffer width is larger than the number of
clusters, multiple CSRs can be stored at the same cycle on the de-
bug trace. In the inequality given in Eq. (7), N is the total number of
assertion-checkers and M is the maximum number of assertion-
checkers that can be placed inside one cluster and C is a number
of trace registers that can be placed at the same cycle into the de-
bug trace data.

Trace Buffer Width P C � log2
N
M

� �� �
þ C �M ð8Þ

When more than one cluster wants to place its information in-
side the trace register, the Weighted Round Robin data selector as-
signs the trace registers to clusters based upon a fixed priority.
Because of the Round Robin data selection scheme, once a cluster
reports its information and unique cluster ID its priority decreases.
This data selection scheme reduces the delay between the time
that an assertion-checker gets fired and the time that information
of that particular cluster is reported. Thereby, it becomes easier to
distinguish the root cause of an error during the offline processing
of trace data. As Fig. 14a shows, the TAP controller can be effec-
tively used to control each cluster through the enable registers that
are chained together.
6.3. Weighted Round Robin (WRR) arbitration mechanism

While a part of a design is under debug, the assertion-checkers
responsible to monitor that particular module are expected to be
exercised more. In addition, the larger the number of assertion-
checkers inside a cluster, the more grants signals that cluster re-
quires. Therefore, arbitration mechanism among clusters should
perform unfairly. Fig. 14b shows a weighted round-robin arbiter
used to carry out arbitration among clusters. A weight wi is
assigned to each cluster ‘‘i’’ that indicates the maximum fraction
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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‘‘fi of grants that cluster i is supposed to receive according to fi ¼ wi
w ,

where W ¼
PS

1wi.
The higher the number of assertion-checkers inside a cluster the

larger is its fraction of grants. As shown in Fig. 14b, each time a
cluster receives a grant, the counter is decremented. As soon as
the counter associated to a particular cluster reaches to ‘‘zero’’, that
cluster no longer is able to activate its request line. The load line
will be activated periodically in every W cycle. The counter associ-
ated to each cluster is loaded with the previously assigned weight
when the load line is asserted.

6.4. Integration of clusters in a Shared Debug Unit (SDU)

Modern SoCs include many IP blocks and the interconnection
networks have become one of the important components inside
SoCs. As SoCs are getting more complicated, it has become more
critical to monitor the interaction between multiple master and
slave devices. However, conventional debug methods and tools
tend to focus on the computational parts of a system, e. g. the pro-
cessor and its interaction with the main memory. As different mas-
ter and slave modules inside modern SoCs are connected by
complex protocols, every module should be compliant with a list
of rules specific to that protocol.

A wide range of assertion-checkers are needed to monitor the
global properties of an SoC, such as hand-shaking protocols be-
tween master and slave cores, timing constraints for memory ac-
cess, fair arbitration mechanisms among cores and others. A
similar set of rules applies to devices that support the specific
interface. Therefore, one of the primary concerns for the verifica-
tion environment in charge of testing these standard protocols is
reusability. Fig. 15a shows our proposed Shared Debug Unit
(SDU) which is suited for compliance checking of standard proto-
cols. The clusters inside SDU involve assertion-checkers related
to different devices. For example, Cluster k-1 and Cluster k in
Fig. 15a are dedicated to a master core which is now being tested;
alternatively, Cluster 1 and Cluster 2 involve the assertion-checkers
of a device that is not under debug.

The SDU infrastructure should be equipped to control selec-
tively each cluster of assertion-checkers, and it should be supplied
by a mechanism to capture the violation signals of each cluster.
The SDU can be configured by means of the slave port. In other
words, the masters or slave devices sitting on the bus can reconfig-
ure the SDU. Actions such as activating or deactivating particular
assertion-checker clusters and changing the destination of trace
buffer can be performed on the SDU by devices connected to the
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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bus. Additionally, the SDU can benefit from the available observ-
ability on the main system bus for protocol checking and com-
plaint testing. For example, to overcome the limited on-chip
memory capacity, the SDU can be configured to serve as a new
master and send its debug information through the master port
to an external trace memory.

As shown in Fig. 15b, the SDU can be controlled either by the
TAP controller or through the slave port by one of the Master de-
vices in the system. By disabling the clusters containing the asser-
tion-checkers of the devices that are not being tested, we can
efficiently make use of the limited bandwidth of trace buffer.

Example of SDU’s reusability is shown in Fig. 15b; in scenario 1,
the SDU is configured by the Master1 to start debugging the Slave2.
The clusters responsible to monitor the transactions related to the
Slave2 will be enabled, while other clusters are disabled. Thereaf-
ter, the Master1 can start generating the transactions destined to
the Slave2, which is currently the device under debug. In the sec-
ond scenario, the Slave2 coordinates the SDU and configures it to
debug the Master2.

6.5. Case studies

To verify the effectiveness of the proposed clustering algorithm,
we have considered three case studies. We applied our proposed
algorithm to cluster the assertion-checkers inside the case studies.
In the following those case studies and their features will be dis-
cussed. Thereafter, we show how resorting to the clustering tech-
nique and the proposed method for incorporating such clusters
inside debug infrastructures can be beneficial in terms of energy
consumptions and the design coverage.

One of the major challenges in SoC designs has become compli-
ance testing. It is very common for designs to support certain stan-
dard protocols. Therefore, we have considered the following
standards to present the application of our method. We consider
the following designs as our test cases:

1. AMBA 3 AXI bus protocol checkers adopted from ARM [25].
2. The PCI bus protocol checkers adopted from [26].
3. Memory Controller.

6.5.1. AMBA 3 AXI bus protocol checkers
The AXI bus protocol is an enhancement of the existing

Advanced High-performance Bus (AHB) that is being used in
high-performance systems [25]. AXI protocol has five independent
unidirectional channels that carry the address/control and data.
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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Table 1
AXI configuration settings.

Parameter Value Specification

DATA_WIDTH 64 Data bus width
ID_WIDTH 4 The number of channel ID bits required
MAXBURST 16 Size of Content Accessible Memory (CAM) for storing outstanding read burst
MAXWBURST 16 Size of Content Accessible Memory (CAM) for storing outstanding write burst
MAXWAITS 16 Maximum number of cycles between VALID ? READY before a warning is generated
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Fig. 16. (a) Memory controller, (b) SDRAM structure.
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Each channel uses a two-way valid and ready handshake mecha-
nism. The five independent channels are the Address-Read (AR)
channel, Address-Write (AW) channel, Read-Data (RD) channel,
Write-Data (WD) channel, and Write Response channel. The AW
and AR channels convey the address and control for write and read
transactions. Control signals describe the nature of transactions.

A transaction can be a burst of a different length, or it can be
atomic. A burst is composed of a number of data transfers whose
length is defined before. Masters and slaves communicate through
the WD and RD channels. Write response channel (B) allows a slave
to signal completion of a write transaction or an error. A support for
the burst transaction with only the start address issued and split
transactions that enable the out-of-order transaction completion
are among other features of AXI. As AXI assigns an ID to each trans-
action, those with the same ID must be completed in order, other-
wise the order is irrelevant. Out-of-order transactions improve
system performance. A data item of an earlier access might be avail-
able from an internal buffer sooner than that of a later access (tem-
poral locality). In experiments, we considered 154 assertion-
checkers for AXI bus protocol taken from [25]. The configurable
AXI settings include different data-bus widths and support for a
varying number of outstanding transactions. In our experiments,
we make use of the particular settings listed in Table 1.

6.5.2. PCI bus protocol checkers
The Peripheral Component Interconnect (PCI) bus is being used

as an interconnection among high-performance peripherals such
as network cards, sound cards, modems, extra ports such as USB
or serial and other add-in boards. Although developed by Intel, it
is not tied to any particular family of microprocessors [27]. The
PCI local bus is a 32-bit or 64-bit bus with multiplexed address
and data lines [27] that run at clock speeds of 33 or 66 MHz. For
instance, the PCI bus can yield throughput rate of 264 MBps at
64 bits and 33 MHz. Although PCI bus is being replaced by PCI Ex-
press, most motherboards are still made with one or more PCI
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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slots, which are sufficient for many uses. In our experiments, we
have considered 40 assertion-checkers from [26] that monitor
the properties of the PCI bus protocol and perform compliance
testing for the devices connected to the bus.

6.5.3. SDRAM controller
There are a lot of timing parameters for SDRAM device and

assertion based verification can be used effectively to verify these
timing requirements. Fig. 16a shows a memory controller through
which the processor communicates with SDRAM, SRAM and Flash
memory. SDRAM, as one of the common complex slaves, provides
high bandwidth by executing memory requests in parallel. As
shown in Fig. 16b, SDRAM has a 3-D structure that involves banks,
rows, and columns. Having multiple independent banks in a 3-D
structure, enables memory scheduler to service serial requests in
parallel; moreover, commands to different banks can be pipelined.
The Address bus is divided into three parts: Bank Address (BA), Row
Address (RA) and Column Address (CA). The BA specifies one of the
banks inside an SDRAM, while the RA and CA points to a particular
row and column on that bank. SDRAM controller accepts com-
mands such as Activate (ACT), Read/Write(R/W) and Precharge
(PRE). Different combinations of the SDRAM interface signals
‘‘sel’’, ‘‘ras’’, ‘‘cas’’ and ‘‘we’’ constitute the different commands. Tak-
ing the RA and BA, the ACT command activates a particular row (RA)
inside the bank (BA) and transfers it to the row buffer of the bank
after tRCD. The row buffer serves as a cache to reduce the latency
of subsequent accesses. The PRE command gets the BA and after
tPR copies the row buffer contents to its related row in the bank,
and then makes the bank idle. The R/W command is executed only
after a bank is activated and the row buffer contains the given row.
After either the column access strobe latency (CL) or write latency
(WL), the data goes from or to SDRAM. We consider a memory con-
troller module adopted from Gaisler IP-Cores [28] and 38 assertion-
checkers adopted from [25]. The 512 Mb SDRAM under verification
is a quad bank SDRAM with a synchronous interface. Each bank is
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),

http://dx.doi.org/10.1016/j.microrel.2012.04.016


0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Configurations

C
Max Checker
Max Cluster

0 10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Configurations

C
Max Checker
Max Cluster

(a) (b)

Fig. 17. Different arrangements for assertion-checkers related to (a) AXI bus protocol checkers, (b) SDRAM controller.

Table 2
Implementation results of incorporating assertion-checkers into our test-cases using a non-clustering method.

Test Cases Number of
assertions

Gate
equivalent

Number of
ports

Design area
(lm2)

Number of cells used from TSMC 65 nm
library

Total power
(mW)

AXI Bus protocol checker 154 7431 1290 10699.22 2763 2.46
SDRAM controller assertions 38 2705 47 3895.08 645 0.68
PCI bus assertions 40 6780 75 9762.16 1805 1.287
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organized as 8192 rows � 1024 columns � 16 bits. Read and write
access to the SDRAM is burst oriented.

6.6. Cost analysis of integrating assertion-checkers into test-cases

We have used Synopsys Design Compiler to synthesize our test
cases and generate the gate level netlist. This tool first is employed
to extract the netlist graph of our test cases. Then, the MBAC [8,12]
was used to create synthesizable Verilog RTL modules from SVA
assertions; consequently, such modules have been synthesized
using Synopsys Design Compiler. In the next step, the CM graph is
created by considering the assertion-checkers and designs’ netlist
graphs. The proposed clustering algorithm is invoked with the ob-
tained CM graph along with the maximum number of clusters al-
lowed to be built into a debug infrastructure denoted by
‘‘Max_Cluster’’, and the maximum number of assertion-checkers
that can be placed inside a cluster marked by ‘‘Max_Checker’’.

Using the inequalities given in Eq. (8) and Eq. (9) as well as con-
sidering the width of trace buffer, it is possible to obtain a range of
valid configurations for ‘‘Max_Cluster’’ and ‘‘Max_Checker’’. In the
inequality of Eq. (8), ‘‘C’’ is the number of trace-registers that can
be embedded into trace data.

Trace Buffer Width P C � ½log2ðMaxClusterÞ� þ C �MaxChecker ð9Þ

MaxChecker �MaxCluster P Number of ðassertion� checkersÞ ð10Þ

A valid configuration is denoted by (Max_Cluster, Max_Checker,
C). In our experiments, the width of the trace buffer is assumed
as 16 bits. With such an assumption, the assertion-checkers inside
the AXI bus protocol checkers can be configured based on the
following arrangements: {(14,11,1), (15,11,1), (16,10. . .11,1),
(17,9. . .11,1), (18,9. . .11,1), (19,8. . .11,1), (20,8. . .11,1), (21,8. . .

11,1), (22,7. . .11,1), (23,7. . .11,1), (24,7. . .11,1), (25,7. . .11,1),
(26,7. . .11,1), (27,6. . .11,1), (28,6. . .11,1), (29,6. . .11,1), (30,6. . .
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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11,1), (31,5. . . 11,1), (32,5. . .11,1)}. Fig. 17a plots these configura-
tions. The x-axis in this figure represents a configuration number.
Similarly, the set of valid configurations for the SDRAM controller
is plotted in Fig. 17b.

To compare the effectiveness of the proposed clustering algo-
rithm with the non-clustering scheme proposed in [3], we synthe-
sized a large set of the assertion-checkers using Synopsys Design
Compiler and the TSMC 65 nm technology library at supply voltage
1.00 V. Table 2 lists the resulting silicon area, number of ports and
energy consumptions. The area usage is also reported in terms of
Gate Equivalents (GEs), which is the number of 2-input NAND
gates.

As listed in Table 2, the module that involves AXI protocol
checkers has 1290 ports; given the fact that there is an output port
associated to each assertion-checker, plus the number of assertion-
checkers in this module is 154, the required number of monitoring
ports is (1290–154) = 1136. Such a large number of monitoring
ports result to a huge wiring overhead as well as increases in en-
ergy consumptions. In fact, as Table 2 presents, the debug module
containing AXI bus protocol checkers consumes more energy than
two other modules.

The debug modules in the SDRAM controller and PCI Bus proto-
col checkers contain 9 and 35 monitoring ports, respectively. As ex-
plained in Section 5, the maximum coverage of a design can be
obtained once the number of available monitoring ports is speci-
fied. By assuming that a particular number of monitoring ports is
available, we perform the design coverage analysis on case studies
with different configurations. In our experiments, we suppose 32
available monitoring ports to the debug circuitry.

Fig. 18 plots the maximum design coverage achievable by the
debug unit, containing clusters of assertion-checkers, for the AXI
bus protocol. The maximum obtainable design coverage of the
SDRAM controller by means of the debug unit armed with the
SDRAM controller’s assertion-checkers is plotted in Fig. 19.
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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The analysis of these plots shows that by increasing the number
of clusters the design coverage increases. Another important fact is
that by increasing the limit on the maximum number of assertion-
checkers placed inside a cluster, the design coverage grows too. An-
other important observation that can be extracted from these plots
is that after reaching the certain cluster counts, the design coverage
no longer increases. For example, for AXI protocol checker the max-
imum design coverage is achievable by means of this configuration
(29,11,1); such a configuration for the PCI protocol checker and
SDRAM controller is (14,12,1) and (8,11,1), respectively.

The important consideration here is that assuming the limited
number of monitoring ports the clustering in general leads to a sig-
nificant increase in the design coverage with respect to the non-
clustering mechanism. Although the design coverage using non-
clustering method is not reported in [3], assuming the limited num-
ber of monitoring points and using our mechanism, presented in
Section 5, we computed its design coverage. It turned out that when
the number of required monitoring ports is far more than that of
available, the design coverage using the non-clustering approach
is significantly low. For instance, assuming that the available mon-
itoring ports is 32, the maximum design coverage for the AXI bus
protocol checker achievable by the non-clustering scheme is 45%,
which is less than that of clustering approach. On average the clus-
tering scheme of placing assertion-checkers inside a debug circuitry
results in 38% improvements in the design coverage of AXI protocol
checkers. However, such improvements for the PCI bus protocol and
SDRAM controller are 15% and 6%. Therefore, if a debug circuitry
consisting of assertion-checkers is connected through a large set
of wires (monitoring ports) to a design under debug, it is highly
beneficial to resort to the clustering mechanism as a means to place
such assertion-checkers into the debug module.

Fig. 20a plots the energy consumption of the debug module
containing the assertion-checkers associated with the AXI bus pro-
tocol. The energy consumptions of the debug module containing
SDRAM controller assertion-checkers with respect to different con-
figurations is shown in Fig. 20b. As seen in these figures, the in-
creases in the number of clusters result in higher energy
consumptions. The important consideration here is that the clus-
tering scheme in general leads to a drop in energy consumption
in comparison to a non-clustering approach. One can simply asso-
ciate such a decrease in the energy consumptions to the reduction
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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in the required number of request lines in data selector module
shown in Fig. 14b.

Fig. 21a and b represent hardware overhead of the debug mod-
ule containing the assertion-checkers associated with the AXI bus
protocol and SDRAM controller assertion-checkers, respectively.
Plus, the area usage is also reported in terms of Gate Equivalents
(GEs), which is the number of 2-input NAND gates.

As it can be seen, the increases in the number of clusters result
to increases in the area overhead. Such an increase in the area
overhead results from the increases in the required number of re-
quest lines in data selector module shown in Fig. 14b. However, the
area overhead for the configurations that provide better design
coverage are less than that of non-clustering method. Fig. 22a
and b shows energy consumption and hardware overhead of the
debug module associated with the PCI bus protocol, respectively.
Fig. 22a represents a drop in energy consumption in comparison
to a non-clustering approach.
r debug using clusters of assertion-checkers. Microelectron Reliab (2012),
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Table 3
Features provided by our proposed method versus two related work.

Partitioning Coverage Power Incorporation in debugging Infrastructures Port
Count

Our proposal in
this paper

Graph partitioning based on assertion-
checkers fan-in cone set

Formally
defined

Decrease in power
consumptions

Support for Scan-based run-stop and trace-based
debugging

Reported

Enable interfacing with both Internal and External
Memory Offer reusability through SDU

The proposed
method in [11]

Subset Sum algorithm constrained with
the available silicon area

N/A N/A N/A N/A

The proposed
method in [3]

N/A N/A N/A Scan-based run-stop and trace-based debugging
enable interfacing with internal memory

N/A
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6.7. Comparison of features provided by our method with the related
work

A summary of the features provided by our proposed method
against related work in [3,11] is listed in Table 3. These features
in particular are related to the integration of assertion-checkers
in debug infrastructures. As it is listed in this table, the proposed
method makes use of a graph partitioning to select assertion-
checkers and place them inside a cluster, while the study in [11]
uses a customized ‘‘Subset-Sum’’ algorithm constrained by the
available silicon area as a means to partition assertion-checkers.
It is important to note that the ‘‘Cluster-Generator’’ algorithm
shown in Fig. 8 can be easily parameterized to consider the area
constraints. Although the proposed method in [3] advocates
clustering, it does not provide any mechanism for partitioning
assertion-checkers. Neither the study in [3] nor [11] considers
coverage metrics, while we formally defined the coverage metrics
for assertion-checkers and their clusters.

The incorporation of assertion-checkers inside a scan-based de-
bug infrastructure and a trace-memory based debug infrastructure
has been addressed in our proposed method. We also investigate
the integration of a set of assertion-checkers inside a shared debug
unit (SDU) that can be treated as an independent salve module in
the bus based SoCs.

As it is shown in Table 3, the method proposed in [11] has not
addressed incorporation of assertion-checkers inside any debug
infrastructure. Although the authors in [3] support incorporation
of assertion-checkers inside a trace-memory based debug infra-
structure, their scheme is bias toward the use of internal trace
memory and cannot be generalized to support external trace mem-
ory. Neither the study in [3] nor [11] considers the important issue
related to power consumption, while assertion-checkers are active,
and they monitor the properties of a system. We leverage the fact
that if there is a bug in a particular part of a system, the assertion-
checkers monitoring the properties of that part of the system are
more likely subject to failures. Therefore, by means of incorporat-
ing the related assertion-checkers into a cluster, we increase the
chance of the root-cause extraction of errors. Plus, when an exter-
nal debug tool generates test cases with a primary focus to exercise
a precise part of the system, clusters involved in the validation of
that particular module can be enabled selectively.
7. Conclusions

In this paper, we proposed a new algorithm to cluster assertion-
checkers. Moreover, a mechanism to find the coverage of each clus-
ter is also introduced. We also presented several mechanisms to
incorporate clusters of assertion-checkers into the DfD infrastruc-
ture. The efficiency of the proposed methods is investigated using
AXI bus, PCI bus protocol checkers and SDRAM memory controller
checkers. The clustering algorithm, along with the proposed infra-
structure lead to better results in terms of the energy consumption
Please cite this article in press as: Neishaburi MH, Zilic Z. An infrastructure fo
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and design coverage compared to placing assertion-checkers with-
out clustering.
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