
Teaching for Evolution towards Embedded Multi-sensor Interfaces

Zeljko Zilic
McGill University

Department of ECE
Monteal, Canada

e-mail: zeljko.zilic@mcgill.ca

Boris Karajica
ST Microelectronics

Geographical Business Unit
Lexington, USA

e-mail: boris.karajica@st.com

Abstract—This paper outlines experiences in bringing up a
course with significant sensing and actuating capabilities, on
top of the already existing infrastructure support for training
embedded wireless system design. The role of the suitable
development platform, design kits and the lab experiments is
outlined, and the expected outcomes are highlighted. We
emphasize the role of scaffolding principle, which now does not
only apply to the single course, but also to our overall
experience in developing such courses.

Keywords-embedded systems teaching, heterogeneous
microsystems, sensors, wireless sensors networks

I. INTRODUCTION
The progress in the embedded systems platforms has

been unabated in the last several decades, facilitated with the
system miniaturization and integration capabilities, and
limited only with the ability to imagine new classes of
products that integrate computation, communication and the
capabilities in sensing and actuation.

While computing and communication has been readily
integrated in standard microelectronics products, integration
of sensing has required breakthroughs in technologies
beyond microelectronics. Progress in MEMS or
microfluidics devices and their integration has facilitated
versatile and integrated sensing, measurement and
instrumentation subsystems. The introduction of such
heterogeneous microsystems provides many opportunities in
building more integrated and intelligent embedded systems.

Training of students for such integrated microsystems
requires careful adjustment to current curricula. Even if there
are the existing courses dealing with networked embedded
systems, most notably, wireless sensor networks, they have
not, to a large degree, employed capable modern sensors.
The challenges of introducing this last component cannot be
overestimated. In system-level design area, the arithmetic
imprecision inherent in complex mechanical sensors requires
careful offsetting in software. Then, there is the real-time
design and, increasingly, real-time debug challenge, not to
mention a need for sophisticated signal processing or control
system schemes.

II. BACKGROUND
Computer Engineering curriculum is a fast moving

target. After the initial IEEE Task Force on Computer
Engineering Curricula produced report in Dec. of 2004,

many new networked devices and applications have captured
imagination of consumers, investors, developers and society
as a whole, especially in the social networking sphere. That
progress by itself needs to be taken into account when
upgrading the curriculum. There is much focus now of
extending the networking capabilities to the physical
environment, i.e., towards “cyber-physical” world. In
embedded systems education, the focus shifts to the
incorporation of interfaces to the physical world, i.e., modern
sensors and the actuators that let us control much more of the
environment in much more integrated, networked way.

The key challenge then is in teaching the system design
with a wide range of sensing and actuating interfaces, while
still covering ground in “classical” embedded systems topics
from the computer engineering point of view, and sometimes
even the general-purpose computing system education. This
goal would not be possible without an effective multi-sensor
platform, equipped with sufficient development and debug
tools. Furthermore, the newly introduced and relatively alien
(to the much of Computer Engineering) technical issues in
introducing sensors and actuators now need to be covered
well, but not at the expense of the rest of the embedded
system design education, all within the already limited credit
counts. Hence, new progress in curriculum has to be made in
an extremely measured way. The following section reviews
how we reached this point.

III. ROAD TO NETWORKED, DEEPLY PHYSICALLY-
EMBEDDED MICROPROCESSOR SYSTEMS

A. Phase I: Microprocessor Systems
Not so long ago, the courses on microprocessor systems

were added to EE (and sometimes Mech. Eng.) curricula, to
cover in a single course the basics of using microprocessors
as well provide for the extensive laboratory and project
work. Those courses were intensive, requiring considerable
self-learning (as they were both first and last courses on the
topic and include difficult lab practice), but have also gained
popularity among the students, in spite of heavy workload.
The calculation on the part of the students having this course
as an elective course was based on the fact that the payoff in
exciting and well-paid jobs was just around the corner.
Students have realized that experiences in projects such as
music players, bar-code readers or sonar-equipped gadgets
and the development of skills to realize such ambitious

978-1-61284-639-2/11/$26.00 ©2011 IEEE 1

embedded systems has opened many doors straight upon
their graduation.

The problem, unlike majority of courses in EE, was that
the half-period for knowledge “dissolution” of 3 years meant
that once the laboratory setup was introduced, it became
quickly obsolete and out of touch with the topics dealing
with processor architecture, which moved quickly ahead.
Additionally, the obvious limitations of earlier kits, in terms
of not having non-volatile memory within a processor, bulky
equipment (students needed to carry large cardboxes with
microprocessor kits with them) and rudimentary tools were
taking tall in being able to deliver ever-more impressive
projects, which was a trend taken for granted.

B. Phase II: Modernizing Microprocessor Kits
The establishment of Computer Engineering programs

has placed more expectations, but not much more room in
curriculum, for teaching microprocessor systems. Since
computer engineering advances rapidly across the board, the
space had been taken by numerous courses required for CE
upbringing. At that stage, making the most of the laboratory
equipment has become even more of a necessity.

Since the course might have stayed the first and the last
course on microprocessor systems, the kit had to rely on the
processors that are easy enough for a first contact with
microprocessors and expandable enough to facilitate a set of
lab exercises on microprocessor hardware and software
interfacing, and to guard against obsolescence, in the light of
the rapid introduction of standardized interfaces and various
peripherals. Furthermore, non-volatile memory inside
processor has become a must for productivity in the lab.

Extensive searches for and the original designs [1] of
suitable microprocessor kits led to the selection of embedded
microcontrollers, such as those based on TI’s MSP430
series. They were simple enough, yet they utilized most
modern concepts, except for the microarchitectural features,
such as pipelining.

C. Phase III: Expanding on (Wireless) Connectivity
Finally, the important trend of networking the embedded

systems, especially by wireless means, has created need for
introducing this component to the already demanding course
[2]. Creative restructuring, such that the networking
interfaces are introduced as early as possible as instances of
IO interfacing, to replace earlier IO that was inconsequential
to the networking. Test interfaces such as JTAG and their
role, as well as the wireless debug and monitoring [3] were
of especial importance in covering the topics without much
time being wasted. A variety of wireless interfaces were
deployed in the lab [4], with the aim of exposing interfacing
at various levels of abstraction. Similar developments were
reported elsewhere [5].

IV. MICROSYSTEM KIT REQUIREMENTS AND
SPECIFICATION - INEMO

In keeping with the overall goal of training for
Microsystems design, the required laboratory aid should
have:

• Modern and sufficiently capable processor to
perform the required signal processing.

• Significant number of advanced sensors integrated
on board, using a variety of interfacing standards.

• State-of-the-art tools: IDEs including debug
interfaces that not only allow the start-and-stop
examination of program state, but also real-time
tracing and debug capabilities.

A. iNEMO Kit
The iNEMO™ is an ARM Cortex M3-based module that

combines accelerometers, gyroscopes and magnetometers
with pressure and temperature sensors to provide 3-axis
sensing of linear, angular and magnetic motion,
complemented with temperature and barometer/altitude
readings, to make up a 10 degrees of freedom (DOF)
platform.

The iNEMO integrates five STMicroelectronics sensors:
a 2-axis roll-and-pitch gyroscope, a 1-axis yaw gyroscope, a
6-axis geomagnetic module, a pressure sensor, and a
temperature sensor.

This 10-DOF inertial system is a complete hardware
platform that can be used in many applications, such as
robotics, gaming, location-based service and human machine
interfaces. A versatile set of communication interfaces with
various power supply options in a tiny board (~4 x 4 cm)
makes the iNEMO a flexible and open demonstration
platform. The block diagram of the iNEMO board is shown
in Figure 1. The processor used in the board is the top model
in a very capable family of ARM Cortex M3 processors,
running at 72MHz, and executing the Thumb2 ISA in a 3-
stage pipelined manner. In addition to a variety of embedded
system interfaces, this processor contains 512kB of Flash
memory, 64kB of SRAM and a variety of debug support,
which we find very useful for education of future embedded
systems engineers.

Figure 1: iNEMO Block Diagram

The board, measuring 42x 38 mm, and is actually as wide
as a JTAG connector, so instead the programming and
debugging is done via the newer SWD interface with much
smaller pin pitch and less signals taken out, but the full

2

JTAG functionality can be achieved if needed even at that
pin count. The top side of the board is shown in Figure 2.

B. Availability of Sensors
The variety and advanced functionality of sensors is

critical to providing suitable training, as some low-quality
temperature sensors and other poor offerings of the recent
past do not allow good exposure to the important issues and
complexity in utilizing modern sensors. The iNEMO board is
an extremely good choice in that sense, as it includes state-
of-the-art, high-precision, temperature-stable and
compensated sensors for a number of physical quantities that
are challenging to capture.

First, there is the LMS303DLH sensor that includes in a
single package two advanced devices: a 3D accelerometer
and a 3D magnetometer, controlled independently (including
powering down) and equipped with sophisticated digital
interfaces that perform A/D conversion, significant
processing on-chip and overally simplify software
interfacing. The sensor communicates via I2C interface,
requiring a minimal number of pins. Two gyroscopes
complement the motion sensors set by providing readouts of
angular rates of rotations in all three dimensions. They are
indispensable in control of moving objects, such as those
used in robotic applications.

Figure 2: Layout of iNEMO Board: Top Side

V. LAB EXPERIMENT STRUCTURE
The laboratory exercises that use iNEMO need to be

devised carefully to achieve embedded systems teaching
goals within a single course.

A. Embedded Software Including Assembly Code
The introductory lab experiment is best performed on the

simulation model of an ISA. We have maintained the
emphasis in this experiment on realizing a key part of the
experiment in assembly code. Even through the modern
assemblers have made great progress, by requiring a non-
trivial assembly code exposes students to the ISA of modern
processor in a way that cannot be replicated from high-level
language entries. In the best case, one can try disassembling

the compiled code, but our aim here is to let students pass
through the thought process of finding the best mapping of
the problem into the stream of processor instructions.

For example, giving an assignment such as the packed
BCD arithmetic implementation, together with handling the
sign and overflow bits forces the thought process of finding
efficient code. This is especially true for architectures, such
as ARM, where there is no native BCD arithmetic. Further,
by insisting on efficient ARM assembly programming, we
expose the useful concepts such as conditional execution,
instruction reordering, and a number of others, depending on
how much time one can afford.

Further, by programming in assembler, students obtain
the unique chance to identify numerous techniques that they
already used in C language, this time closer to hardware, and
to appreciate how low level C language actually is and how
much hardware control one can in the end obtain from C.

The second part of the same lab exercise consist of
writing the main program (e.g., a Babbage machine
implementation using packed BCD arithmetic), and
compiling and linking C and assembly components. Students
need to understand the calling conventions, linker and its
nuances. Processes of arriving from the source code to the
executable program is now exposed, and the students can
concentrate on the rest of the process of realizing networked
embedded systems armed with multiple sensors.

B. Using the Sensors - Basics
The second lab experiment serves the role of enabling

students to use productively the hardware kit, to dispel any
fears and also to protect their work and the equipment
through proper handling.

In this experiment, the first peripheral needs to be
attached and used in software, and for this purpose, an
experiment based on SPI, I2C or similar interfaces
conducted. Basic polled IO processing needs to be employed
as, at this stage, interrupt-driven processing is too demanding
for students, but with the proliferation of multithread way of
reasoning, and the asynchronous execution, we anticipate
that interrupts will become more natural to absorb. Even
now, writing interrupt handlers purely in C language is
straightforward.

For instance, connecting a 3D accelerometer via I2C is
useful for understanding and managing well sensor
interfacing, but also getting a feeling for the required signal
processing that will be needed for such sensor interfaces. At
this stage, we do not require complex processing, such as
adaptive filtering, and will rely on the very basic control
theory background and the intuitive notions of achieving
stability of the response by tuning the gain, for instance, or
adjusting the decision thresholds in applications such as free
fall detection, where the accelerometer in all three dimension
should be close to zero, or in tilt measurements, where
simple geometric processing suffices to detect the tilt of the
object. Simple games could be built even at this stage by
these components to get students more motivated to fine-
tune the system using the applied concepts.

Of course, interfacing the accelerometer requires solid,
yet concise explanation of how an accelerometer, such as

3

ST’s LSM303DLH, operates and is interfaced. We believe
that a short “inline” description embedded in the lab handout
suffices, but some lecture or tutorial time spent on the device
definitely speeds up the execution.

Since processing the accelerometer data for purposes of
deducing orientation (tilt) requires trigonometric functions
and their inverses, nominally defined as floating-point
values, while the sensor provides signed integer data, this lab
provides further possibility to explore the relevant arithmetic
processing techniques, and we guide them in developing
specific techniques (e.g., CORDIC, function approximation)
that are a hallmark of embedded microsystems, where the
data collected requires significant arithmetic operations.

C. Processing and Fusing Sensor Data
The third laboratory exercise, imagined as a mini-project,

continues in advancing both computer interfacing and sensor
data processing skills. At this stage, interrupt-driven
processing arrives naturally, as there might be two sets of
independent sensing, plus some processing that need to be
multiplexed in time via interrupt-driven processing.

Regarding sensor processing, fusing data from two sets
of sensors, such as accelerometers and magnetometers,
requires also more sophisticated processing, especially with
noise taken into account. At this stage, two independent
streams of sensor data get merged in the enhanced signal
useful for higher-level processing of physical data. Lab
experiment then prescribes to design solutions such as a) tilt-
compensated compass that adjusts the magnetic field reading
by taking into account the orientation of the device or b) a
combination of system movement control by merging
accelerometer and gyroscope data via sufficiently robust
filtering, such as Kalman filter, from a library of signal
processing blocks, such as the one available already by ST
Microelectronics. Again, there is a lot of possibility to
practicing suitable arithmetic computations in this setup,
including CORDIC, function approximations, and we again
use scaffolding principle to achieve more in the end.

D. Project: Multi-sensory System Design
The final project relies on the scaffolding principle of

reusing the developments from previous labs, similar to our
earlier developments in microprocessor [1] and embedded
wireless system courses [4]. The focus now shifts in creating
conditions for teamwork contributing to achieving an
ambitious integrated microsystems design project, which will
finally cement the buildup of required skills and the efficient
team project execution. All members of the team must
contribute fully in order to achieve the results, and the close
monitoring by instructor is a must here.

One new element that is introduced is that of networking,
mostly by wireless means, by adding interfaces such as
Zigbee or Bluetooth. At this stage, as in the past, speed of the
development is impacted by the ability to debug systems
employing wireless networking channels, and we rely on our
previous experiences, enhanced by in-house aids, such as the
beacon stations [4], JTAG over wireless [3] or “packet
sniffers” that are instrumental in passing the hurdle of

achieving the first communication. Relative to previous
courses, more emphasis is now required on filtering and
adaptive signal processing for packet networks [7].

TABLE I. TOPICS COVERED

Lab
Skills Developed

Core Embedded Systems Interfaces,
Networking Microsystems

#1

ISA,interfacing Assembly-C,
ISA simulator, arithmetics,
debugging basics

- -

#2
I2C interfacing, devices,
floating point, real-time
debugging (SWD)

I2C, JTAG,
SWD

Accelerometer
, calibration

#3
Fast interrupt processing,
concurent/asynchronous
debug techniques

Processing
in threads,
dual I2C

Fusing accel.
magnetometer

Proj. System-level microsystem
design, RTOS, teamwork

SPI,
Zigbee,

Bluetooth

Fusion,
Kalman
filtering

VI. CONCLUSIONS
This paper presents an evolution in teaching courses on

practical microprocessor system design. Outlined is the
planning needed to achieve ever-growing teaching goals,
together with the suitable teaching aids. In a significant way,
the current inclusion of multi-sensory data processing is
showing the full potential of the applied computer
engineering to the systems deeply embedded in physical
environments. In mixed teams of computer, electrical and
software engineering students, the course achieves
impressive crowning of all of their gathered skills. Students
have reacted very positively, but the official evaluation
results are not available at the time of writing of this paper.

ACKNOWLEDGMENTS
The authors are grateful to Bob Boys and Angela

Williams from ARM for numerous discussions, and for the
licenses of Keil MDK IDE.

REFERENCES

[1] J-S. Chenard, A. U. Khalid, M. Prokic, R. Zhang, A. Chattopadyay
and Z. Zilic, "Expandable and Robust Laboratory for Microprocessor
Systems," Proc. Microelectronics Systems Education Conf., 2005.

[2] Z. Zilic, J-S. Chenard and M. Prokic, “ A Laboratory for Wireless and
Mobile Embedded Systems”, Proc. Conference on Microelectronics
Systems Education, MSE’07, pp. 103-104, May 2007.

[3] M. W. Chiang, Z. Zilic, J-S. Chenard and K. Radecka, "Architectures
of Increased Availability Wireless Sensor Network Nodes", Proc.
IEEE Intl. Test Conference, ITC 04, pp. 1232-1241, Oct. 2004.

[4] J-S. Chenard, Z. Zilic and M. Prokic, “Laboratory for Wireless and
Mobile Embedded Systems”, IEEE Transactions on Education, Vol.
51, No. 3, Aug. 2008, pp. 378-384.

[5] P. Frantz, C. Garnier, E. Welsh, and A. Valenzuela, “Microcontroller
and embedded systems laboratory,” 2005 [Online]. Available: http://
cnx.rice.edu/content/col10215/latest

[6] ST Microelectronics, iNEMO, www.st/inemo.
[7] J. Radecki, Z. Zilic and K. Radecka, “Echo Cancellation in IP

Networks”, Proceedings of IEEE International Midwest Symposium
on Circuits and Systems, pp. 219-222, Aug. 2002.

4

