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Abstract—This paper outlines experiences in bringing up a 
course with significant sensing and actuating capabilities, on 
top of the already existing infrastructure support for training 
embedded wireless system design. The role of the suitable 
development platform, design kits and the lab experiments is 
outlined, and the expected outcomes are highlighted. We 
emphasize the role of scaffolding principle, which now does not 
only apply to the single course, but also to our overall 
experience in developing such courses.  
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I.  INTRODUCTION  
The progress in the embedded systems platforms has 

been unabated in the last several decades, facilitated with the 
system miniaturization and integration capabilities, and 
limited only with the ability to imagine new classes of 
products that integrate computation, communication and the 
capabilities in sensing and actuation.  

While computing and communication has been readily 
integrated in standard microelectronics products, integration 
of sensing has required breakthroughs in technologies 
beyond microelectronics. Progress in MEMS or 
microfluidics devices and their integration has facilitated 
versatile and integrated sensing, measurement and 
instrumentation subsystems. The introduction of such 
heterogeneous microsystems provides many opportunities in 
building more integrated and intelligent embedded systems.  

Training of students for such integrated microsystems 
requires careful adjustment to current curricula. Even if there 
are the existing courses dealing with networked embedded 
systems, most notably, wireless sensor networks, they have 
not, to a large degree, employed capable modern sensors. 
The challenges of introducing this last component cannot be 
overestimated. In system-level design area, the arithmetic 
imprecision inherent in complex mechanical sensors requires 
careful offsetting in software. Then, there is the real-time 
design and, increasingly, real-time debug challenge, not to 
mention a need for sophisticated signal processing or control 
system schemes.  

II. BACKGROUND 
Computer Engineering curriculum is a fast moving 

target. After the initial IEEE Task Force on Computer 
Engineering Curricula produced report in Dec. of 2004, 

many new networked devices and applications have captured 
imagination of consumers, investors, developers and society 
as a whole, especially in the social networking sphere. That 
progress by itself needs to be taken into account when 
upgrading the curriculum. There is much focus now of 
extending the networking capabilities to the physical 
environment, i.e., towards “cyber-physical” world. In 
embedded systems education, the focus shifts to the 
incorporation of interfaces to the physical world, i.e., modern 
sensors and the actuators that let us control much more of the 
environment in much more integrated, networked way.  

The key challenge then is in teaching the system design 
with a wide range of sensing and actuating interfaces, while 
still covering ground in “classical” embedded systems topics 
from the computer engineering point of view, and sometimes 
even the general-purpose computing system education. This 
goal would not be possible without an effective multi-sensor 
platform, equipped with sufficient development and debug 
tools. Furthermore, the newly introduced and relatively alien 
(to the much of Computer Engineering) technical issues in 
introducing sensors and actuators now need to be covered 
well, but not at the expense of the rest of the embedded 
system design education, all within the already limited credit 
counts. Hence, new progress in curriculum has to be made in 
an extremely measured way.  The following section reviews 
how we reached this point.  

III. ROAD TO NETWORKED, DEEPLY PHYSICALLY-
EMBEDDED  MICROPROCESSOR SYSTEMS  

A. Phase I: Microprocessor Systems 
Not so long ago, the courses on microprocessor systems 

were added to EE (and sometimes Mech. Eng.) curricula, to 
cover in a single course the basics of using microprocessors 
as well provide for the extensive laboratory and project 
work. Those courses were intensive, requiring considerable 
self-learning (as they were both first and last courses on the 
topic and include difficult lab practice), but have also gained 
popularity among the students, in spite of heavy workload. 
The calculation on the part of the students having this course 
as an elective course was based on the fact that the payoff in 
exciting and well-paid jobs was just around the corner. 
Students have realized that experiences in projects such as 
music players, bar-code readers or sonar-equipped gadgets 
and the development of skills to realize such ambitious 
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embedded systems has opened many doors straight upon 
their graduation.  

The problem, unlike majority of courses in EE, was that 
the half-period for knowledge “dissolution” of 3 years meant 
that once the laboratory setup was introduced, it became 
quickly obsolete and out of touch with the topics dealing 
with processor architecture, which moved quickly ahead. 
Additionally, the obvious limitations of earlier kits, in terms 
of not having non-volatile memory within a processor, bulky 
equipment (students needed to carry large cardboxes with 
microprocessor kits with them) and rudimentary tools were 
taking tall in being able to deliver ever-more impressive 
projects, which was a trend taken for granted.  

B. Phase II: Modernizing Microprocessor Kits 
The establishment of Computer Engineering programs 

has placed more expectations, but not much more room in 
curriculum, for teaching microprocessor systems. Since 
computer engineering advances rapidly across the board, the 
space had been taken by numerous courses required for CE 
upbringing. At that stage, making the most of the laboratory 
equipment has become even more of a necessity. 

Since the course might have stayed the first and the last 
course on microprocessor systems, the kit had to rely on the 
processors that are easy enough for a first contact with 
microprocessors and expandable enough to facilitate a set of 
lab exercises on microprocessor hardware and software 
interfacing, and to guard against obsolescence, in the light of 
the rapid introduction of standardized interfaces and various 
peripherals. Furthermore, non-volatile memory inside 
processor has become a must for productivity in the lab.  

Extensive searches for and the original designs [1] of 
suitable microprocessor kits led to the selection of embedded 
microcontrollers, such as those based on TI’s MSP430 
series. They were simple enough, yet they utilized most 
modern concepts, except for the microarchitectural features, 
such as pipelining.  

C. Phase III: Expanding on (Wireless) Connectivity 
Finally, the important trend of networking the embedded 

systems, especially by wireless means, has created need for 
introducing this component to the already demanding course 
[2]. Creative restructuring, such that the networking 
interfaces are introduced as early as possible as instances of 
IO interfacing, to replace earlier IO that was inconsequential 
to the networking. Test interfaces such as JTAG and their 
role, as well as the wireless debug and monitoring [3] were 
of especial importance in covering the topics without much 
time being wasted. A variety of wireless interfaces were 
deployed in the lab [4], with the aim of exposing interfacing 
at various levels of abstraction. Similar developments were 
reported elsewhere [5]. 

IV. MICROSYSTEM KIT REQUIREMENTS AND 
SPECIFICATION - INEMO 

In keeping with the overall goal of training for 
Microsystems design, the required laboratory aid should 
have: 

• Modern and sufficiently capable processor to 
perform the required signal processing. 

• Significant number of advanced sensors integrated 
on board, using a variety of interfacing standards. 

• State-of-the-art tools: IDEs including debug 
interfaces that not only allow the start-and-stop 
examination of program state, but also real-time 
tracing and debug capabilities.  

A. iNEMO Kit 
The iNEMO™ is an ARM Cortex M3-based module that 

combines accelerometers, gyroscopes and magnetometers 
with pressure and temperature sensors to provide 3-axis 
sensing of linear, angular and magnetic motion, 
complemented with temperature and barometer/altitude 
readings, to make up a 10 degrees of freedom (DOF) 
platform. 

The iNEMO integrates five STMicroelectronics sensors: 
a 2-axis roll-and-pitch gyroscope, a 1-axis yaw gyroscope, a 
6-axis geomagnetic module, a pressure sensor, and a 
temperature sensor. 

This 10-DOF inertial system is a complete hardware 
platform that can be used in many applications, such as 
robotics, gaming, location-based service and human machine 
interfaces. A versatile set of communication interfaces with 
various power supply options in a tiny board (~4 x 4 cm) 
makes the iNEMO a flexible and open demonstration 
platform. The block diagram of the iNEMO board is shown 
in Figure 1. The processor used in the board is the top model 
in a very capable family of ARM Cortex M3 processors, 
running at 72MHz, and executing the Thumb2 ISA in a 3-
stage pipelined manner. In addition to a variety of embedded 
system interfaces, this processor contains 512kB of Flash 
memory, 64kB of SRAM and a variety of debug support, 
which we find very useful for education of future embedded 
systems engineers.  

 
Figure 1: iNEMO Block Diagram 

The board, measuring 42x 38 mm, and is actually as wide 
as a JTAG connector, so instead the programming and 
debugging is done via the newer SWD interface with much 
smaller pin pitch and less signals taken out, but the full 
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JTAG functionality can be achieved if needed even at that 
pin count. The top side of the board is shown in Figure 2. 

 

B. Availability of Sensors 
The variety and advanced functionality of sensors is 

critical to providing suitable training, as some low-quality 
temperature sensors and other poor offerings of the recent 
past do not allow good exposure to the important issues and 
complexity in utilizing modern sensors. The iNEMO board is 
an extremely good choice in that sense, as it includes state-
of-the-art, high-precision, temperature-stable and 
compensated sensors for a number of physical quantities that 
are challenging to capture.  

First, there is the LMS303DLH sensor that includes in a 
single package two advanced devices: a 3D accelerometer 
and a 3D magnetometer, controlled independently (including 
powering down) and equipped with sophisticated digital 
interfaces that perform A/D conversion, significant 
processing on-chip and overally simplify software 
interfacing. The sensor communicates via I2C interface, 
requiring a minimal number of pins.   Two gyroscopes 
complement the motion sensors set by providing readouts of 
angular rates of rotations in all three dimensions. They are 
indispensable in control of moving objects, such as those 
used in robotic applications.  

 
Figure 2: Layout of iNEMO Board: Top Side 

V. LAB EXPERIMENT STRUCTURE 
The laboratory exercises that use iNEMO need to be 

devised carefully to achieve embedded systems teaching 
goals within a single course.  

A. Embedded Software Including Assembly Code 
The introductory lab experiment is best performed on the 

simulation model of an ISA. We have maintained the 
emphasis in this experiment on realizing a key part of the 
experiment in assembly code. Even through the modern 
assemblers have made great progress, by requiring a non-
trivial assembly code exposes students to the ISA of modern 
processor in a way that cannot be replicated from high-level 
language entries. In the best case, one can try disassembling 

the compiled code, but our aim here is to let students pass 
through the thought process of finding the best mapping of 
the problem into the stream of processor instructions.  

For example, giving an assignment such as the packed 
BCD arithmetic implementation, together with handling the 
sign and overflow bits forces the thought process of finding 
efficient code. This is especially true for architectures, such 
as ARM, where there is no native BCD arithmetic. Further, 
by insisting on efficient ARM assembly programming, we 
expose the useful concepts such as conditional execution, 
instruction reordering, and a number of others, depending on 
how much time one can afford.  

Further, by programming in assembler, students obtain 
the unique chance to identify numerous techniques that they 
already used in C language, this time closer to hardware, and 
to appreciate how low level C language actually is and how 
much hardware control one can in the end obtain from C.  

The second part of the same lab exercise consist of 
writing the main program (e.g., a Babbage machine 
implementation using packed BCD arithmetic), and 
compiling and linking C and assembly components. Students 
need to understand the calling conventions, linker and its 
nuances. Processes of arriving from the source code to the 
executable program is now exposed, and the students can 
concentrate on the rest of the process of realizing networked 
embedded systems armed with multiple sensors. 

B. Using the Sensors - Basics 
The second lab experiment serves the role of enabling 

students to use productively the hardware kit, to dispel any 
fears and also to protect their work and the equipment 
through proper handling. 

In this experiment, the first peripheral needs to be 
attached and used in software, and for this purpose, an 
experiment based on SPI, I2C or similar interfaces 
conducted. Basic polled IO processing needs to be employed 
as, at this stage, interrupt-driven processing is too demanding 
for students, but with the proliferation of multithread way of 
reasoning, and the asynchronous execution, we anticipate 
that interrupts will become more natural to absorb. Even 
now, writing interrupt handlers purely in C language is 
straightforward.  

For instance, connecting a 3D accelerometer via I2C is 
useful for understanding and managing well sensor 
interfacing, but also getting a feeling for the required signal 
processing that will be needed for such sensor interfaces. At 
this stage, we do not require complex processing, such as 
adaptive filtering, and will rely on the very basic control 
theory background and the intuitive notions of achieving 
stability of the response by tuning the gain, for instance, or 
adjusting the decision thresholds in applications such as free 
fall detection, where the accelerometer in all three dimension 
should be close to zero, or in tilt measurements, where 
simple geometric processing suffices to detect the tilt of the 
object. Simple games could be built even at this stage by 
these components to get students more motivated to fine-
tune the system using the applied concepts.  

Of course, interfacing the accelerometer requires solid, 
yet concise explanation of how an accelerometer, such as 
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ST’s LSM303DLH, operates and is interfaced. We believe 
that a short “inline” description embedded in the lab handout 
suffices, but some lecture or tutorial time spent on the device 
definitely speeds up the execution.   

Since processing the accelerometer data for purposes of 
deducing orientation (tilt) requires trigonometric functions 
and their inverses, nominally defined as floating-point 
values, while the sensor provides signed integer data, this lab 
provides further possibility to explore the relevant arithmetic 
processing techniques, and we guide them in developing 
specific techniques (e.g., CORDIC, function approximation) 
that are a hallmark of embedded microsystems, where the 
data collected requires significant arithmetic operations.  

C. Processing and Fusing Sensor Data 
The third laboratory exercise, imagined as a mini-project, 

continues in advancing both computer interfacing and sensor 
data processing skills. At this stage, interrupt-driven 
processing arrives naturally, as there might be two sets of 
independent sensing, plus some processing that need to be 
multiplexed in time via interrupt-driven processing.  

Regarding sensor processing, fusing data from two sets 
of sensors, such as accelerometers and magnetometers, 
requires also more sophisticated processing, especially with 
noise taken into account. At this stage, two independent 
streams of sensor data get merged in the enhanced signal 
useful for higher-level processing of physical data. Lab 
experiment then prescribes to design solutions such as a) tilt-
compensated compass that adjusts the magnetic field reading 
by taking into account the orientation of the device or b) a 
combination of system movement control by merging 
accelerometer and gyroscope data via sufficiently robust 
filtering, such as Kalman filter, from a library of signal 
processing blocks, such as the one available already by ST 
Microelectronics.  Again, there is a lot of possibility to 
practicing suitable arithmetic computations in this setup, 
including CORDIC, function approximations, and we again 
use scaffolding principle to achieve more in the end.  

D. Project: Multi-sensory System Design 
The final project relies on the scaffolding principle of 

reusing the developments from previous labs, similar to our 
earlier developments in microprocessor [1] and embedded 
wireless system courses [4]. The focus now shifts in creating 
conditions for teamwork contributing to achieving an 
ambitious integrated microsystems design project, which will 
finally cement the buildup of required skills and the efficient 
team project execution. All members of the team must 
contribute fully in order to achieve the results, and the close 
monitoring by instructor is a must here.  

One new element that is introduced is that of networking, 
mostly by wireless means, by adding interfaces such as 
Zigbee or Bluetooth. At this stage, as in the past, speed of the 
development is impacted by the ability to debug systems 
employing wireless networking channels, and we rely on our 
previous experiences, enhanced by in-house aids, such as the 
beacon stations [4], JTAG over wireless [3] or “packet 
sniffers” that are instrumental in passing the hurdle of 

achieving the first communication. Relative to previous 
courses, more emphasis is now required on filtering and 
adaptive signal processing for packet networks [7]. 

TABLE I.  TOPICS COVERED 

Lab 
Skills Developed 

Core Embedded Systems Interfaces, 
Networking Microsystems 

#1 

ISA,interfacing Assembly-C, 
ISA simulator, arithmetics, 
debugging basics 

- - 

#2 
I2C interfacing, devices, 
floating point, real-time 
debugging (SWD) 

I2C, JTAG, 
SWD 

Accelerometer
, calibration 

#3 
Fast interrupt processing, 
concurent/asynchronous 
debug techniques 

Processing 
in threads, 
dual I2C 

Fusing accel. 
magnetometer 

Proj. System-level microsystem 
design, RTOS, teamwork 

SPI, 
Zigbee, 

Bluetooth 

Fusion, 
Kalman 
filtering 

VI. CONCLUSIONS 
This paper presents an evolution in teaching courses on 

practical microprocessor system design. Outlined is the 
planning needed to achieve ever-growing teaching goals, 
together with the suitable teaching aids. In a significant way, 
the current inclusion of multi-sensory data processing is 
showing the full potential of the applied computer 
engineering to the systems deeply embedded in physical 
environments. In mixed teams of computer, electrical and 
software engineering students, the course achieves 
impressive crowning of all of their gathered skills. Students 
have reacted very positively, but the official evaluation 
results are not available at the time of writing of this paper.  
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