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Abstract—Bug-free first silicon is not guaranteed by the existing 
pre-silicon verification techniques. To have impeccable products, 
it is now required to identify any bug as soon as the first silicon 
becomes available. We consider the Assertion Based Verification 
techniques for the post-silicon debugging based on the insertion 
of hardware checkers in the debug infrastructure for complex 
systems on chip. This paper proposes a method to cluster 
hardware-assertion checkers using the graph partitioning 
approach. It turns out that having the clusters of hardware-
assertions and controlling each cluster selectively during the 
debug mode and normal operation of the circuit makes 
integration of assertions inside the circuits easier, and causes 
lower energy consumption and efficient debug scheduling. 

I. INTRODUCTION  
With the increased complexity of systems, and driven by 

unquenchable demand for a large set of micro-architectural and 
other features in a system, design errors and bug become 
frequent and difficult to track. The existing pre-silicon 
verification techniques which rely on the formal or functional 
(dynamic verification) cannot guarantee that the first-silicon 
works perfectly without any bug. Almost two thirds of newly 
manufactured SoCs product suffers from bugs at the first 
silicon  [1]. Logic errors are still among the main causes of 
failures, including the fact that pre-silicon verification is 
applied to the model of the IC, and not the actual product  [6]. 

The increase in the time-to-market of new products may 
cause the significant loss of market share, or even complete 
loss of revenue  [1]. Therefore, as soon as the first silicon 
becomes available, it is required to identify any bug either in 
the design (corner cases) or the bugs related to manufacturing 
such as process variation and packaging. 

Assertion-Based Verification (ABV) is acknowledged as 
being the instrumental and efficient pre-silicon verification 
technique. Armed with temporal logic and extended regular 
expressions, the PSL (Property Specification Language, IEEE 
1850 standard) and the SVA (System Verilog Assertions), 
perform as languages to describe the expected behavior of a 
design.   

To expand the functionality of assertions beyond design 
and verification at the pre-silicon debugging, a checker 
generator tool can be exploited to get assertions to operate with 
the CUD described at the RTL level. Individual assertion, once 
converted into a circuit form, is also referred to as Hardware-
Assertion or a checker. Here, we have used the MBAC checker 

generator to generate hardware-checker or hardware-assertion 
from either PSL or SVA assertions [7].  

Post-silicon validation involves three major activities: 
detecting problem through specific embedded modules for 
debugging or reutilizing already available scan architecture for 
the manufacturing test by applying proper stimulus; localizing 
and identifying the root cause of the problem; and, correcting 
or bypassing the problem. Post-silicon bug localization 
involves identifying the location-time pair for the bug and is 
the most time-consuming step in the process.  

For activating these hardware-assertions and capturing their 
violation signals, debugger module inside a SoC must be 
provided by a suitable debug infrastructure  [2] [11].  

As systems become larger and more distributed (and 
possibly wireless  [3]), having clusters of hardware-assertions 
and controlling each cluster selectively during the debug mode 
and normal operation of the circuit makes integration of 
assertions easier, and causes lower energy consumption and 
efficient debug scheduling. In this work, we investigate a 
method to cluster hardware-assertions based on the graph 
partitioning approach by using the input cone graph of 
hardware-assertions.   

II. RELATED WORK 
Existing post-silicon debug techniques can be divided into 

two approaches: trace-based and scan-based. Various 
implementations for either of them have been realized by 
previous studies  [4] [6]. The primary goal in the scan based 
debug techniques is reusing the internal scan chains which 
were used during the manufacturing test. At the first step, 
whenever a specific trigger or hardware checker fires all the 
internal state elements using these available scan chains will be 
captured; thereafter these captured data can be offloaded using 
these scan-out operation of these scan chains  [9]. Due to the 
consecutive stops and resumption during scan dump, this 
method will not provide the real-time debug information  [6]. 

Trace buffer serves as a space to keep a snapshot of system 
under debug including signals and states of the system 
whenever a certain events take place  [11]. They have been 
widely used in legacy debug and logic analysis systems.  

The integration of hardware assertions in scan-based run-
stop debug infrastructure and in a debug trace infrastructure has 

 

 
 
 
 
978-3-9810801-6-2/DATE10 © 2010 EDAA 
 

 



been investigated in  [2]. However, this study provides no 
solution for clustering of related hardware assertions. We have 
observed that there are still two challenging issues that need to 
be addressed. First how to cluster Hardware-Assertions in post-
silicon chip; second how to use of information from firing 
signal of each cluster of assertion to spatially isolate the 
candidate error sites and speed up the debug process. 

III. PROPOSED METHOD 
Our method tries to cluster the hardware-checkers inside 

the CUD.  To apply our proposed clustering approach to the 
CUD, at the first step, a directed graph from the circuit gate 
level net-list must be extracted. The idea of extracting graph 
from the CUD was used before for post-silicon debug in  [10]. 
Each vertex in this graph represents the Flip-Flop in the design 
and the directed line shows the combinational circuits or wire 
which connects these Flip-Flops together. Fig. 1 shows the 
sample circuit and its corresponding directed graph. The 
combinational parts of the circuit between storage units were 
represented by edges and for each flip-flop there exist a vertex 
inside the directed graph.  

 
Figure 1.  Directed graph Extraction from the given circuit 

The second step is extraction of the Fan-in cone graph for 
each primary output.  Fig. 2 shows the extracted fan-in cone 
graphs for primary outputs of the circuit in Fig. 1.  

 
Figure 2.  Fan-in cone graph of primary outputs 

In this graph, each node represents a storage element 
inside the CUD. The first primary output is feed by the value 
of storage elements H0 the node at the first level of this graph. 
The second primary output is connected to node G0. The 
directed edge between nodes G1 and H0 in this figure 
indicates that if there is an error in G1 this error will be 
propagated after one cycle to the H0. Furthermore, the 
directed edge between node E2 and G1 implies that an error in 
E2 will be propagated to G1 and H0 after one and two cycle 
respectively.  

The next step in the process of hardware-assertion 
clustering is finding out the fan-in cone of each assertion 
inside the CUD based on the Fan-in cone graph of each 
primary output. Related nodes to the hardware-assertions input 
signals should be specified at first in this step.  

 

Figure 3.  Fan-in cone graph of Hardware-Assertions 

Fig. 2 illustrates fan-in cone graphs of each primary output 
of our simple example of CUD and assertions inside the CUD. 
Every triangle in this figure represents an assertion inside the 
CUD. The dotted lines specify the input signals of assertion 
which are connected to the specific nodes in CM. These nodes 
are corresponding to the storage elements inside the CUD. 

For example in Fig. 3 the input signal of a1 (Assertion1) 
has been connected to E2 in fan-in cone graph of primary 
output H and A2 in fan-in cone graph of primary output G; 
also, a2 (Assertion2) is connected to E1 in the Fan-in cone 
graph of primary output G. 

 As soon as hardware-assertions get connected to their 
related nods, the input cone of all of them inside the CUD can 
be specified. For instance, in Fig. 3, fan-in cone of A1 is {E2, 
A3, B3, C3, A2} and fan-in cone of A2 is {E1, A2, B2, C2}. 

A. Clustering Hardware Assertions Based on their Fan-in 
cone graph  
In our proposed approach, the placement of Hardware-

Assertion and their fan-in cones inside the gate level net-list of 
CUD is modeled by a new weighted graph called CM (Checker 
Map)  = (V, E). 



 
Figure 4.  The process of graph clustering on the sample CM(Checker Map) graph 

A set of vertices V = {v1, v2, v3,… vn} in CM represents the 
Hardware-Assertions inside the CUD. The common elements 
inside the fan-in cone of every coupled hardware-assertion 
will be indicated by an edge between corresponding two 
nodes. Furthermore, the weight of that edge represents the 
number of common elements in the fan-in cone graph of two 
related hardware-assertions. For instance, the CM graph of our 
sample circuit at Fig. 1 has two nodes {a1, a2} and these two 
nodes are connected using an edge with the weight of one. To 
explain the partitioning algorithm on CM graph, we have 
considered a new CM graph shown in Fig. 4. 

This algorithm takes as input the CM graph, the required 
number of partitions that we want to have, and the maximum 
number of elements that are allowed to be placed inside each 
cluster.  

In fact, the partitioning algorithm should manage to create 
the required number of clusters which is given as the first 
parameter, while it should be also aware that during the 
iterative process of partitioning the number of elements inside 
each cluster does not exceed the maximum number of 
elements that are allowed to be placed inside each cluster. 

 As it was illustrated in Fig. 4, at each step of the 
partitioning, the edge with the largest weight is selected. Due 
to the fact that edge weight represents the common number of 
storage elements between fan-in cone of two assertions 
connected by that edge in CM, the larger the weight of the 
edge the higher the probability that two related assertions fire 
together and more increases in the chance of extracting 
required information from firing signal in a cluster of assertion 
to spatially isolate the candidate error sites. 

After finding the edge with the largest weight, two 
connected nodes by this edge are chosen as a candidate to 
merge. Thereafter, the partitioning procedure will check 
whether by merging related nodes the numbers of nodes 
exceed from the maximum number of allowable nodes.  

In Fig. 4 (B)  since the weight of the edge between a1 and 
a2 is larger than that of the others, these two nodes will be 
merged together after making sure that the number of elements 

in the new cluster, {a1, a2} has less than the maximum 
number of allowable elements in each cluster. 

After merging two nodes, the algorithm should update the 
CM graph. To update the CM graph any edge that went to 
{a1} and {a2} before, now should go to new composite node 
or a cluster {a1, a2}. 

 The iterative partition algorithm performs once again 
merge operation on the new updated CM graph and the node 
{a3} and {a4} is merged together in Fig. 4 (C). In the next 
iteration, by updating the related CM graph once again the 
edge with the largest weight is selected during the merge 
operation in Fig. 4 (D). However, since after merging two 
concerning clusters {a1, a2}, {a3, a4} the number of elements 
in the new cluster exceeds the maximum number of allowable 
elements which is 3, merge Procedure refused to merge these 
two clusters. Therefore, the next largest edge is selected by the 
merge operation Fig. 4 (E). 

 The iterative partitioning algorithm based on the merge 
and update procedure continues until we create the required 
number of clusters. The final result of applying the iterative 
partitioning algorithm in our sample CM graph is shown in 
Fig. 4 (G). As this figure illustrates, eventually, we have there 
clusters of assertions and the hardware-assertion inside two of 
them share the maximum number storage elements. After 
clustering hardware-assertions inside the CUD into the 
specified number of clusters and taking into account the 
limitation on the number of elements in each cluster, we have 
to equip our post silicon debugging infrastructure by insertion 
of clusters of hardware-assertions in the debug infrastructure.  

IV. INSERTION OF HARDWARE-ASSERTIONS CLUSTERS IN 
THE DEBUG INFRASTUCTURE 

Having partitioned hardware-assertions based on their 
input fan-in cone, we have to insert each cluster inside the 
debugging infrastructure.  In fact, the related infrastructure 
should be equipped to control each cluster of hardware-
assertion plus supplied by a mechanism to capture the violated 
signals of each cluster. To control a specific cluster of 
hardware-assertions, there must be a way to selectively enable 



or disable it. Resorting to TAP interface  [5], the technique 
used to control the regular break-point modules in scan-based 
run-stop debug infrastructure, each cluster of hardware-
assertions has been equipped with a control debug register 
(EN). Fig. 5 shows how TAP controller can access each 
cluster of assertions through the chain of debug registers; 
thereby it provides the required flexibility to enable or disable 
the particular cluster of Hardware-assertion.    
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Figure 5. Insertion of the Cluster inside the debug infrastructure 

V. EXPERIMENTAL RESULTS 
To verify the effectiveness of our method, we have applied 

our proposed hardware-assertion partitioning algorithm to the 
AMBA 3 AXI Bus protocol from ARM  [12] [12]. For the 
experiments, we have assumed that the bit-width of the debug 
trace buffer is 16 bits. Since we have 85 assertions in the 
AMBA 3 AXI Bus protocol, based on the inequality (1) and 
the number of available clusters in the debugging 
infrastructure, we can find the set of all arrangements (c, m, s) 
in which we can configure hardware-assertion in CUD. In 
these arrangements c is number of the trace-register that can 
be embedded into trace data, m is the number of hardware-
assertion inside each cluster and s is the number of the 
clusters. For example, in our test case, AMBA 3 AXI Bus 
protocol all these configuration are valid: (2,3,28), (1,4,22), 
(1,5,17), (1,6,15) , (1,8,11),(1,9,10), (1,14,9),(1,15,7).  

We performed the proposed four-step partitioning 
algorithm on all of these configurations. We first extracted the 
netlist using Leonardo synthesis tool without considering 
assertions. Related directed graph for the net-list of the design 
and the fan-in cone of each primary outputs has been extracted 
respectively. Then, using MBAC  [8] and its rewrite rules  [8], 
we generated Verilog RTL for assertions and added them to 
the design. Debug enhancements  [13], SystemC path  [14] and 
FPGA integration  [15] are also available for integration.  

  Afterward, the CM graph of all hardware-assertions has 
been defined. Then the partitioning algorithm has been carried 
out based on the given CM graph and all valid configurations 
have been determined. Consequently, we integrated all 
checkers using the presented method in part V.  

We used 65nm CMOS library to synthesize our design. 
During the synthesis our test-case contains the proposed debug 
infrastructures and all clusters of hardware-assertion. We have 
synthesis our experiments on all valid configurations. TABLE 
I shows that the configuration (1,7,13) is the best 
configuration for resource usage. For energy consumption, 
configuration (1,8,11) is the best.  

TABLE I. 

Configuration 
(c, m, s) 

Hardware Cost 
(MG) 

Total 
Power(W) 

(2,3,28) 28.70 0.21 
(1,4,22) 28.50 0.21 
(1,5,17) 28.42 0.20 
(1,6,15) 28.11 0.20 
(1,7,13) 28.02 0.18 
(1,8,11) 28.20 0.17 
(1,9,10) 28.32 0.20 
(1,14,9) 28.40 0.21 
(1,15,7) 28.70 0.22 

No clustering 29.01       0.32 
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