
Enabling Efficient Post-Silicon Debug by Clustering
of Hardware-Assertions

M. H. Neishaburi
McGill University

Montreal, QC, Canada
Mh.neishabouri@mail.mcgill.ca

Zeljko Zilic
McGill University

Montreal, QC, Canada
zeljko.zilic@mcgill.ca

Abstract—Bug-free first silicon is not guaranteed by the existing
pre-silicon verification techniques. To have impeccable products,
it is now required to identify any bug as soon as the first silicon
becomes available. We consider the Assertion Based Verification
techniques for the post-silicon debugging based on the insertion
of hardware checkers in the debug infrastructure for complex
systems on chip. This paper proposes a method to cluster
hardware-assertion checkers using the graph partitioning
approach. It turns out that having the clusters of hardware-
assertions and controlling each cluster selectively during the
debug mode and normal operation of the circuit makes
integration of assertions inside the circuits easier, and causes
lower energy consumption and efficient debug scheduling.

I. INTRODUCTION
With the increased complexity of systems, and driven by

unquenchable demand for a large set of micro-architectural and
other features in a system, design errors and bug become
frequent and difficult to track. The existing pre-silicon
verification techniques which rely on the formal or functional
(dynamic verification) cannot guarantee that the first-silicon
works perfectly without any bug. Almost two thirds of newly
manufactured SoCs product suffers from bugs at the first
silicon [1]. Logic errors are still among the main causes of
failures, including the fact that pre-silicon verification is
applied to the model of the IC, and not the actual product [6].

The increase in the time-to-market of new products may
cause the significant loss of market share, or even complete
loss of revenue [1]. Therefore, as soon as the first silicon
becomes available, it is required to identify any bug either in
the design (corner cases) or the bugs related to manufacturing
such as process variation and packaging.

Assertion-Based Verification (ABV) is acknowledged as
being the instrumental and efficient pre-silicon verification
technique. Armed with temporal logic and extended regular
expressions, the PSL (Property Specification Language, IEEE
1850 standard) and the SVA (System Verilog Assertions),
perform as languages to describe the expected behavior of a
design.

To expand the functionality of assertions beyond design
and verification at the pre-silicon debugging, a checker
generator tool can be exploited to get assertions to operate with
the CUD described at the RTL level. Individual assertion, once
converted into a circuit form, is also referred to as Hardware-
Assertion or a checker. Here, we have used the MBAC checker

generator to generate hardware-checker or hardware-assertion
from either PSL or SVA assertions [7].

Post-silicon validation involves three major activities:
detecting problem through specific embedded modules for
debugging or reutilizing already available scan architecture for
the manufacturing test by applying proper stimulus; localizing
and identifying the root cause of the problem; and, correcting
or bypassing the problem. Post-silicon bug localization
involves identifying the location-time pair for the bug and is
the most time-consuming step in the process.

For activating these hardware-assertions and capturing their
violation signals, debugger module inside a SoC must be
provided by a suitable debug infrastructure [2] [11].

As systems become larger and more distributed (and
possibly wireless [3]), having clusters of hardware-assertions
and controlling each cluster selectively during the debug mode
and normal operation of the circuit makes integration of
assertions easier, and causes lower energy consumption and
efficient debug scheduling. In this work, we investigate a
method to cluster hardware-assertions based on the graph
partitioning approach by using the input cone graph of
hardware-assertions.

II. RELATED WORK
Existing post-silicon debug techniques can be divided into

two approaches: trace-based and scan-based. Various
implementations for either of them have been realized by
previous studies [4] [6]. The primary goal in the scan based
debug techniques is reusing the internal scan chains which
were used during the manufacturing test. At the first step,
whenever a specific trigger or hardware checker fires all the
internal state elements using these available scan chains will be
captured; thereafter these captured data can be offloaded using
these scan-out operation of these scan chains [9]. Due to the
consecutive stops and resumption during scan dump, this
method will not provide the real-time debug information [6].

Trace buffer serves as a space to keep a snapshot of system
under debug including signals and states of the system
whenever a certain events take place [11]. They have been
widely used in legacy debug and logic analysis systems.

The integration of hardware assertions in scan-based run-
stop debug infrastructure and in a debug trace infrastructure has

978-3-9810801-6-2/DATE10 © 2010 EDAA

been investigated in [2]. However, this study provides no
solution for clustering of related hardware assertions. We have
observed that there are still two challenging issues that need to
be addressed. First how to cluster Hardware-Assertions in post-
silicon chip; second how to use of information from firing
signal of each cluster of assertion to spatially isolate the
candidate error sites and speed up the debug process.

III. PROPOSED METHOD
Our method tries to cluster the hardware-checkers inside

the CUD. To apply our proposed clustering approach to the
CUD, at the first step, a directed graph from the circuit gate
level net-list must be extracted. The idea of extracting graph
from the CUD was used before for post-silicon debug in [10].
Each vertex in this graph represents the Flip-Flop in the design
and the directed line shows the combinational circuits or wire
which connects these Flip-Flops together. Fig. 1 shows the
sample circuit and its corresponding directed graph. The
combinational parts of the circuit between storage units were
represented by edges and for each flip-flop there exist a vertex
inside the directed graph.

Figure 1. Directed graph Extraction from the given circuit

The second step is extraction of the Fan-in cone graph for
each primary output. Fig. 2 shows the extracted fan-in cone
graphs for primary outputs of the circuit in Fig. 1.

Figure 2. Fan-in cone graph of primary outputs

In this graph, each node represents a storage element
inside the CUD. The first primary output is feed by the value
of storage elements H0 the node at the first level of this graph.
The second primary output is connected to node G0. The
directed edge between nodes G1 and H0 in this figure
indicates that if there is an error in G1 this error will be
propagated after one cycle to the H0. Furthermore, the
directed edge between node E2 and G1 implies that an error in
E2 will be propagated to G1 and H0 after one and two cycle
respectively.

The next step in the process of hardware-assertion
clustering is finding out the fan-in cone of each assertion
inside the CUD based on the Fan-in cone graph of each
primary output. Related nodes to the hardware-assertions input
signals should be specified at first in this step.

Figure 3. Fan-in cone graph of Hardware-Assertions

Fig. 2 illustrates fan-in cone graphs of each primary output
of our simple example of CUD and assertions inside the CUD.
Every triangle in this figure represents an assertion inside the
CUD. The dotted lines specify the input signals of assertion
which are connected to the specific nodes in CM. These nodes
are corresponding to the storage elements inside the CUD.

For example in Fig. 3 the input signal of a1 (Assertion1)
has been connected to E2 in fan-in cone graph of primary
output H and A2 in fan-in cone graph of primary output G;
also, a2 (Assertion2) is connected to E1 in the Fan-in cone
graph of primary output G.

 As soon as hardware-assertions get connected to their
related nods, the input cone of all of them inside the CUD can
be specified. For instance, in Fig. 3, fan-in cone of A1 is {E2,
A3, B3, C3, A2} and fan-in cone of A2 is {E1, A2, B2, C2}.

A. Clustering Hardware Assertions Based on their Fan-in
cone graph
In our proposed approach, the placement of Hardware-

Assertion and their fan-in cones inside the gate level net-list of
CUD is modeled by a new weighted graph called CM (Checker
Map) = (V, E).

Figure 4. The process of graph clustering on the sample CM(Checker Map) graph

A set of vertices V = {v1, v2, v3,… vn} in CM represents the
Hardware-Assertions inside the CUD. The common elements
inside the fan-in cone of every coupled hardware-assertion
will be indicated by an edge between corresponding two
nodes. Furthermore, the weight of that edge represents the
number of common elements in the fan-in cone graph of two
related hardware-assertions. For instance, the CM graph of our
sample circuit at Fig. 1 has two nodes {a1, a2} and these two
nodes are connected using an edge with the weight of one. To
explain the partitioning algorithm on CM graph, we have
considered a new CM graph shown in Fig. 4.

This algorithm takes as input the CM graph, the required
number of partitions that we want to have, and the maximum
number of elements that are allowed to be placed inside each
cluster.

In fact, the partitioning algorithm should manage to create
the required number of clusters which is given as the first
parameter, while it should be also aware that during the
iterative process of partitioning the number of elements inside
each cluster does not exceed the maximum number of
elements that are allowed to be placed inside each cluster.

 As it was illustrated in Fig. 4, at each step of the
partitioning, the edge with the largest weight is selected. Due
to the fact that edge weight represents the common number of
storage elements between fan-in cone of two assertions
connected by that edge in CM, the larger the weight of the
edge the higher the probability that two related assertions fire
together and more increases in the chance of extracting
required information from firing signal in a cluster of assertion
to spatially isolate the candidate error sites.

After finding the edge with the largest weight, two
connected nodes by this edge are chosen as a candidate to
merge. Thereafter, the partitioning procedure will check
whether by merging related nodes the numbers of nodes
exceed from the maximum number of allowable nodes.

In Fig. 4 (B) since the weight of the edge between a1 and
a2 is larger than that of the others, these two nodes will be
merged together after making sure that the number of elements

in the new cluster, {a1, a2} has less than the maximum
number of allowable elements in each cluster.

After merging two nodes, the algorithm should update the
CM graph. To update the CM graph any edge that went to
{a1} and {a2} before, now should go to new composite node
or a cluster {a1, a2}.

 The iterative partition algorithm performs once again
merge operation on the new updated CM graph and the node
{a3} and {a4} is merged together in Fig. 4 (C). In the next
iteration, by updating the related CM graph once again the
edge with the largest weight is selected during the merge
operation in Fig. 4 (D). However, since after merging two
concerning clusters {a1, a2}, {a3, a4} the number of elements
in the new cluster exceeds the maximum number of allowable
elements which is 3, merge Procedure refused to merge these
two clusters. Therefore, the next largest edge is selected by the
merge operation Fig. 4 (E).

 The iterative partitioning algorithm based on the merge
and update procedure continues until we create the required
number of clusters. The final result of applying the iterative
partitioning algorithm in our sample CM graph is shown in
Fig. 4 (G). As this figure illustrates, eventually, we have there
clusters of assertions and the hardware-assertion inside two of
them share the maximum number storage elements. After
clustering hardware-assertions inside the CUD into the
specified number of clusters and taking into account the
limitation on the number of elements in each cluster, we have
to equip our post silicon debugging infrastructure by insertion
of clusters of hardware-assertions in the debug infrastructure.

IV. INSERTION OF HARDWARE-ASSERTIONS CLUSTERS IN
THE DEBUG INFRASTUCTURE

Having partitioned hardware-assertions based on their
input fan-in cone, we have to insert each cluster inside the
debugging infrastructure. In fact, the related infrastructure
should be equipped to control each cluster of hardware-
assertion plus supplied by a mechanism to capture the violated
signals of each cluster. To control a specific cluster of
hardware-assertions, there must be a way to selectively enable

or disable it. Resorting to TAP interface [5], the technique
used to control the regular break-point modules in scan-based
run-stop debug infrastructure, each cluster of hardware-
assertions has been equipped with a control debug register
(EN). Fig. 5 shows how TAP controller can access each
cluster of assertions through the chain of debug registers;
thereby it provides the required flexibility to enable or disable
the particular cluster of Hardware-assertion.

TA
P

C
on

tro
lle

r

TA
P

Po
rt

⎡ ⎤)(log2 s

Figure 5. Insertion of the Cluster inside the debug infrastructure

V. EXPERIMENTAL RESULTS
To verify the effectiveness of our method, we have applied

our proposed hardware-assertion partitioning algorithm to the
AMBA 3 AXI Bus protocol from ARM [12] [12]. For the
experiments, we have assumed that the bit-width of the debug
trace buffer is 16 bits. Since we have 85 assertions in the
AMBA 3 AXI Bus protocol, based on the inequality (1) and
the number of available clusters in the debugging
infrastructure, we can find the set of all arrangements (c, m, s)
in which we can configure hardware-assertion in CUD. In
these arrangements c is number of the trace-register that can
be embedded into trace data, m is the number of hardware-
assertion inside each cluster and s is the number of the
clusters. For example, in our test case, AMBA 3 AXI Bus
protocol all these configuration are valid: (2,3,28), (1,4,22),
(1,5,17), (1,6,15) , (1,8,11),(1,9,10), (1,14,9),(1,15,7).

We performed the proposed four-step partitioning
algorithm on all of these configurations. We first extracted the
netlist using Leonardo synthesis tool without considering
assertions. Related directed graph for the net-list of the design
and the fan-in cone of each primary outputs has been extracted
respectively. Then, using MBAC [8] and its rewrite rules [8],
we generated Verilog RTL for assertions and added them to
the design. Debug enhancements [13], SystemC path [14] and
FPGA integration [15] are also available for integration.

 Afterward, the CM graph of all hardware-assertions has
been defined. Then the partitioning algorithm has been carried
out based on the given CM graph and all valid configurations
have been determined. Consequently, we integrated all
checkers using the presented method in part V.

We used 65nm CMOS library to synthesize our design.
During the synthesis our test-case contains the proposed debug
infrastructures and all clusters of hardware-assertion. We have
synthesis our experiments on all valid configurations. TABLE
I shows that the configuration (1,7,13) is the best
configuration for resource usage. For energy consumption,
configuration (1,8,11) is the best.

TABLE I.

Configuration
(c, m, s)

Hardware Cost
(MG)

Total
Power(W)

(2,3,28) 28.70 0.21
(1,4,22) 28.50 0.21
(1,5,17) 28.42 0.20
(1,6,15) 28.11 0.20
(1,7,13) 28.02 0.18
(1,8,11) 28.20 0.17
(1,9,10) 28.32 0.20
(1,14,9) 28.40 0.21
(1,15,7) 28.70 0.22

No clustering 29.01 0.32

REFERENCES
[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D.

Miller, ”A reconfigurable design-for-debug infrastructure for SoC,” Proc.
43rd Design Automation Conference (43rd DAC), 2006, pp. 7-12

[2] J. Geuzebroek and B. Vermeulen, "Integration of Hardware Assertions in
Systems-on-Chip," Proc. IEEE Intl. Test Conference (ITC), 2008, 10 pages.

[3] M-W. Chiang, Z. Zilic, K. Radecka and J-S. Chenard, Architectures of
increased availability wireless sensor network nodes, Proceedings of the
International Test Conference, pp. 1232-1241, 2004.

[4] B. Vermeulen and S. K. Goel, "Design for debug: catching design errors in
digital chips," IEEE Design & Test of Computers, vol. 19, pp. 35-43, 2002.

[5] ARM limited. Coresight on-chip debug and trace technology.
http://www.arm.com/products/solutions/CoreSight.html.

[6] G. J. Van Rootselaar and B. Vermeulen, "Silicon debug: scan chains alone
are not enough," Proc. IEEE Intl. Test Conference ITC, 1999, pp. 892-902.

[7] M. Boule and Z. Zilic, Generating Hardware Assertion Checkers: For
Hardware Verification, Emulation, Post-Fabrication Debugging and On-
Line Monitoring, Springer, 2005.

[8] M. Boule and Z. Zilic. “Automata-based assertion checker synthesis of PSL
properties,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), Vol. 13, No. 1, 20 pages, Jan. 2008.

[9] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon debug
based on failure propagation tracing,” Intl. Test Conf., 2005, pp. 755-763.

[10] J. Gao, Y. Han, and X. Li, “A new post-silicon debug based on suspect
window,” in Proceedings IEEE VLSI Test Symposium., 2009, pp. 85-90.

[11] H. F. Ko, Adam B. Kinsman and Nicola Nicolici, "Distributed Embedded
Logic Analysis for Post-Silicon Validation of SoC," Proc. IEEE
International Test Conference (ITC), 2008, 10 pages.

[12] ARM AMBA 3 specification and assertions.
http://www.arm.com/products/solutions/axi_spec.html

[13] M. Boule, J.S. Chenard and Z. Zilic, Adding debug enhancements to
assertion checkers for hardware emulation and silicon debug, International
Conference on Computer Design, pp. 294-299, 2006.

[14] C. Cote and Z. Zilic, Automated SystemC to VHDL translation in
hardware/software codesign, Proceeding of 9th International Conference on
Electronics, Circuits and Systems, ICECS, pp. 717 - 720 , 2002.

[15] Z. Zilic, G. Lemieux, S. Brown and Z. Vranesic, Designing for High Speed-
Performance in CPLDs and FPGAs, The 3rd Canadian Workshop on Field-
Programmable Devices (FPD’95), pp. 108-113, 1995.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

