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Analytical Optimization of Bit-Widths in
Fixed-Point LTI Systems
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Abstract—Analyses of range and precision are important
for high-level synthesis and verification of fixed-point circuits.
Conventional range and precision analysis methods mostly focus
on combinational arithmetic circuits and suffer from major
inefficiencies when dealing with sequential linear-time-invariant
circuits. Such problems mainly include inability to analyze
precision when quantization of constant coefficients is taken
into account, and lacking efficient word-length optimization algo-
rithms to handle both variables and constants, while satisfying the
error metrics. The algorithms presented in this paper solve these
problems. Experiments illustrate the efficiency and robustness of
our algorithms.

Index Terms—Fixed-point linear-time-invariant (LTI) circuits,
precision analysis, range analysis, word-length-optimization.

I. Introduction

D ISCRETE linear-time-invariant (LTI) systems are widely
used in many digital signal processing (DSP) applica-

tions. Such systems include finite impulse response (FIR)
filters, infinite impulse response (IIR) filters, as well as fast
Fourier transform (FFT) and discrete cosine transform (DCT)
units. Implementing such circuits using a fixed-point data
representation is a common approach [1], and is still gain-
ing importance as many designs migrate to FPGAs, where
floating-point arithmetic is disadvantageous.

The analysis of range and precision is an important part of
the high-level optimization and verification process, as it is
a basis for determining integer (IB) and fractional (FB) bit-
widths for all the variables. Range analysis allows avoiding the
overflow, while the precision analysis helps to provide error
bound in terms of either maximum mismatch (MM), max-
imum mean-square-error (MSE), or signal-to-quantization-
noise-ratio (SQNR). Given the reference y and its fixed-point
realization yfixed, error metrics MM and MSE represent the
absolute difference: max(|y − yfixed|), and the expectation
E(|y − yfixed|2), respectively. The MM metric provides the
largest spot error, while MSE/SQNR deals with the classical
signal-to-noise notion. The application of MM to the analysis
of LTI circuits was addressed in [14] and [30], while papers
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[21] and [30] target MSE/SQNR, which are particularly im-
portant in DSP applications [21]–[25].

Several methods have been introduced to compute the range
and precision of arithmetic circuits. Dynamic analysis [1],
[7]–[9], [35] involves simulations, and hence is slow and
nonrobust, which confines its applicability. Static analysis, on
the other hand, has gained major interest in recent years [2]–
[5], including arithmetic transform [6] or Taylor series [10].
Much of the effort has focused on the static analysis of MM for
direct-flow-graph designs that can provide safe, but possibly
pessimistic results. However, such solutions may not always be
adequate, since they cannot handle recursive datapaths, such
as IIR filters.

In the case of LTI circuits, conventional static approaches
for analyzing ranges are either based on the computation of the
L1 norm of impulse responses [14], [26], [30] or the utilization
of affine arithmetic (AA) [31]. Both solutions are robust, and
provide overestimations of the exact range.

Conventional static analyses of precision in terms of MM
or MSE/SQNR for LTI circuits either ignore the effect of
coefficient quantization error originating from scaling the
constant coefficients in the reference model to particular FB
values, or make use of approximations such as perturbation
and sensitivity analysis to handle coefficient errors. Both of
these cases result in major underestimations of MM and MSE,
which is not safe and robust as explored in Section II.

On the other hand, the MM and MSE/SQNR analyses
presented in this paper alleviate the problems that exist with
previous methods. This paper addresses four particular issues.

1) Provides a new error model for LTI circuits, for all
quantization error sources originating from scaling of
variables or constants to acceptable FB values.

2) Proposes new static analyses of MM and MSE/SQNR
for LTI circuits. The analysis is safe and robust, un-
like conventional methods that underestimate error and
ignore coefficient quantization.

3) Demonstrates a novel efficient analytical optimization
to set the FB values of variables and constants, while
satisfying a given bound on MM or MSE/SQNR. Our
solution is more efficient than the conventional methods
that do not provide means for simultaneous control of
the bit-widths, including the coefficients.

4) Proposes a more proficient range for LTI circuits com-
pared to the previous work.

The rest of this paper is organized as follows. Section II
provides the background. Section III addresses the range
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Fig. 1. Implementation of a fixed-point direct form second-order IIR filter.

analysis for an LTI system; the computation of MM is
presented in Section IV, and an algorithm is introduced
to set FBs. Section V extends the precision analysis to
MSE (SQNR) and presents an algorithm for setting FBs
under given MSE bound. Section VI gives the experimental
results.

II. Definitions and Background

The discrete LTI circuit can be expressed as [y] = [x] ∗ [h],
where [x] and [y] are the discrete input and output respectively,
while [h] is the impulse response. Through the rest of this
paper we represent the discrete variable [x] as x. Further, note
that [h] depends on some constant coefficients that have to be
quantized to a suitable FB.

The process of implementing a fixed-point LTI circuit from
the specification traditionally takes two steps as shown in
Table I. First, the coefficients are quantized, resulting in the
quantized impulse response hq and the output yq. Then, the
quantization errors of the input x, i.e., ein, and the intermediate
variables that are scaled, i.e., eq1,. . . , eqN , are considered. Note
that the intermediate variables depend on the LTI topology,
e.g., direct or parallel form IIR filters. The output yfixed is
presented in the third row of Table I, where hqi is the transfer
function from eqi to the output yfixed.

As an example, assume the second-order fixed-point IIR
in Fig. 1. The values of cq1, . . . , cq5 are the quantized coef-
ficients, while S1, . . . , S5 are the intermediate variables with
the corresponding quantization errors eq1, . . . , eq5.

Based on Table I, the error metric MM can be defined
as

MM = max(|y − yfixed|) (1)

where the maximum function in (1) is defined over all the
feasible combinations of input patterns, as well as all the
possible values of quantization errors. The precision analysis
aims to verify that the maximum mismatch MM does not
exceed a given error bound Emax

MM < Emax. (2)

Similarly, MSE can be obtained as

MSE = E(|y − yfixed|2)

= limM→∞ 1
M

M∑
k=0

E(|y[k] − yfixed[k]|2)
(3)

where M is the length of the input sequence that is infinite
in the case of feedback circuits and finite for the nonfeedback

TABLE I

Implementation of a Fixed-Point LTI System

Design Impulse Output
Responses

Reference h y = x ∗ h

Coefficient quantized hq yq = x ∗ hq

Final fixed-point hq, hq1, . . ., yfixed = (x + ein) ∗ hq+
hqN eq1 ∗ hq1 + · · · + eqN ∗ hqN

LTI circuits. Extending this notation to a p-output system [y1],
[y2], . . . , [yp] results in

MSE =
1

p

p∑
j=1

MSE(yj). (4)

A given maximum bound on MSE, i.e., Ebound, is satisfied,
if MSE < Ebound. The MSE can be used to obtain SQNR as

SQNR =
E(|y|2)

MSE
=

E(|x|2) ×
∞∑
j=0

|h[j]|2

MSE
(5)

where E(|y|2) is the power of the original specification that is
either given or easy to compute. As SQNR is directly derived
from MSE, in this paper we only address the computation of
MSE.

There have been many developments aiming to analyze
range [14], [26], MM [12]–[15], or MSE/SQNR [21], [31]
of fixed-point LTI circuits. However, tighter ranges and better
precision analysis than the ones present in the literature can be
obtained using our method implementing simultaneously the
two steps in Table I.

Regarding range analysis of LTI circuits, conventional ap-
proaches are either based on the L1 norm of impulse responses
[14], [26], [30] or on the utilization of AA [31]. Both solutions
are robust and provide overestimations of the exact range.

In terms of precision analysis for LTI circuits, conventional
methods either ignore the effect of coefficient quantization,
e.g., [11], [21], and [26], or make use of approximations like
perturbation and sensitivity analysis to handle such errors [14],
[27], [30], and [33]. The approaches that ignore the effect
of quantizing coefficients compute MM and MSE with an
error defined as yq − yfixed (Table I), i.e., they assume that
h = hq. This can result in major underestimations of the exact

error, given as y − yfixed (Table I), which is neither safe nor
robust. The design process initially chooses very high FBs for
constant coefficients, to keep the reference characteristics, such
as group delay, still acceptable. The error analysis including
the impact of quantizing input and intermediate variables is
taken into account independently, since those error sources do
not change the original impulse response and the position of
its zeros and poles. Word-length optimization heuristics are
then applied for the input and intermediate variables, such
that a given bound on MSE or SQNR is satisfied [32]. The
above solution is not efficient in terms of hardware costs. In
fact, work in [20] has formally proved that for a suitable low-
resolution variable or a coefficient in a polynomial datapath,
if its FB is increased by one bit only, it becomes possible to
widely reduce the FB of several other variables. Hence, lack
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of flexibility in controlling the FB of constant coefficients and
an initial selection of safe high FB values [11], [21], [26], [32]
puts restrictions on the efficiency of the design optimization.

However, there are solutions like the ones in [14], [27], [30],
[33], and [39] which take into account the effect of coefficient
quantization in their error analysis. Particularly, the method
in [33] assumes the coefficient errors as a source of noise
by adding a random jitter to the coefficients and determining
the MSE/SQNR w.r.t. such noise. The approaches in [13] and
[31] make use of a perturbation and sensitivity analysis w.r.t.
the coefficient quantization errors to track their impact on the
position of zeros and poles. The analysis involves MM. The
major drawback of the methods in [30] and [33] lies in their
inability to deal with feedback circuits of orders higher than 2,
and with LTI circuits in general. Furthermore, these solutions
are based on a linear approximation, which limits robustness.

The method in [15] offers an alternative precision analysis
in terms of MM rather than MSE/SQNR that is applicable to
an arbitrary IIR filter. However, the importance of MSE/SQNR
is further confirmed by methods like [31] and [34], where the
analysis of MSE/SQNR has been extended to nonlinear and
time-varying circuits. In particular, the scheme in [31] uti-
lizes AA to compute range, MM, and MSE/SQNR. However,
neither [31] nor [34] takes into account the effect of coefficient
quantization error.

In contrast to previous methods, this paper provides a static
analysis for range, MM, and MSE/SQNR for LTI circuits,
which does not suffer from the problems encountered in con-
ventional solutions. In particular, our range analysis can lead
to tighter results compared to previous methods. Furthermore,
our MM and MSE/SQNR analysis takes into account a more
comprehensive representation of an error, by including all the
error sources, i.e., variables and coefficient quantization errors.
Further, it is applicable to all LTI circuits unlike methods
in [14], [27], [33], and [39]. Our error analysis provides a
negligible overestimation of the error. Hence, the computed
values of MM and MSE are robust. Note that the conventional
analyses ignoring the effect of coefficient quantization are
nonrobust, since they underestimate the error. Finally, our
analysis leads to an optimization of FBs and IBs of both
variables and constant coefficients, while satisfying the error
bounds.

III. Range Analysis

In this section, we propose a range computation algorithm
for obtaining minimum IBs in an implementation of the
bounded input bounded output (BIBO) stable causal LTI
system y = x∗h. This problem, crucial for the discrete system
design, has been addressed previously, where the solutions
in [14], [16], and [26] utilize the L1 norm of [h], i.e.,
||[h]||1 =

∑∞
k=0 |h[k]| to compute an overestimation of the

range using the following inequality:

max(|y|) ≤ ||[h]||1 × max(|x|). (6)

The norm ||[h]||1 can be computed using a simple numerical
method [14]. The convergence condition in (6) is governed by
the position of poles in the system. Namely, the closer the

poles are to the unit circle (stability condition), the higher the
number of summations L is required to estimate ||[h]||1, that
is

||[h]||1 =
∞∑
k=0

|h[k]| ≈
L∑

k=0

|h[k]|.

The reason is that for BIBO stable LTI systems we have
limk→∞ h[k] = 0, and hence, if L is high enough, then the
changes in ||[h]||1 become negligible and the summation loop
converges.

Example 1: Consider an LTI circuit with a single dominant
pole at z = z0, i.e., y[n] = x[n − 1] + z0y[n − 1]. The value
of |h[k]| decreases (increases) w.r.t. k, if |z0| < 1(|z0| > 1)
with the complexity of O(|z0|k). Now assume that the res-
olution ranges from 2−S to 2S . Under such conditions, the
samples h[k] converge to zero (<2−S) or infinity (>2S) after
L =

⌈|S log|z0| 2|⌉ iterations, where �.� is the ceiling function
and rounds its input to the closest higher integer. For instance,
if S = 64, then for the stable circuit with z0 = 0.99, converging
to the condition |h[L]| > 2−64, is obtained after L = 4414
iterations, while for the unstable circuit with z0 = 1.01, the
condition |h[L]| > 264 is satisfied at L = 4459. Hence, even
with poles very close to the unit circle, the convergence is
obtained relatively fast. �

The inequality used for the bound in (6) may result in a
major overestimation of the range, and lead to the allocation
of superfluous IBs for the fixed-point variables.

A tighter range with less overestimation is obtained as

max(y[n]) ≤
n∑

k=0

max(x × h[k]) (7)

⇒ max(y) ≤
∞∑
k=0

max(x × h[k])

≈
L̂∑

K=0
max(x × h[k]).

(8)

The variable L̂ in (8) represents the number of summations
required to estimate

∑∞
k=0 max(x×h[k]). The simple numerical

scheme in [14], which is utilized to compute (6), can be
used to compute max(y) in (8) as well. The variable L̂ is
dependent upon the position of poles like in (6). The closer
the poles are to the unit circle, the higher value of L̂ is
required for convergence. Note that if the input sequence x[n]
is uncorrelated, then the inequalities in (7) and (8) reduce to
equality conditions, which means that the computed range is
exact. We can make use of (8) to compute the minimum value
of y as well.

Example 2: Consider the following IIR filter:

y[n] = 2.487x[n] + 0.131x[n − 1] − 0.42x[n − 2]
−0.141y[n − 1] + 0.492y[n − 2] − 0.087y[n − 3].

The input bound is [0, 100]. Using (8), after n = 178
samples, the computation of range converges to the interval
[−196.39, 495.03], which corresponds to an overestimated
integer range of [−197, 496]. Ten bits of IB including a sign
bit are required to represent this interval. Using (6) to compute
the range [14], [16], [26] gives the coarser result of [−692,
692], which requires the IB of 11. Note that AA applied
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to compute the range [31] gives the coarse result of [−394,
692], which requires the IB of 11 as well. �

IV. MM Analysis and FB Allocation

The analysis of precision in terms of MM verifies that the
condition in (2) is satisfied. Moreover, it is required to find
acceptable FBs for all constants and variables, while satisfying
the error bound given by (2). In this section, we present
an efficient analysis of MM for LTI circuits, which leads to
a simple formula to set the FB of all the variables, while
satisfying the condition in (2).

Three error sources input quantization, coefficient quantiza-
tion, and scaling error (generated by scaling of intermediate
variables) have to be taken into consideration when repre-
senting the fixed-point output yfixed (Table I). In this paper,
we only address truncation, and round-to-nearest types of
quantization. The truncation is just a shift-right operation and
does not require additional hardware, while round-to-nearest
necessitates the shift, add and comparison operations. The
scaling errors, i.e., eq = xscaled − x, have the following ranges
for truncation and rounding-to-nearest:

Truncation − 2−FB ≤ eq ≤ 0
Round-to-nearest − 2−FB−1 ≤ eq ≤ 2−FB−1 (9)

where FB is the fractional bit-width of the scaled variable
xscaled. The round-to-nearest scheme in (9) provides the exact
maximum and minimum bounds for the quantization error.
However, regarding truncation, in order to compute bounds
on the quantization error we have to replace 2−FB in (9)
with 2−FB − 2−FBold , where FBold is the FB of nonscaled
variable x (FBold > FB) [19]. However, as explored in [20] and
indicated by experiments in Section VI, FBold is usually much
higher than FB, which makes it reasonable to overestimate
2−FB − 2−FBold with simply 2−FB. As presented in the rest of
this section, due to the only slightly overestimated interval
in (9) for the truncation case, we are able to devise a fast
analytical approach to set the FB values of variables, while
minimizing hardware cost.

Regarding quantization of coefficients, other scaling tech-
niques such as rounding to powers-of-2 can be investigated to
save hardware cost; however, this method contributes to very
high errors, which can make the circuit unstable. For coeffi-
cients, we assume the round-to-nearest quantization, since it
contributes to the lowest bound on error, (9), and furthermore,
it does not require the shift, add, and comparison operations.

The fixed-point representation of yfixed (Table I) is

yfixed = (x + ein) ∗ hq +
N∑

j=1

(eqj ∗ hqj) (10)

where the quantization errors ein and eqj, j ∈ {1, . . . , N},
may lie within different intervals given by (9). Hence, we can
express the mismatch function ye = y − yfixed as

ye = yfixed − y = yfixed − x ∗ h

= x ∗ (hq − h) + ein ∗ hq + eq1 ∗ hq1 + · · · + eqN ∗ hqN

= yex + ye0 + ye1 + · · · + yeN (11)

where yex = x ∗ (hq − h), ye0 = ein ∗ hq, ye1 = eq1 ∗ hq1, yeN =
eqN ∗ hqN .

Given the FB of coefficients, we can compute hq,
hq1, · · · , hqN based on h and the given topology of the
circuit, e.g., direct or parallel form IIR filter. Additionally,
if the FB values corresponding to ein and eqj are known,
the ranges of ein and eqj can be calculated based on (9).
In consequence, the problem of determining the maximum
and minimum values (bounds) of (11), i.e., MM can be re-
declared as a range analysis issue. It can be then solved using
the adjusted (8), where the major amendment to (8) is in
handling the input space. In particular, (8) deals with only one
input x, whereas now we need to consider several inputs: x,
ein, eq1, . . . , eqN . Furthermore, an individual impulse response
corresponds to each input. Hence, the computation of all the
impulse responses associated with functions assigned to inputs
x, ein, eq1, . . . , eqN , is required.

Finally, there is a correlation between eqj (j ∈ {1, . . . , N})
and the input x, i.e., yex and yej , which can be ignored
by making use of the triangle inequality max(yej + yex) ≤
max(yej) + max(yex). Hence, an upper bound on the maximum
value of ye in (11) is obtained as follows:

max(ye) = max(yex + ye0 + ye1 + · · · + yeN ) ≤
max(yex) +

(
N∑

j=0
max(yej)

)
where each maximum term, i.e., max(yex) and max(yej) (j =
0, . . . , N) in the above equation can be obtained based on (8).
Note that in order to compute max(yej), we must replace the
range of input x in (8) with the range of the quantization errors
given by (9).

The above discussion for computing MM is valid when all
the FBs of coefficients and variables are known. In the rest
of this section, we present an analysis to set the values of
FBs such that after computing MM based on the previous
discussion, a given error bound on MM is satisfied, (2).

Definition 1: Upper and lower output bounds after n

samples. The upper and lower output bounds (Bupp and Blow)
of the output y reached after the first n samples are

Bupp(y[n]) = max(max(y[0]), . . . , max(y[n]))
Blow(y[n]) = min(min(y[0]), . . . , min(y[n])).

(12)

Equation (12) indicates that Bupp(y[n])(Blow(y[n])) is a
monotonically increasing (decreasing) function of n.

The precision analysis in terms of MM leading to the
selection of FB values for system variables presented in the
rest of this section uses the following sequence in reasoning:

Lemma 1: Determines Bupp(yej), where yej is given by
(11), and (j = 0, . . . , N)
Lemma 2 and Corollary 1: Computes the perturbation of
Bupp(yej) w.r.t. the changes in FB values

Lemma 3: Calculates Bupp

(∑N
j=0 yej

)
in (11)

Lemma 4: Sets analytically FB values for variables.

Lemma 1: Consider the mismatch term ye0 = ein ∗ hq

in (11), where ein has a bound based on the type of the



SARBISHEI et al.: ANALYTICAL OPTIMIZATION OF BIT-WIDTHS IN FIXED-POINT LTI SYSTEMS 347

quantization, (9). The upper bound of ye0 after n samples can
be expressed as Bupp(ye0[n]) = max(ye0[n]). Moreover, the
lower output bound of ye0 after n samples is Blow (ye0[n]) =
min(ye0[n]).

Proof: Since ye0 = ein ∗ hq, by using (7) we obtain

max(ye0[n + 1] =
max(ye0[n]) + max(einhq[n]).

(13)

For the bound on the input ein coming from the round-to-
nearest or truncation quantization types, (9), we have

max(einhq[n]) = max(|ein|) × (|hq[n]|) ≥ 0
max(einhq[n]) = − max(|ein|) × (|hq[n]|) ≤ 0.

By applying this to (13) we obtain

max(ye0[n + 1] ≥ max(ye0[n])

and hence, Bupp(ye0[n]) = max(ye0[n]), (12).
Lemma 1 can be extended to the other quantization terms

yej (j = 1, . . . , N) in (11). In particular, it indicates that
for term yej originating from a quantization noise within
the interval in (9), functions max(yej[n]) and min(yej[n])
are, respectively, monotonically increasing/decreasing
in n.

Lemma 2: Consider the mismatch term ye0 = ein ∗ hq,
(11), where ein corresponds to FB fractional bits for a given
quantization type, (9). Further, assume that the value of
max(ye0[n]) = A at the nth sample is computed based
on (7). If the original FB is increased by p bits, i.e.,
FBnew = FB + p, where p ≥ −FB, then the new maximum
bound on the mismatch of the nth sample can be obtained
as max(ye−new[n]) = 2−p × A. Note that for negative val-
ues of p it is simply a reduction of number of FBs by
−p bits.

Proof: According to (7), the MM of ye0[n] is a linear
function of the upper and lower bounds of ein, which are given
by (9). Based on that and the fact that the upper and lower
bounds of ein in (9) can be represented as 2−FB ×c, where c is
either 0, −1, or ±1/2 depending on the type of quantization,
we deduce that for both types of quantization given by (9), we
have max(ye0[n]) = 2−FB ×cte. Here, cte is a constant positive
value, which can be obtained by (7). Hence, if we change FB
to FBnew = FB+p, then the new maximum bound on mismatch
becomes max(ye0−new[n]) = 2−FB−p × cte = 2−p × A.

Corollary 1: Assume that we established the upper bound
of ye0 = ein ∗ hq, (11) to be C, i.e., Bupp(ye0) =
limn→∞ max(ye0[n]) = C, using (8). Based on Lemma 1,
Lemma 2, and (12), if ein corresponds to FB fractional bits,
increasing FB by p bits results in the new upper bound of
2−p × C.

The validity of Corollary 1 results from Lemma 2, which
states that the value of max(ye0[n]) is multiplied by 2−p,
if FB is increased by p. Since the relation Bupp(ye0[n]) =
max(ye0[n]) is true due to Lemma 1, we deduce that the upper
bound is also multiplied by 2−p. Now that we have established
how changing FB impacts the value of Bupp(yej[n]) (j =
0, . . . , N), we move to represent Bupp(

∑N
j=0 yej) w.r.t. the FB

of variables.

Lemma 3: Consider the mismatch part of (11), which
originates from ein, eq1, . . . , eqN

yeq = ye0 + · · · + yeN = ein ∗ hq +
N∑

k=1

eqk ∗ hqk. (14)

Based on Corollary 1, let the upper bounds of ein ∗ hq,
eq1 ∗ hq1, . . . , eqN ∗ hqN be equal to 2−FBin × A0, 2−FB1 ×
A1 . . . , 2−FBN ×AN , respectively, where Aj (j = 0, . . . , N) is a
positive value obtained by (8) to compute the upper bound for
yej . Then, the bound on MM of yeq in (14) is the summation
of the bounds

Bupp(yeq) = 2−FBin × A0 +
N∑

k=1

2−FBk × Ak. (15)

Proof: First, note that the maximum values of
ye0[n], . . . , yeN [n] all occur at the same time when n → ∞ as
they are all monotonically increasing functions of n, Lemma 1.
Additionally, yeq is a linear function of yeq, . . . , yeN , (14).
Therefore, the MM of yeq in (14) is obtained by adding the
individual bounds.

The analysis provided by Lemmas 1–3, as well as
Corollary 1, forms a basis for the following lemma, which
proposes an efficient formula to efficiently set the FB values,
while satisfying (2) and minimizing hardware cost.

Lemma 4: Assume that FBin, FB1, . . . , FBN are selected
such that the upper bounds of ein ∗ hq, eq1 ∗ hq1, . . . , eqN ∗
hqN, i.e., B0 = 2−FBin × A0, B1 = 2−FB1 × A1, . . . , BN =
2−FBN × AN all satisfy the following condition:

Emax

2 × (N + 1)
< Bi ≤ Emax

(N + 1)
(i = 0, . . . , N) (16)

where Emax is the given error bound. Then, based on (15), the
bound on MM of yeq in (14) is equal to Bupp(yeq) =

∑N
i=0 Bi ≤

Emax, which is the summation of individual bounds. If one of
the fractional bit-widths, e.g., FBin, is reduced by one, then
it is necessary to increase by one at least two other arbitrary
FB values FBi and FBj, i, j ∈ {1, . . . , N} in order to keep the
upper bound on yeq not larger than Bupp(yeq) =

∑N
i=0 Bi.

Proof: If FBin is reduced by 1, then according to (15),
Bupp(yeq) is changed to Bupp(yeq−new1) = B0 +

∑N
i=0 Bi. In order

to keep the new bound on MM equal to
∑N

i=0 Bi, we choose
to increase FB1 by 1. This reduces the MM by B1

2

Bupp(yeq−new2) = B0 +

(
N∑
i=0

Bi

)
− B1

2
.

In consequence, the bound on MM is increased by B0 − B1
2 .

In the best case scenario, when B0 and B1 are respectively
at their minimum and maximum values given by (16), i.e.,
B0 = Emax

2×(N+1) + e and B1 = Emax
(N+1) , where e is a positive small

value according to (16), the additional error is equal to B0 −
B1
2 = e > 0. This means that the new bound on mismatch

is still higher than
∑N

i=0 Bi even when considering the best-
case scenarios for B0 and B1. Hence, it is necessary to reduce
another FB, e.g., FB2, by 1 to further reduce the new bound
on mismatch.

Lemma 4 indicates that in terms of hardware cost, the most
efficient approach to set the FB of input/intermediate variables
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is to select equal limits for the terms Bi (i = 0, . . . , N) in (16).
Note that in some applications we do not have a freedom to
choose arbitrary FBs for the input variables. In such cases FBin

is fixed; however, FB1, . . . , FBN of the intermediate variables
can be selected by (16).

We now present the optimization algorithm for selecting FB
values for variables and coefficients in an LTI circuit H. Our
scheme guaranties that a given error bound Emax is satisfied
for the mismatch function (2). The outputs of the algorithm
are the MM of the fixed-point LTI circuit, as well as the FB
of variables and constant coefficients.

The algorithm starts from setting the FBc, i.e., the FB of
coefficients, initially to a minimum value, i.e., 1. In Step 2,
a while loop is invoked, which is responsible for finding the
suitable FBc. In this loop, at Step 5, the MM is computed using
(7), (8), and (11), while assuming the input and intermediate
quantization errors all equal to zero. If MM exceeds the error
bound, the algorithm iteratively increases FBc by 1 until a
minimum possible FBc that satisfies Emax is found. After
setting FBc, the FB of input and intermediate variables, i.e.,
FBin, FB1, . . . , FBN are addressed in Steps 8 to 13. Note that
(16) is used to allocate suitable values of FBs to the variables
sequentially. If FBin of the inputs is given as a fixed value
with no freedom for changing it, then the procedure based
on Lemma 4 and (16) has to be modified to address only
FB1, . . . , FBN .

Note that for the same values of FBc and FBi (i = 1, . . . , N),
contribute to higher hardware cost, as FBi is for a fixed-point
variable, while FBc is for constant coefficients. Hence, in Step
14 the value of FBc is compared with the rest of FBs. If FBc is
not of the highest value, then FBc is increased by 1 and the sec-
ond while loop (Step 7) is re-executed to achieve lower values
of FB for other variables using (16) once again. Otherwise, the
final FB values and MM are returned. Note that by increasing
FBc, the error term yex = x ∗ (hq − h) in (11) is reduced, and
hence, it leaves us a degree of freedom to choose higher values
for the error terms yej (j = 0, . . . , N) in (11). Due to (16), this
results in lower FB values for the variables without exceeding
Emax. Therefore, the hardware cost is improved.

Example 3: Consider the direct form IIR filter in Fig. 3.
The goal is to find suitable values of FBs for the input
variable x, the intermediate variables c to f and the constant
coefficients {0.1, −0.4, −0.1, 0.46, −0.08} such that the error
bound Emax = 0.1 is satisfied. The quantization by truncation
is chosen for the variables, while coefficients are treated with
round-to-nearest method. The computation of the bounds on
MM based on (7) and (8) converges after n = 156 samples
with MM = 0.088. The following FBs for the variables are
obtained after making use of the algorithm in Fig. 2:

FBc = 14, FBx = FBa−c = 7, FBd−j = FBy = 8

where FBm is the fractional bit-width of the variable m in
Fig. 3 and FBc is the fractional bit-width of the coefficients.
If we ignored the effect of the coefficient quantization for the
above example, which is the case for conventional methods,
the maximum mismatch would be MM = 0.0098, which is a
unsafe underestimation of error by the factor of 9. �

V. Analysis of MSE and Fractional

Bit-Width Allocation

The analysis of the precision and MM may not be suffi-
cient for LTI systems in some DSP applications, hence other
error metrics are usually applied. Among them MSE (and
in consequence SQNR) is one of the most important, as the
output error between the fixed-point and reference circuit is
assumed to be a random variable (noise). MSE is a suitable
measure to indicate the power of noise [21]. In this section we
present a robust analysis for computing MSE, which can be
beneficial for both optimization and verification of real DSP
systems. In particular, we first need to prove the validity of the
robustness assumption of the uniform probability distribution
for eqj (j = 1, . . . , N) in (11).

Based on (4) and (11) the MSE metric can be rewritten as

E(|y − yfixed|2) = lim
M→∞

1

M

M∑
k=0

E(|ye[k]|2). (17)

It has been shown in [16] that by assuming a uniform
distribution of an error eq generated by the quantization, i.e.,
eq = xscaled − x over the interval [A, B], the value of E(|eq|2)
can be computed as

E(|eq|2) = σ2
eq

+ (E(|eq|))2 =
(B − A)2

12
+

(A + B)2

4
(18)

where σ2
eq

is the variance of eq. Hence, based on (9) and (18),
for the two quantization types we have

Truncation : E(|eq|2) = 2−2FB/3
Round-to-nearest : E(|eq|2) = 2−2FB/12.

(19)

Equation (19) is valid for continuous variables; however,
based on the results in [20], as well as our experiments in
Section VI, the FB values and number of truncation bits are
typically higher than 8, which makes the approximation in
(19) almost accurate [19].

Note that the quantization error of an intermediate variable
in a fixed-point arithmetic circuit generally does not have a
uniform distribution over its interval given by (9), [17], and
[25]. However, the problem can be simplified for LTI systems,
[19] and [21]. In particular, the only arithmetic operators
in an LTI circuit are additions and constant multiplications.
Hence, if we can prove for both of these operations that the
assumption of a uniform distribution on the outputs (when
the inputs are uniform) is acceptable, then all the quantization
errors can be considered to have uniform distributions as well.

For the constant multiplier S(x) = c×x, where c is a constant
coefficient, if the input x has a uniform distribution over the
interval (−a, a), then obviously the output S has also a uniform
distribution over (−c × a, c × a). Hence, the quantizing error
generated by scaling S is also uniform.

Although constant multipliers do not change the uniform
distribution of outputs, adders do. In fact, the sum has a
distribution, which is the convolution of the distributions of
the inputs. Hence, in general, it is a complex task to derive a
distribution of all the intermediate variables in an LTI circuit
using the convolution approach. Furthermore, it is even more
challenging to find the exact distribution of the quantization
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error of intermediate variables based on the distribution of their
corresponding nonquantized values. This problem is resolved
by the following lemma, which illustrates that it is acceptable
to assume a uniform distribution of the outputs of adders in
an LTI circuit. As a result, the quantization errors can be
considered uniform.

Lemma 5: Consider an addition operation S = x1 + x2,
where x1 and x2 are independent input variables having
uniform distributions over intervals (−a1, a1) and (−a2, a2),
respectively. A uniform distribution of the sum S, and as
a result, the associated quantization error, overestimates the
value of the exact distribution of S, i.e., E(|S|2).

Proof: The exact value of E(|S|2) can be computed based
on (18) as

E(|S|2) = E(|x1 + x2|2 = E(|x1|2) + E(|x2|2) =
a2

1 + a2
2

12
.

Since the value of S lies within the interval (−a1 − a2, a1 +
a2), then if we assume a uniform probability distribution for
the sum S, using (18), we obtain the following new value of
E(|Snew|2):

E(|Snew|2) =
(a1 + a2)2

12
= E(|S|2) +

a1a2

6
.

The fact that both a1 and a2 are positive numbers implies
that E(|Snew|2) > E(|S|2).

Note that Lemma 5 assumes that x1 and x2 are statisti-
cally independent, while in general they might be correlated.
However, regarding LTI circuits, the degree of all variables
is at most 1, and as a result even if there is a correlation
between the intermediate variables x1 and x2 then x1 + x2

can be flattened w.r.t. some other primary variables that are
statistically independent.

Hence, in a system involving adders and constant mul-
tipliers, as in an LTI circuit, the assumption of a uniform
distribution for the intermediate quantization errors results in
an overestimation of MSE, which is safe compared to the case
where MSE is underestimated. The overestimation of MSE due
to adders is mostly negligible, as per Lemma 5.

For example, assume an adder with one 12-bit input operand
and another 8-bit one with uniform distributions over the
intervals [−2047, 2047] and [−127, 127], respectively. The
output is quantized by truncating its least significant b bits.
Table II illustrates the values of E(|eexact|2) and E(|euniform|2)
for different values of b. Here, eexact represents the exact quan-
tization error on the output, while euniform stands for the error
when considering a uniform distribution, i.e., (19). As can be
seen, the overestimation becomes negligible as b increases.
According to [20] and our experiments in Section VI, the
typical number of truncation bits in an optimized imprecise
circuit is higher than b = 8. Hence, the overestimation
originated from the assumption of the uniform distribution for
quantization errors is mostly negligible.

According to (19) the round-to-nearest scaling contributes
to a much lower value of E(|eq|2) compared to truncation.
Hence, being the worse case, we only consider the round-to-
nearest quantization to allocate suitable bit-widths to all the
variables and constant coefficients when the goal is to satisfy a
specific bound on MSE. In fact, the MSE analysis is simplified

for the round-to-nearest quantization, as E(eq) = 0, (9), while
E(eq) �= 0 for truncation.

Finding the value of E(|ye|2) in (17) where ye is given by
(11) is not trivial due to the correlation among the variable x
and all the quantization errors eq1, . . . , eqN . Note that the term
yex = x ∗ (hq −h) in (11) does not appear in the error analysis
of conventional methods, which ignore the effect of coefficient
quantization error resulting in hq = h (Table I). This makes the
error analysis trivial, since the correlation between the variable
x and all the quantization errors eq1, . . . , eqN does not affect
the output error. However, in our analysis of the error defined
by (11), we consider the correlation. The solution we propose
is to overestimate the error function ye by another error
function, i.e., ŷe > ye, such that E(|ŷe|2) can be computed
more easily. Under such conditions, an overestimated value of
MSE is obtained. Lemma 6 establishes the background for the
robust computation of MSE by overestimating the error.

Lemma 6: The mismatch function ye = y−yfixed in (11) can
be overestimated and marked as ŷe, (20). The new mismatch
function ŷe is a function of the statistically independent
variables ein, eq1, . . . eqN

ŷe = ŷex + ye0 + ye1 + · · · + yeN =
max(|x|) ∗ (hq − h) + ye0 + · · · + yeN.

(20)

Proof: The only term that has been overestimated in (20)
compared to (11) is ŷex = max(|x|) ∗ (h − hq), which is an
overestimation of yex = x ∗ (h − hq)

The overestimated mismatch function given by (20) includes
the term ŷex = max(|x|) ∗ (h − hq), which is independent of
x. Therefore, when the round-to-nearest quantization is used,
an overestimated value of MSE can be computed as follows
based on Lemma 6 and the property

E(ein) = E(eq1) = E(eqN ) = 0 :
E(|ye|2) < E(|ŷe|2) =

E(|ŷex|2) + E(|ein|2) × limM→∞
M∑
j=0

|hq[j]|2+

N∑
i=1

(E(|eqi|2) × limM→∞
M∑
j=0

|hqi[j]|2)

(21)

where

E(|ŷex|2) = (max(|x|))2 ×
⎛⎝ lim

M→∞

M∑
j=0

(h[j] − hq[j])

⎞⎠2

.

A. Overestimation of Mismatch Function

Lemma 6 introduces an overestimation to the mismatch
function (20). In fact, the only term overestimated in (20)
is ŷex = max(|x|) ∗ (hq − h), which is an overestimation of
yex = x ∗ (hq − h) in (11). Hence, the worst-case (maximum
value) of the overestimation generated for the output error, i.e.,
max(ŷe − ye), occurs when the other nonoverestimated terms
including ye0, . . . , yeN are all zero, i.e., ŷe − ye = ŷex − yex

[(11), (20)]. Assuming a uniform distribution of x over the
interval [A, B], the minimum value of E(|x|2) is computed as

∂E(|x|2)
∂A

= 0
Eqn.(18)⇒ A = −B

2 ⇒ min{E(|x|2)} = (B−(−B/2))2

12 +
((−B/2)+B)2

4 = B2

4 .
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Therefore the exact MSE of yex, and as a result ye is

E(|ye|2) = E(|yex|2) =
B2

4
× Ĥ (22)

where Ĥ = {∑∞
j=0(h[j] − hq[j])}2. Hence, the overestimated

MSE of E(|ŷex|2) can be computed as

E(|ŷex|2) = (max(|x|))2 × Ĥ = B2 × Ĥ. (23)

Based on (22) and (23) in the worst-case scenario of com-
puting MSE where no input/intermediate variable quantization
exists, the overestimation is at most 10 × log10 4 = 6 dB.
However, when other sources of quantization error, including
input and intermediate variables quantization are considered,
the overestimation becomes lower than 6 dB. Hence, if yex

is much lower than ye0 + ye1 + · · · + yeN, then E(|ŷex|2),
which is the only overestimated term in (20), becomes much
smaller compared to the remaining terms in (20). Therefore,
the overestimation becomes negligible. The experiments in
Section VI provide data to compare our overestimated MSE
analysis with the approximate analysis based on [11], [21], and
[26], and the exact MSE obtained by exhaustive simulations.

Furthermore, since overestimating error leads to the increase
in hardware costs, it is important to find the amount of FBs
over-allocated by the overestimation. Comparing the worst-
case of the overestimation in (22) with the exact value in (23),
we observe that to make E(|ŷex|2) equal to E(|ye|2), Ĥ in (23)
has to be reduced to Ĥ/4. According to the definition of the
LTI system h[n] is a polynomial of a finite number of constant
coefficients, e.g., c1, · · · , cL, we can re-write h[n] as

h[n] =
T∑

j=1

aj ×
(

L∏
i=1

c
pi,j

i

)
where aj is a complex constant, which can be computed
based on the particular topology of the LTI circuit, e.g.,
direct/parallel form IIR filters, T is the number of mono-
mials mj =

∏L
i=1 c

pi,j

i realizing the polynomial h[n], while
pi,j is a nonnegative integer representing the degree of the
coefficient ci in the jth monomial mj . Consequently, hq[n]
is a polynomial of L quantized coefficients ĉ1, · · · , ĉL, with
ĉi = ci + eci (i = 1, · · · , L) and eci being the coefficient quan-
tization error of ci. Therefore, we can re-write the expression
h[n] − hq[n] in Ĥ , (22), as

h[n] − hq[n] =
T̂∑

j=1

(âj × m̂j) (24)

where âj is a complex constant, T̂ is the number of monomials
m̂j =

∏L
i=1 e

p̂i,j

ci realizing h[n]−hq[n], and p̂i,j is a nonnegative
integer representing the degree of the variable eci in the jth
monomial m̂j . Since h[n] = hq[n], if ec1 = · · · = ecL = 0,
we deduce that h[n] − hq[n] does not include a zero degree
monomial, i.e.,

∑L
i=1 p̂i,j �= 0. The fact that eci is very small

for high values of FBc (FB of constant coefficients), e.g.,
eci < 0.001 for FBc ≥ 10, it justifies the claim that if FBc is
large enough we can ignore the monomials m̂j in h[n]−hq[n]
that have a degree higher than 1, i.e., m̂j =

∏L
i=1 e

p̂i,j

ci , with∑L
i=1 p̂i,j > 1. Note that monomials mdeg-high are much

Fig. 2. Proposed algorithm for finding suitable FBs in an LTI circuit to
satisfy a given error bound on MM.

smaller compared to the first degree monomials mdeg-1, i.e.,
mdeg−high 
 mdeg−1. Hence, h[n] − hq[n] can be estimated as

h[n] − hq[n] ≈ b1ec1 + b2ec2 + · · · + bLecL (25)

where bj (j = 1, · · · , L) is a constant complex number, which
can be obtained using a first-order Taylor approximation of
(24) w.r.t. ecj (j = 1, · · · , L). It can be observed from (25)
that if the FBs of all coefficients are increased by 1, then all
eci values are approximately divided by 2 and consequently,
Ĥ is divided by 4. Hence, the overestimation of our analysis
results in allocating approximately one additional fractional
bit to coefficients.

B. Optimization Algorithm

The algorithm to determine FB values of both variables
and constants, which satisfies a specific bound on MSE is
presented in Fig. 4. The pseudo-code of the algorithm is
similar to that of the precision analysis and FB allocation in
Fig. 2. At Step 4, the value of E(|ŷex|2) is computed. Since for
a BIBO stable system limn→∞ h[n] = limn→∞ h[n] = 0, we
need to choose n to be high enough to provide accurate results
for E(|ŷex|2). This can be done by gradually increasing n until
the condition h[n] ≈ hq[n] ≈ 0 is satisfied. As discussed in
Section V-A the convergence of this process depends on the
position of poles, and how close the circuit is w.r.t. the stability
condition. Experimental results in Section VI show that even
for benchmarks with poles very close to the unit circle, i.e.,
the most negative case, our algorithms converge in just a few
seconds.

If, after completing one execution of the while loop (Step
2, Fig. 4), the value of E(|ŷex|2) is higher than the maximum
allowed MSE (Esquare), then this indicates that FBc is not high
enough, and the while loop is re-executed increasing FBc by 1.
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TABLE II

Comparison of E(|euniform|2) and E(|eexact|2) for an Adder

b E(|euniform|2) E(|eexact|2) Overestimation
6 1365.3 1333.5 2.38%
8 21 845 21 717 0.589%
9 87 381 87 122 0.297%
10 349 530 348 990 0.154%
11 1 398 100 1 396 900 0.0859%

Fig. 3. Direct form third-order IIR filter for example 3.

Otherwise, a procedure based on Lemma 4 is performed to set
the FB values of other variables (Steps 9–13). This process,
similar to the one in Fig. 2, terminates after checking whether
the final values of FBs are all smaller than FBc. If this is
the case, then the algorithm returns the FB values as well as
the maximum MSE of the fixed-point circuit, i.e., MSEfixed.
Otherwise, the while loop in Step 7 is re-executed to increase
FBc and achieve lower values for FBin and FB1:N to save
hardware cost.

Note that for computations of range, MM, and MSE/SQNR,
all our algorithms have the complexity of O(nmaxN), where
nmax is the maximum number of samples required for the
algorithm to converge, and N is the number of intermediate
variables. The value of nmax depends on the position of poles,
and how close the circuit is w.r.t. the stability condition.
Experimental results in Section VI show that even for specific
benchmarks with poles very close to the unit circle, i.e.,
the most negative case, our algorithms converge in less than
1200 iterations. Note that the process of determining the FB
of variables in the algorithms in Figs. 2 and 4, which is
based on Lemma 4, has the complexity of O(N), since for
each intermediate variable, (16) can easily be utilized to find
suitable fractional bit-widths.

The optimization algorithms in Figs. 2 and 4 deal with
the error metrics MM and MSE/SQNR separately, since
most applications require the satisfaction of either MM or
MSE/SQNR. However, it is also possible to address a multiob-
jective optimization, such that it reaches simultaneously two
separate error bounds on MM and MSE. A straightforward
way to achieve this is to first find the solution for each error
metric independently. Afterwards, for each variable/coefficient
we choose the highest obtained fractional bit-width between
the two individual solutions to guarantee that both error
metrics are satisfied. This approach might not be the optimal
in terms of hardware cost; however, it guarantees to satisfy
both error metrics.

Example 4: Consider the IIR filter in Fig. 3. The goal is to
find suitable values of FBs for the input x, the intermediate

Fig. 4. Algorithm for finding FBs for given MSE error bound.

variables a to l, and the constant coefficients such that the
maximum MSE of −40 dB is satisfied. Note that the condition
of MSE = −40 dB is equivalent to setting the value of Esquare

in Fig. 4 to 0.0001. The value of MSEfixed is −42.24 dB.
The algorithm in Fig. 4 converges after n = 135 iterations. In
fact after n = 135 iterations all the impulse response samples
converge to zero, and hence, n = 135 is high enough to stand
for the upper limit (∞) in all the sigma in Fig. 4 aiming
to compute all the impulse response samples. The execution
time is less than a second resulting in the following FBs for
the variables:

FBc = 10, FBx = FBa−c = 7, FBd−j = FBy = 9.

�

C. Extension to Nonlinear Circuits

Some recent work, like the approach in [31], handles the
accuracy analysis of nonlinear fixed-point circuits with possi-
ble feedbacks by making use of linear approximations of the
error function. Using such an approximation, the analytical FB
optimization technique based on Lemma 3 becomes applicable
to nonlinear designs as well. However, the main drawback
is that the initial linear assumption of the nonlinear circuit
based on [31] may result in unrealistic analyses of error.
More accurate computation of error for nonlinear circuits with
possible feedbacks requires further study.

VI. Experimental Results

In this section, we evaluate the robustness and efficiency
of our range and precision analysis algorithms compared to
previous work. The algorithms have been implemented in
MATLAB and run on an Intel 2.8 GHz Pentium 4 with 2 GBs
of main memory.
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TABLE III

Benchmarks

Bench Order Nominator Full-Precision Coefficients Denominator Full-Precision Coefficients
0 (HPF) [14] 2 101.8, −203.4, 101.6 1, −1.967, 0.968
1 (LPF) 4 0.03752, 0.150086, 0.22513, 0.150086, 0.03752 1, −1.1839, 1.366039, −0.7782356, 0.2671877
2 (HPF) 4 0.570925344, −2.280504, 3.41916, −2.2805, 0.5709253442 1, −3.07156, 3.68147, −2.03462, 0.4474244
3 (LPF) 6 −1.5608, 3.07, 3.07, −1.5608, 1 1, −2.547, 4.2203, −4.3179, 3.0547, −1.3498, 0.3168

0.024261154, 0, −0.0970446, 0, 0.145567, 0, −0.0000000000000004441, 1.7459282353828,
4 (BPF) 8 0.024261154, 0, −0.0970446, 0, 0.145567, 0, −0.0000000000000004441, 1.7459282353828,

−0.0970446, 0, 0.02426 −0.00000000000000016653, 1.0200446024435135,
0.00000000000000053497, 0.30737575513825638

1, a, b 1,−a, b 1, c, d 1,−c, d

5 (Quad BPF) 8 1, 2, 1 1, −2, 1 1, 2, 1 1, −2, 1 a = 0.47583613785934908, b = 0.63399428536347535
c = 1.0921588046377746, d = 0.87447915380668007

6 (NTSC [36]) 8 Cascaded form of four 2nd-order direct-form IIR filters

A. Benchmarks
To obtain suitable IIR benchmarks, we have generated direct

(DR), parallel (PRL), and cascade (CS) forms of arbitrary or-
der floating-point IIR filters using the fdatool MATLAB tool-
box based on typical indicators such as sample frequencies and
3 dB bandwidths. The filters have then been optimized by our
algorithms, and after finding the suitable bit-widths for fixed-
point variables and constant then been optimized by our algo-
rithms, and after finding the suitable bit-widths for fixed-point
variables and constant coefficients, a register-transfer-level
Verilog code is written for the fixed-point circuits. Finally, the
Xilinx ISE v11 synthesis tool is utilized to map the circuits
into FPGAs. The benchmarks are addressed in Table III,
where HPF, LPF, and BPF refer to high-pass, low-pass, and
band-pass filters. Bench#5 is a bi-quad eighth-order cascaded
structure of four 2nd-order direct-form IIR filters. Hence, the
nominator and denominator coefficients are separated into four
subcolumns corresponding to the direct-form second-order
IIR filters. The last benchmark is also a National Television
Systems Committee (NTSC) channel cascaded eighth-order
LPF IIR filter with the cutoff frequency of 4.74 MHz [36].

The first experiment explores the robust convergence of our
algorithms (Table IV). The maximum error bound Emax = 0.1
has been chosen, while the range of [−100, 100] is selected
for both, integer and fractional parts of the input x in all the
test-cases in Table IV. Equation (8) and the algorithm in Fig. 2
are used to compute the range (and therefore IB) and MM with
FBs setting, such that to MM < Emax is guaranteed. The IB
of output and FB of the coefficients, input x and intermediate
variables are given in Column 7, Table IV. Columns 3 and 4
indicate the number of iterations (samples n) that are required
for the computation to converge. As an example, for Bench#0
it is sufficient to put the maximum number of samples as
n = 1140 such that all the impulse response samples converge
to zero. The position of the dominant poles, which are the
closest ones to the unit circle, is shown in Column 8. The
Bench#0 includes the dominant poles (stability condition), and
as a result it requires the highest number of iterations (samples)
to converge compared to the other benchmarks (Table IV).

Fig. 5 represents the frequency domain (pass-band) behavior
of the reference model NTSC channel IIR filter in Bench#6, as
well as its fixed-point implementation addressed in the last row

Fig. 5. Frequency domain (pass-band) behavior of Bench#6 and its fixed-
point implementation. (a) Magnitude. (b) Group delay.

of Table IV. We have also considered the case where the coeffi-
cients are rounded to the closest powers of 2 to save hardware
cost. For such a case, the quantized system consists of the pole
−0.0516±1.2468j, which is outside the unit circle and makes
the filter unstable. Hence, we deduce that rounding to powers-
of-two is not robust. Note that some combined quantization ap-
proaches can be investigated for coefficients to provide a trade-
off between the accuracy of round-to-nearest quantization and
the low hardware cost of round-to-powers-of-two technique,
which are not discussed in this paper. Fig. 5(a) illustrates the
magnitude of the transfer function H(jω) in dB versus the
frequency ω in rad/s. Furthermore, Fig. 5(b) depicts the group
delay, i.e., − d{� H(jω)}

dω
, versus ω, where �H(jω) is the angle

of H(jω). As can be seen, the fixed-point implementation,
which quantizes coefficients using round-to-nearest almost
matches the reference model in terms of the frequency domain
behavior. Further, the fixed-point filter also matched the behav-
ior of its reference model in the stop-band, which is not cap-
tured in Fig. 5. The rest of fixed-point circuits in Table IV also
exhibit almost the same behavior in both pass-band and stop-
band frequency domains compared to their reference models.

As discussed in Section V-A, the proposed analysis of
MSE provides a safe and robust overestimation compared
to the exact results. The second experiment in this section
demonstrates that typically the amount of MSE overestimation
is much less than 6 dB, which is the worst-case scenario as
discussed in Section V-A.
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TABLE IV

Experimental Results of Evaluating the Proposed Algorithms on Several IIR Filter Benchmarks

Range Iterations Precision Obtained Range Precision
Bench Type to Converge Iterations to Obtained Range MM, IB/FBc/FBin/ Dominant Poles Runtime Runtime (s)

(# of Samples n) Converge Emax FB1/FB2/. . . in the Z plane
0 DR 1140 553 (−27 090, 27 090) 0.0826 16/26/12/18 0.9835±0.027j 0.42 0.34
1 DR 184 158 (−192, 192) 0.0972 9/13/7/12 0.1432±0.8579j 0.032 0.078
2 DR 377 298 (−293, 293) 0.0934 10/17/7/16 0.9118±0.2953j 0.078 0.172
3 DR 651 494 (−37 323, 37 323) 0.0955 17/24/13/13 0.2999±0.9212j 0.2 0.28

PRL 387 0.0922 17/20/13/15 0.26
4 DR 276 228 (−185, 185) 0.0937 9/13/7/12 ±0.5461±0.7591j 0.063 0.093
5 CS 332 210 (−7624, 7624) 0.0998 14/19/12/13/11/10/9 0.079 0.203
6 CS 379 252 (−27 512, 27 512) 0.0987 16/19/15/14/13/12/10 −0.285±0.8985j 0.094 0.17

TABLE V

Comparison of Different Static MSE/SQNR Analyses and

Exhaustive Simulation for the Multiplier S = x×√
2/2

Approach MSE SQNR (dB) Runtime (s)

Simulation (exact) 1.9707 × 10−5 39.2723 154.7

Analysis [11], [21], [26] 7.6294 × 10−6 43.3936 <1

Our analysis 2.2331 × 10−5 38.7293 <1

As computing the exact SQNR is not possible for large
designs, we target a constant multiplier S = x × √

2/2,
which is required for realizing an 8-point DCT or FFT.
In the reference model the coefficient

√
2/2 has a 64-bit

floating-point format. Furthermore, for the input x we have
|x| < 1, and in the reference model comprises FBx−ref = 23
plus 1 sign bit. The probability of each bit in the reference
model of x to be equal to 0/1 is chosen to be 1

2 (uniform
distribution for x). Regarding fixed-point implementation, the
input and coefficient bit-widths are set to FBx = FBc = 7.
The output of the fixed-point multiplier is also quantized
using FBs = 7. Computing the exact value of SQNR requires
considering all 224 possible cases of x in the reference model.
Table V shows the comparison among the exact computations
of MSE/SQNR using simulations, the approximate analysis
based on [11], [21], [26], and our analysis. The methods in
[11], [21], and [26] all underestimate the error by ignoring
the coefficient quantization, which makes the analysis unsafe,
with more than 4 dB of underestimation for MSE. On the
other hand, our analysis overestimates the error, which is
safe. Furthermore, following the discussion in Section V-A,
the amount of overestimation/underestimation in the proposed
MSE/SQNR analysis is much lower than the worst-case of
6 dB (less than 0.6 dB here), which indicates our tighter
computation of error compared to previous work. Although
simulations can be used to compute the SQNR of nonfeedback
circuits like S = x×√

2/2 with few I/Os, they are not feasible
to find the SQNR for circuits with feedbacks.

In the third experiment, we evaluate the impact of coefficient
quantization error on the amount of unsafe overestimation of
SQNR provided by the approximate analysis in [11], [21],
and [26], which ignores coefficient errors, in comparison
with our robust analysis. The eighth-order NTSC IIR filter
in Bench#6 is chosen for this experiment, where all the input
and intermediate variables are quantized with FB = 9, while

TABLE VI

Evaluation of Our MSE/SQNR Analysis and Conventional

Methods W.R.T. Different Values of FBc on Bench#6

SQNR (dB) with FB = 9
Approach FBc = 11 FBc = 15 FBc = 17 FBc = 18 FBc = 19
Our analysis (safe) 68.5545 88.8503 95.8448 97.7169 99.249
Analysis in 99.2906
[11], [21], [26] (unsafe overestimation)
Overestimation
in nonlog 741.8% 106.2% 27% 11.5% 0.29%
domain

FBc varies from 11 to 19 bits. We have observed in MATLAB
simulations that with the coefficient bit-width of 12, i.e.,
FBc = 11, the position of zeros and poles in the Z-domain
almost matches to the case with full-precision coefficients.
Hence, to illustrate the impact of the overestimation, we
consider the coefficient bit-widths that are higher than 12.
The results are summarized in Table VI. The last row shows
the amount of unsafe SQNR overestimation in nonlogarithmic
domain originated from the analysis by conventional methods
in comparison with our approach. As expected, the amount
of overestimation gets lower as FBc increases; however, this
amount of unsafe overestimation is drastically high for some
typical values of FBc, i.e., 11 ≤ FBc ≤ 18, for which the
position of zeros and poles in the quantized system has already
been shown to be acceptable using simulations in MATLAB.
The experiments in Table VI indicate that the methods, which
ignore the effect of coefficient quantization, are nonrobust.

Next, in Table VII we compare our MM analysis versus
methods in [14] and [15] using the IIR filters. Benchmarks
0, 2, 3 and 6 in Table III have been chosen with Emax set
to 0.01. The solution in [14] can only support the precision
analysis of second-order IIR filters, and, as a result, it cannot
be used for FB allocation of Bench#1. Moreover, it provides
the overestimations of range and precision leading to assigning
additional IB and FB values. The solution in [15], which offers
a more efficient analysis, is applicable to an arbitrary order IIR
filter, selecting the similar FB values for all the variables. Our
method, on the other hand, sets separate values of FBs for all
of the above variables leading to the superior implementation
in terms of area (Table VII).

In the final experiment, we address the efficiency of our
MSE optimization algorithm in Fig. 4 compared to the method
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TABLE VII

Comparison of Our Mismatch Algorithm and Conventional

Methods When E = 0.01

Bench Ref Range MM
(Emax=0.01)

IB/FBc/FBin/
FB1/. . .

# Gates

[14] (−27 090,
27 090)

0.0022 16/29/
29/29

22 338

0 [15] (−13 545,
13 545)

0.0011 15/29/
29/29

22 118

This paper (−13 545,
13 545)

0.008 15/29/
15/21

16 762

[14] (−293,
293)

? 10/? ?

2 [15] (−147,
147)

0.0089 9/20/ 20/20 16 072

This paper (−147,
147)

0.0083 9/21/ 9/19 13 602

[14] (−37 323,
37 323)

? 17/? ?

3 [15] (−18 129,
19 195)

0.0047 16/24/ 24/24 13 566

This paper (-18 129,
19 195)

0.0093 16/24/ 17/17 10 480

[14] (−27 512,
27 512)

? 16/? ?

6 [15] (−9072,
18 440)

0.009 16/22/ 22/22/
22/22/ 22

27 528

This paper (−9072,
18 440)

0.0099 16/22/ 20/20/
19/18/ 15

24 550

Average saving compared to [15] 18%

in [29]. As an example for the bit-width optimization, we
consider the bit-widths of variables and constants in the 8 K
FFT unit in [28]. The method in [29], which is only applicable
to FFT units, ignores the effect of coefficient quantization in
both accuracy analysis and optimization process. Therefore,
it does not provide a robust MSE computation (Table VIII).
Furthermore, it cannot provide an efficient optimization, since
coefficient bit-widths are not flexible to be set. The original
FFT unit in [28] makes use of 10 bit coefficients, and since the
approach in [29] can only set the bit-widths of intermediate
variables and does not have flexibility in controlling the bit-
widths of constant coefficients, the same bit-width of 10 is
used for coefficients, while the bit-widths of intermediate
variables have been optimized using the method in [29]. Our
optimization approach, on the other hand, provides flexibility
in setting the bit-widths of both constant coefficients and
variables, and hence, results in a much more efficient imple-
mentation (Table VIII). Furthermore, analysis of MSE is robust
and safe. The last row of Table VIII shows the bit-widths of
the intermediate pipeline stages realizing the 8 K FFT unit.

VII. Conclusion and Future Work

In this paper, an efficient analysis of range and precision
including MM and MSE has been presented for fixed-point
LTI circuits. In general, conventional methods for analyzing
MM, MSE/SQNR cannot handle the coefficient quantization
errors, and hence, result in underestimations of error, which
is not safe and robust. Moreover, the underestimation can
be relatively large. The analyses of MM and MSE/SQNR

TABLE VIII

Comparison of Our MSE Optimization Algorithm and the

Approach in [29] on an 8 K FFT Unit

Parameter FFT in [28]+ FFT in [28] + Our
Optimization in [29] Optimization

Runtime (s) ∼20
MSE Our analysis 26.6491 26.6357
(dB) (safe)

[29] (unsafe) 25.3421 25.3357
Datapath logic gates 80 387 32 268

Critical path (ns) 14.788 8.774
Input/coef bit-width 8/10 8/11

Pipeline stage bit-widths 20/25/30/35/36 11/13/15/16/17(IB+FB)

in this paper take into account the quantization error of
both constants and variables, and always overestimate the
exact error, which is safe and robust. We also showed that
the amount of overestimation in our precision analysis is
mostly negligible, which indicates our tighter computation of
error compared to previous work. Furthermore, an analytical
word-length optimization, while satisfying the error metrics
and avoiding the overflow, is explored. Experimental results
illustrate the fast convergence, robustness and efficiency of
the proposed algorithms compared to the previous work.

As the next step, we will extend the MM and MSE/SQNR
analyses in this paper to focus only on a particular range of
frequencies that exist in the pass-band of filters, by hybrid
precision analysis in time and frequency domains. We planned
to extend the analyses to handle nonlinear circuits and include
the transforms that allow don’t cares [37] and combinations
with dynamic methods [38].
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