
Airwolf-TG: A Test Generator for Assertion-Based
Dynamic Verification
Jason G. Tong, Marc Boulé and Zeljko Zilic

Integrated Microsystems Laboratory – McGill University

Montréal, Québec, Canada

{jason.tong, marc.boule, zeljko.zilic}@mcgill.ca

Abstract—With the emerging predominance of assertion-based
dynamic verification, test generation is a key area where as-
sertions can play a bigger role. We consider the generation of
test sequences from properties defined by assertions. Such tests
are aimed at finding failures in corner-case scenarios of the
design specification that test generation alone, without assertions,
may not be able to achieve. As such, we take advantage of the
information present in the assertions to help build more effective
test scenarios – a much needed endeavor given the increasing
challenges in verification. We present algorithms in Airwolf-TG
that generate test sequences from efficient and compact automata
produced by MBAC tool.

I. INTRODUCTION

Dynamic, or simulation-based verification is still the most
widely used approach for verifying and validating Integrated
Circuits (ICs). Its purpose is to compute the output of the
Design Under Test (DUT) and to compare the response with
its expected behaviour from a specification or a golden model.
With the continuing improvements in circuit technology, ICs
now contain more functional blocks, processor cores, mem-
ory, Digital Signal Processors (DSP), buses and many other
components. This has led to an increase in the time spent in
the verification stage; however, even with the extra effort, it is
increasingly hard to guarantee that the circuit will be entirely
bug-free.

Assertion-Based Verification (ABV) has swept into both
dynamic and formal verification. Assertions help by increasing
the observability within the circuit, and can also help to
create behavioural scenarios that can be seen as potential
coverage criteria [1], [2]. Properties are defined in modern
assertion languages that are based on linear time temporal
logic and extended regular expressions. They also define the
expected behaviour to which the circuit must abide, i.e. they
serve as a specification mechanism. Any deviation causes an
assertion to fail, which can be captured by either the simulation
environment or by formal methods.

Test generation is an essential step in the dynamic verifi-
cation process, with the main goal often expressed in some
form of a coverage metric. In general, the coverage goal can
be thought of as the exploration of the specification space.
The effectiveness of dynamic ABV depends entirely on the
ability of the generated test sequences to exert the functional
coverage from the defined assertions. Hence, in ABV, the test
generation process should result in test vectors that try to fully
exercise the defined properties.

Two questions are raised in conjunction with dynamic ABV
methodology:

• Have we written enough assertions to properly specify
the functionality of the circuit?

• Have we produced enough test vectors to exercise most
of the possible behaviours of the circuit?

The work presented in this paper addresses the second
question, assuming that the first question is answered satis-
factorily, i.e., a sufficient set of assertions has been added
to the DUT to clearly and unambiguously specify the design
intent. We would want to achieve the minimal number of test
vectors in order to thoroughly exercise the circuit behaviour
based on the defined properties. Most commonly, verification
engineers are asked to perform the functional verification,
i.e., exercise the expected “good behaviour” by generating
test sequences that should produce the anticipated response
from the circuit. To more thoroughly verify the circuit, one
should attempt to generate test sequences that “break” the
DUT as well. By attempting the test sequences that could lead
to a faulty behaviour, we can assert much more than just the
straightforward simulation of the expected cases.

Within ABV, the test generation could actually use the read-
ily available assertions to generate test sequences. If assertions
thoroughly define the properties of the design, then they also
provide a blueprint for exploring the relevant common cases
as well as the corner-case scenarios. Assertions, then, form
the model of the DUT behaviours and provide the means
to undertake a model-based test generation. However, if the
amount of assertions is insufficient, this can lead to insufficient
test vectors which in turn lead to low coverage.

This work falls within the framework of the model-based
test generation. Most commonly, generating test sequences
in the model-based approach amounts to the generation of a
witness trace or a counter-example in Model Checking (MC).
MC uses a finite state machine description of the circuit and
the temporal logic properties that it must satisfy. From these
two inputs, it generates a product automaton that describes
acceptable behaviours for infinite input sequences. While the
product automaton structure, typically a Büchi automaton,
allows us (in principle) to verify whether the properties hold
for an infinite duration of time, it is does not scale very
well and is often not manageable by practical tools, except
for reasonably small circuits. This principle is illustrated in
Figure 1(a). Generating witness traces or counter examples in

106978-­1-­4244-­4823-­4/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.
































   

Fig. 1. Model Checker vs. Finite Automata Checker in Model-based Test
Generation

MC involves traversing the search space to find a set of input
signals that causes the property to pass or fail. This method
often suffers from the state space explosion and is prohibitive
for realistic circuits.

We propose instead to use finite automata describing prop-

erties alone. For that, we rely on the tool MBAC [3], which
produces assertion checkers, which are directly suitable for
dynamic verification. The tool explicitly optimizes the finite
automata for subsequently producing checker circuits. In our
approach, we gain by relying on finite (as opposed to infinite
trace) automata, and on the single automaton principle, as
opposed to the product automata in MC, shown in Figure 1 (a).
The automata that MBAC produces [4] are either for failure
mode (the typical sequences of inputs leading to assertion
failures) or acceptance mode (sequences of successes), and
are independent of the two industry-leading assertion lan-
guages, namely Property Specification Language (PSL) and
SystemVerilog Assertion (SVA). The MBAC automata are
suitable for run-time verification [3], as opposed to infinite-
trace Büchi automata used in formal verification [5].

Airwolf-TG, a test generator based on assertion checker au-
tomata, takes the automata generated by MBAC and efficiently
performs a state space search for generating test sequences for
failures or acceptances. Table I shows the differences between
MC and our proposed Finite Automata checking approach.
Airwolf-TG has the ability to find test sequences in negligible
computation time as opposed to the MC counterpart. This
difference is due to the fact that the checker automata are used

TABLE I
MODEL CHECKING VS. FINITE AUTOMATA (FA) CHECKING

Category Model Checking FA Checking

Automata Type Büchi NDA
Represented Traces Infinite Finite

Use of Product Automata Yes No
Computation Time Potentially huge Low

Output Type Counter Examples Test Sequences
Input HDL Yes No

in isolation, whereas in MC a product automaton construction
is required, which leads to a larger search space.

Our approach is to strategically search the entire automata
state space while generating compact test sequences using
either failure or acceptance automata. This differs from tra-
ditional graph traversing algorithms in several ways. First, a
loop detection algorithm is implemented as the automata can
contain cycles. These cycles can create an infinite-length test
sequence and traversing them should be kept at a minimum.
Second, the automata can experience non-deterministic be-
haviour such that it can enter in more than one new state. Our
algorithm has the capability to detect which outgoing edges
have similar Boolean expressions (referred as NDA edges),
monitor the multiple active states and generates the appropriate
test sequences that causes non-determinism. Lastly, Airwolf-
TG strategically chooses the next subsequent set of edges to
include as part of the test vector. This is done by determining
the number of times it was traversed (referred as “edge
weights”) and analyzing its directional properties (ie. cycle,
new node, old node, final node, direct-to-finish, NDA edges).
This ensures that the test generation uses all of the edges as
evenly as possible while not creating any additional, redundant
test sequences. The proposed strategy should enable it to
generate test sequences that satisfy or fail a property non-
vacuously.

The organization of this paper is as follows: Section II
presents a survey of previous work related to test generation
in ABV, followed by a brief overview of finite automata.
In additon, we also show the importance of vacuity in test
coverage and end with a discussion on automata coverage met-
rics. Section III presents Airwolf-TG and describes the major
algorithms that were used. Section IV shows the experimental
results obtained from Airwolf-TG, followed by conclusions in
Section V.

II. BACKGROUND AND PREVIOUS WORK

In this section, we begin by providing a short summary
of the related work and contributions in the area of test
generation based on property specifications. In addition to
the literature survey, we also present a brief discussion on
Finite Automata (FA) assertion checking, followed by vacuity
and test coverage. Lastly, we present some automata coverage
metrics that are also used in software testing.

A. Related Work on Test Generation from Properties

Oddos et al. [6] recently developed a tool, namely MyGen,
which generates hardware circuits that produce test vectors
based on automata created by MBAC. Their approach aims
to produce the test sequences pseudo-randomly with a Linear
Feedback Shift Register (LFSR) and Cellular Automata that
satisfy a given property based on the acceptance automaton.
The hardware generators were synthesized for FPGAs; how-
ever the size and complexity depends entirely on the transition
conditions (Boolean expressions) of each edge.

Koo et al. [7] proposed a bounded model-checking method
for validating pipelined processors. They generated a model of
the MIPS processor in a graph structure. Each node represents

107

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

either a pipeline unit (fetch, decode, execute, writeback) or a
storage unit (memory or registers). An edge can be either a
pipeline or data storage link. Their objective is to generate
a counter-example program that violates the user defined
property. This is done by traversing the graph model of the
microprocessor by finding a set of instructions that causes the
property to fail.

Shimizu et al. [8] presented a method for generating test
sequences based on constraints written as Boolean formulas.
These formulas abide to a set of syntactic rules and are
independent of each other. They only rely on the state variables
from previous states in which they are used for biasing during
subsequent test generations. These constraints are then con-
verted into a Binary Decision Diagram (BDD) representation
which is used for generating test sequences that lead to a “true”
value. The generated sequences are the inputs to the circuit
which exerts the expected (good) behaviour of the design. This
state space search is repeated for every dynamically created
BDD at each clock cycle.

Calamé et al. [9] also demonstrated automata techniques
for finding test sequences that lead to a property failure. This
method requires the specification of the design and the test
purpose. The specification is described in the form of a finite
state machine which contains a finite set of states, transitions
between different states and an initial state. The test purpose is
described in automaton form, which represents the constraints
that guide the generation of test sequences. Performing the
product of the specification and the test purpose automata cre-
ates the search space for test generation. State space traversal
algorithms are used in creating the test sequences for property
failure.

Pal et al. [10] proposed a “black-box” approach for perform-
ing test generation from user-defined assertions. The objective
is to increase and accelerate the production of satisfying test
sequences without vacuity. They have varied the controllability
and the observability of the signals that were used for asser-
tions by using three vacuity models: direct vacuity, indirect
and context-driven vacuity. They have demonstrated that their
algorithms are independent from the size and implementation
of the DUT.

Previous research efforts have shown different techniques
and strategies for generating test sequences from properties. In
our approach, Airwolf-TG solely uses properties translated into
finite automata by MBAC, in order to generate test sequences
either for failures or acceptances. The next section presents a
brief overview of assertion checking with finite automata.

B. Finite Automata (FA) Assertion Checking

Two modern assertions languages commonly used are PSL
[11] and SVA [12]. Some assertions may not be well-suited
for circuit simulation but rather for formal methods. For
instance, in PSL, there are certain properties that are only
suited for model checking over the infinite signal traces, and
don’t have easily interpretable simulation semantics. In the
simple subset, for example, when creating any property, the
sequence of events (or Boolean expressions) should occur only
in one direction in the expression, just as time flows during

simulation. In that way there can be no references to the DUT
signal values in the future.

Boulé et al created a tool called MBAC, that generates
hardware checkers from properties written either in SVA or
PSL under the simple subset guidelines. MBAC first generates
a finite automaton representation of each property either in
acceptance or failure mode. Following this process, a Verilog
representation of the checker circuit is produced, which can
then be used as a run-time assertion checker.

An automaton can be represented as a directed graph, where
the finite set of states is connected by directed edges. Each
edge represents a transition labeled with a Boolean equation
that needs to be satisfied prior to the automaton activating a
new state. Automata can contain any number of intial and final
(or accepting) states. Whenever the automaton enters into any
of the final states, the assertion has failed (in failure mode) or
passed (in acceptance mode).

The generated checker automata may have edges that are
not entirely mutually exclusive symbols. Hence, they are
nondeterministic, as opposed to the classical deterministic
automata. A more precise way to describe two different types
of automata is as follows. Deterministic Finite Automata

(DFA) contain distinct, mutually exclusive Boolean conditions
in which the automata can enter only one active state at a time.
Non-Deterministic Finite Automata (NDA) contain edges with
partially or completely equivalent Boolean conditions that can
cause it to enter a set of new states at each clock cycle.

The automata that are produced are used in the generation
of the hardware checkers, to be used in verification, on-line
monitoring and pre- and post-silicon debug. The process of
generating the actual hardware for the assertion checkers is
beyond the scope of this paper. For further details, the book [3]
includes the variety of techniques for producing and using
checkers.

C. Vacuity and Test Coverage in Assertion-Based Verification

We now outline the coverage metrics considered in conjunc-
tion with model-based test generation derived from assertions.
The goal is to relate the high-level, verification goals to the
automata coverage goals, such that we only need to worry
about the automata coverage during the test generation

1) Vacuity in ABV: Vacuity is a common issue that the ABV
paradigm needs to address. Upon simulating a test sequence,
an assertion should pass by having the design perform the
expected behaviour as specified in the property. An example
would be in the SVA statement:

assert property (@(posedge clk) req |-> ##1 grant)

This property is satisfied when for every assertion of signal
req, the signal grant is asserted on the next clock cycle.
On the other hand, the assertion will be also satisfied if the
signal req was not asserted throughout the entire simulation.
As the antecedent req was not set, the implication holds
true, so the assertion will hold true, even though the circuit
could be faulty. The property is said to be satisfied vacuously

if it passes without being effectively exercised. A vacuous
pass of a certain property means that it was not thoroughly

108

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.





































 



















 





Fig. 2. Acceptance and Failure Automata for the Example Assertion : “assert
property (@(posedge clk) req |→ ##1 (ack[*0:3]) ##1 grant);”

executed, such as when the antecedent of the property was
not fulfilled [13].

2) Test Coverage in ABV: Test coverage is an important
metric in verification. It is the measurement of how well a
test suite can satisfy a set of requirements or specifications
of the design. In the context of ATPG in ABV, the goal of
test coverage is to generate test sequences that can satisfy
the expected behaviour of the design and exercise corner-case
scenarios that can potentially cause a fault.

An example of a property would be the following:
When the request signal (req) goes from low to high, then at

the next clock cycle, the acknowledge (ack) signal must be

asserted in at most three consecutive cycles followed by a

grant.

The above specification is translated into an SVA assertion
as shown in the caption of Figure 2 and the accompanying
automata generated by MBAC.

It is evident in the figures that the automata structures
are unique for the acceptance and failure modes in MBAC.
This can lead to an increase in the number of generated test
vectors which can potentially increase the test coverage of the
property. For instance, the first automaton in Figure 2(a) shows
the paths (or pattern sequences) in order to exert the proper
behaviour of the circuit. By efficiently traversing through all
of the available paths in this automaton and covering all of the
edges in order to generate non-vacuous test patterns, a test set
of 5 vectors was derived. Table II lists all the node traversals
of each vector for the acceptance automaton. The traversed
edges between each node are included in each test vector.

However, when taking into consideration the failure automa-

TABLE II
NODE TRAVERSALS FOR FIGURE 2

Acceptance Automaton Failure Automaton
Vector # Node Traversals Vector # Node Traversals

1 1,0 1 0,1,2
2 1,4,2,0 2 0,1,3,2
3 1,3,5,4,2,0 3 0,1,3,4,2
4 1,5,4,2,0 4 0,1,3,4,5,2
5 1,2,0

TABLE III
TYPES OF AUTOMATA COVERAGE

Coverage Metric Coverage Category

Node Coverage Statement or Block Code Coverages
Edge Coverage Branch Coverage

Complete Round-Trip Coverage Deadlocks or Livelocks coverage
Complete Path Coverage Covering executable paths

ton shown in Figure 2(b), an additional test set of 4 vectors
was obtained. The corresponding columns in Table II shows
each test vectors’ node traversal. This implies that when solely
using acceptance automata for generating test sequences, there
is a possibility of achieving low test coverage. With additional
test vectors generated using the failure automata, we can
potentially increase the test coverage of the entire test suite.
It would be favourable to test the design for all of the correct
and incorrect behaviour.

D. Automata Coverage Metrics

In this section, we outline the types of automata (or graph)
coverage metrics. These coverage metrics are presented in
software testing approaches for code coverage [14], [15] which
can also be applied to finite automata for test generation.
Shown in Table III are the type of coverages that can be
applied to any graph.

Node Coverage is the most common type of metric which
covers all the nodes of the entire graph. Usually node coverage
refers to “statement” or ”block coverage” in a source code
where each block contains a set of code statements that gets
executed. This metric ensures all the nodes in the graph were
visited at least once during traversal.

Edge Coverage is one of the most widely accepted metric in
which its intent is to traverse all the edges of a graph at least
once. This is usually referred to as branch coverage where at
each node, all the Boolean conditions of outgoing the edges
have been evaluated to either true or false at least once.

Complete Round-Trip Coverage is a path that contains all
the cycles (or loops) that are reachable from a node. A round
trip path is defined as a path having identical initial and final
nodes of non-zero length. This type of coverage is usually used
for detecting dead or live locks. In some cases, round trips can
represent an instruction that causes a system to remain in the
same state.

Complete Path Coverage involves covering all possible
independent paths that exist in a graph (or automaton). A path
starts from an initial node, then traverses through edges of
the graph until it reaches the final node. Obtaining complete
path coverage is infeasible if the graph contains any cycles (or
loops) that can lead to an infinite path length.

These coverage metrics are applied in our approach in order
to generate test sequences without vacuity. The following sec-
tion describes our proposed algorithms that are implemented
in Airwolf-TG.

III. THE AIRWOLF TEST GENERATOR

In the previous section, we presented simple assertions
with their automaton representations. Based on the automaton

109

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

Airwolf-TG
Automata Generation Sequence Generation

MBAC

HSA_search

NSA

NDA

.fsm

.sym

Finite Automata Generator Sequence Generator

1

2

3

a

!a

b&&c

!d

!d
{a;b&&c}
{!a}

Generated
Sequences

.tpg

Fig. 3. Test Generation Overview with MBAC and Airwolf-TG

structure, a set of test sequences were generated either to
satisfy or fail an assertion. Exploration of the automaton’s
state space can be a complex task manually, which is best
to be automated. We now present our test generation tool:
Airwolf-TG.

A. Test Generation Overview

Figure 3 shows MBAC and Airwolf-TG combined together
in generating the test sequences. Test generation occurs in
two phases. In the first phase, MBAC receives two types of
inputs: an HDL model of the hardware design and a list of
assertions (or properties) written either in SVA or PSL. MBAC

analyzes the assertions and produces an efficient automaton
represention of the property which in turn will be used to
model a hardware checker. In addition, MBAC will generate a
finite state machine-like description of the automaton along
with a list of its symbols, both of which will be used by
Airwolf-TG. Finally, with Airwolf-TG’s core functions, the tool
has the ability to generate efficent test sequences.

B. Objectives

The objective of Airwolf-TG is to generate efficient test
sequences that can either exercise the expected behaviour of
a property or its failure. The goal is to attain 100% automata
coverage by applying the test coverage metrics as shown in
Table III.

Here are some of the constraints imposed on Airwolf-TG:

• Generate test sequences non-vacuously: This requires
100% Edge Coverage of an automaton where all edges
are used at least once. Our generated test sequences can
satisfy or fail a specification non-vacuously. No edge will
be left out of the test set.

• Minimizing the reuse of edges that were traversed previ-
ously: This helps by reducing the amount of redundant
edges that were already covered from a previous recursive
search.

• Cycle traversals should be kept at minimum: This con-
straint implies the use of the Complete Round-Trip Cover-
age criteria by including all the cycles in the automaton;
however, in order to reduce the test pattern length, the
assumption is to traverse a cycle only once when possible.

The above constraints are then followed and implemented
into the algorithms which will be described in the subsequent
sections.











Fig. 4. Airwolf Test Generation Flow

C. The Flow of Airwolf-TG’s Test Generation

Figure 4 shows the test generation flow of Airwolf-TG.
Initially, the program starts by performing an Automaton

Analysis. This involves analyzing each node’s outgoing edges
if there exists an edge that can cause the automaton to enter
into a set of new states. Non-determinism can occur when two
or more edges can have equal or partially similar Boolean
expressions. In addition, Tarjan’s algorithm [16] is used to
detect cycles in the automaton and to label the appropriate
outgoing edge as a “cycle” edge. The directional properties of
each edge in the automaton will be analyzed prior to selecting
a set of edges for traversal during the state space search.

Following this process is the Path Search stage in which
the algorithm uses a combination of depth-first and breadth-
first graph searching methods. Each active node’s outgoing
edges is subject to non-determinstic evaluation. A node, or a
set of new nodes, is selected for the next recursive call and
this process continues until the final node of the automaton
has been reached.

The core functions implemented in Airwolf-TG are the
Hybrid Search Algorithm (HSA_search()) and the Node

Selection Algorithm (NSA()) which will be described in the
subsequent sections.

D. A Hybrid DFS/BFS Automata Search Algorithm

Algorithm 1 shows the pseudocode of the proposed “Hybrid
DFS/BFS Automata Search Algorithm” (HSA) which is the
automata search-space strategy Airwolf-TG employs in order
to generate test sequences.

Algorithm 1 HSA Search (DAG, CNL, In paths)

1: NCNL ← initialize to empty
2: while CN != -1 do
3: for all CN in CNL do
4: if CN = Finish Node then
5: print vector (In paths);
6: else
7: //Execute Node Selection Algorithm
8: NSA(DAG, NCNL, CN, IN paths, back track);
9: end if

10: end for
11: if NCNL is empty then
12: break;
13: else
14: HFS search (DAG, NCNL, IN PATHS);
15: back track ← 1
16: end if
17: end while

110

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

The HSA function receives three parameters which are:
(DAG), a directed graph structure of the automaton; Current
Node List (CNL), a list of nodes that are currently active in
the present function call; and In paths, an array where its size
is the number of nodes in the automaton that stores all the
incoming active edge paths of each node. The latter variable
is relevant since it will be used to extract the test sequences.

The HSA starts by analyzing the initial node of the automa-
ton. A while-loop (lines 2-17) controls the DFS portion of the
algorithm and ends when the Current Node (CN) reaches the
ID value of the initial node, which is -1. At each recursive call,
a for-loop (lines 3-10) cycles through a set of active nodes in
the Current Node List (CNL) that were sent from the previous
call. Each node is evaluated if any of them is a final node of
the automaton. If this condition is true (lines 4-5), the HSA
algorithm will start printing the test pattern which is a set of
Boolean expressions obtained for each traversed edge starting
from the intial node to the final node. Otherwise (lines 6-9),
the outgoing edges of the current node will be passed to the
NSA function which will determine the new set of active nodes
that will be stored in the New Current Node List (NCNL).

After the for-loop, the HSA determines if there are any new
nodes in the NCNL. If this list is empty, the HSA algorithm
returns to the previous set of nodes from the previous recursive
call of the function. Otherwise, if there is a set of new nodes
to be analyzed, the HSA algorithm will call itself again by
passing the new node list NCNL as the current node list CNL
parameter for the next recursive function call.

If the HSA does return to the previous recursive call, a flag
called “back track” is set to 1 which allows the algorithm to
go back to preceding set of nodes to determine if there are
any remaining unused outgoing edges. This flag is used in
the Node Selection Algorithm (NSA) as described in the next
section.

E. Node Selection Algorithm

The pseudocode of the Node Selection Algorithm (NSA)
is shown in Algorithm 2. The NSA receives five parameters
which are: DAG, the contents of which were previously passed
by the HSA function; New Current Node List (NCNL), which
stores the new set of states that an automaton can enter for the
subsequent HSA recursive call; Current Node (CN) which is
an integer node ID that was passed-on by the HSA; In paths

passed by the HSA; and (back track) which is a flag that
indicates the HSA algorithm is backtracking to a previous set
of nodes.

The purpose of the algorithm is to select which set of nodes
and edges to traverse and be used as part of the test vector
generation. Each node stored in the current list, CNL, gets ex-
amined by analyzing the type of node and its outgoing edges’
directional properties. When the NSA identifies a new set of
edges to traverse, it will store the edges into the incoming
paths array In paths at each of the edges’ Destination Node
DNode. The stored edges of each DNode in the array depicts
the active incoming edges at that particular node. Some nodes
may have more than one active incoming path. Additionally,
the DNodes of the selected outgoing edges are added to a

Algorithm 2 NSA (DAG, NCNL, CN, In paths, back track)

1: for all paths in In Paths[CN] do
2: if CN was not visited then
3: if DAG[CN] = F-NDA then
4: Add all NDA edges and DNodes to NCNL
5: else if DAG[CN] = P-NDA then
6: Add P-NDA edges and DNodes to NCNL
7: else if DAG[CN] = N-NDA then
8: Add one DNode to NCNL
9: end if

10: Add selected edges to each DNode’s In paths array
11: Set CN as visited
12: else if CN was visited then
13: if CN has unused edges then
14: if DAG[CN] = P-NDA then
15: Add the remaining P-NDA edges
16: else if DAG[CN] = N-NDA then
17: Add the remaining N-NDA edges
18: end if
19: else if CN has no unused edges, backtrack = 0 then
20: if DAG[CN] has any DTF then
21: Add DTF edge to In Paths[DNode]
22: else if DAG[CN] has no DTF then
23: Sort edges by least weight
24: Add least weight edge to DNode’s In paths
25: end if
26: end if
27: end if
28: end for

new list called the New Current Node List NCNL. This new
list will be used as the next current node list for subsequent
HSA recursive function calls.

There are two conditions that determine the set of selected
edges for test generation and DNodes for subsequent searches.
First, the algorithm must determine if the node was previously
visited, and secondly, if it contains any non-deterministic
edges that can cause an activation of more the one state. If
the current node was not previously visited (lines 2-11), the
NSA algorithm will evaluate it either as a Full-NDA (F-NDA),
Partial-NDA (P-NDA) or Normal (N-NDA) node. For a F-NDA
node, all outgoing edges are included. A P-NDA node causes
the NSA to select the edges that cause the non-deterministic
behaviour while the remaining edges will be incorporated in
subsequent recursive calls. For a Normal node, the NSA will
select one unused edge.

However, if the current node was previously visited (lines
16-26), the NSA algorithm will determine if that node has
any remaining unused P-NDA or normal edges to include
in the test generation. If the former condition is true, then
the algorithm determines which set of edges will be selected.
Otherwise, the NSA function will determine if it can locate an
immediate Direct-To-Finish edge (DTF) that leads directly to
the final node of the automaton. If none exist, it will sort the
outgoing edges in ascending order according to “edge weights”
and selects the edge with the lowest weight value. This value
depicts the number of times the edge was used from previous

111

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

TABLE IV
ACCEPTANCE VERSUS FAILING SEQUENCES

Acceptance Automata Failure Automata
Property Total Airwolf-TG # of # of Min. Max. Airwolf-TG # of # of Min. Max.

ID Vectors Generated States Edges Length Length Generated States Edges Length Length

CPX 0 5 3 6 12 1 5 2 6 11 4 5
CPX 1 6 4 3 7 1 2 2 3 5 1 2
CPX 3 5 3 3 6 1 2 2 3 5 1 2
CPX 4 8 2 4 5 2 3 6 5 10 1 3
CPX 6 4 1 10 10 9 9 3 10 12 1 9
CPX 7 6 1 43 44 42 42 5 44 50 1 44
CPX 9 12 11 12 22 1 11 1 12 12 11 11
CPX 10 8 3 5 8 1 4 5 5 10 1 4
CPX 12 19 10 12 31 1 11 9 12 30 3 11
CPX 13 12 10 12 31 1 11 2 12 23 10 11
CPX 15 2 1 2 2 1 1 1 2 2 1 1
CPX 17 33 12 14 26 5 5 21 19 39 1 7
CPX 19 22 6 7 14 1 7 16 9 27 1 8

recursive calls which ensures all the edges in the automaton
are used as equally as possible.

The algorithms presented in this section allow Airwolf-TG

to traverse through the finite automata efficiently. It is capable
of handling non-determinstic traversals, detection of cycles,
and minimize the use of previously traversed edges. In the
next section, we present results obtained from Airwolf-TG on
a set of a selected benchmark properties.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the benchmarks that were used
for evaluating the generated test sequences from Airwolf-TG.
Discussion and analysis are shown in the subsequent sections.

A. Automata Generation with MBAC

Generation of the two types of automata is performed by
the MBAC tool which offers two operating modes that include
failure and accepting modes. In the failure mode, MBAC

generates an automaton (or hardware assertion checker) that
detects a series of Boolean expressions that should not occur
during run-time, with any occurrence leading to a property
failure. However, acceptance mode generates an automaton
that detects a series of expected Boolean expressions that must
occur in order to satisfy the property.

B. Benchmarks Setup

In order to observe the difference in the number of generated
test vectors between acceptance and failure automata, we used
a set of defined properties from [6], to which MyGen tool
was applied initially. A set of properties called “Complex”
(CPX) represents assertions that are used in industry. The PSL
properties are translated into SVA by using the rewrite rules
from [3].

Each translated SVA property was given to MBAC in
order to generate the acceptance and failure automata. The
benchmarks listings are shown in [17]. The set of automata
and Boolean expression files are then passed to Airwolf-TG

to generate test sequences. Results are shown and analyzed in
the next section.

C. Results and Analysis

Table IV shows the number of generated vectors for each
property when using acceptance and failure automata. The
set goal was to have 100% edge coverage, which avoids
generating test sequences vacuously. The column “Total Vec-
tors” gives the number of vectors produced by our tool
for acceptance and failiure automata combined. The “Min.
Length” and “Max. Length” columns gives the length of the
smallest and largest vector in the test set respectively. This can
be viewed as the number of clock cycles required to either pass
or fail the property.

In properties CPX SVA 0, 1, 3, 9, 13 and 15 there is a
subtle difference in terms of the number of generated test
vectors when using either acceptance or failure automata;
however, for properties CPX SVA 4, 6, 7, 10, 12, 17, and
19, the difference is more obvious. For instance, in properties
CPX 4, 6, 7, and 10, the number of generated vectors for
acceptance automata range between 1-3 which implies that
the DUT can pass that particular property based on those
sequences. By observing the number of sequences generated
using failure automata, we see an additional 3-6 vectors re-
quired to cause a property to fail. Additionally, some properties
are observed to have a significant difference. In particular,
properties CPX SVA 12, 17, and 19 have shown an additional
9, 21 and 16 vectors generated respectively and added to their
total test suite. This implies that when considering only test
patterns for verifying the proper behaviour of a design, there is
a possibility that an unexpected behaviour can occur during its
execution or simulation which may be perceived as a correct
behaviour, when in fact it may be an incorrect response. The
additional vectors generated when using failure automata can
potentially increase the test coverage as those patterns should
“intentionally break” the circuit and the improper response
should manifest itself during simulation.

MyGen’s test vectors using acceptance automata are simi-
larly matched to those produced by Airwolf-TG. Some proper-
ties, however, were not able to generate test sequences to cover
all the edges of the acceptance automaton. This is due to the
fact that some of the complex Boolean expressions rely on
the bit values produced by an LFSR that has never appeared.
The authors are currently working towards a better solution to

112

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

improve the quality of their pseudo-random vector generation.
Since the MyGen tool [6] produces the vectors only for

the acceptance automata, in Table V we quantify the extra
coverage obtained by our tool. For that, we present the ratio
of the number of vectors generated between acceptance and
failure automata for each property. The data is obtained by
taking the acceptance and failure vector sets and is normalized
such that 100% denotes when both cases are taken into
account. As shown in the table, a significant increase is
observed over using only acceptance automata for generating
test sequences, which is the case with the MyGen tool. For
instance, the inclusion of failing states in examples such as
CPX SVA 12, 17 and 19, can contribute 47.3% to 72.7% of
the test suite. Two properties such as CPX SVA 9 and 13 are
the only properties whose acceptance vectors contribute 80%
or more of the test suite. These results show that there is a
possibility that generating acceptance test sequences alone, as
is the case for MyGen, may not contribute to a large portion
of the coverage. When adding the failure test sequences, as
we do in Airwolf-TG, additional vectors are available to try
exploring the improper behavior. In the case of the design
errors violating the properties, the incorrect response would
manifest itself at its outputs upon applying these sequences.
In contrast, tools like MyGen are not aimed at detecting such
failures.

TABLE V
ADDITIONAL COVERAGE RELATIVE TO [6]

CPX Total Acceptance Failure Additional
ID Vectors Vectors Vectors Coverage

0 5 60% 40% 66.7%
1 6 66.6% 33.3% 50%
3 5 60% 40% 66.7%
4 8 25% 75% 300%
6 4 25% 75% 300%
7 6 16.6% 83.3% 500%
9 11 91.6% 8.3% 9.1%
10 8 37.5% 62.5% 166.7%
12 19 52.6% 47.3% 90%
13 12 83.3% 16.6% 20%
15 2 50% 50% 100%
17 33 36.3% 63.6% 175%
19 22 27.2% 72.7% 267%

V. CONCLUSIONS AND CONTINUING WORK

In this paper, we have presented Airwolf-TG, a tool that
generates test sequences by covering the state space of the
assertion automata created by MBAC. We have introduced
methods that effectively traverse the state space of assertions
in order to generate efficient test sequences either from failure
or acceptance automata. Our proposal is based on a hybrid
search algorithm that is catered towards automata for run-
time assertion checkers. The automata generated by MBAC

are not always deterministic, which means that more than one
active path can be present in each clock cycle. Our algorithm
improvements can exploit the nondeterminism towards more
efficient traversal. In addition, as automata may contain cycles
that can create longer test sequences or activate more paths,
the proposed algorithm minimizes the amount of looping trails
during the state space search.

With our Airwolf-TG tool being able to traverse efficiently
through the automata state-space, we investigated and com-
pared the generated test vectors when using acceptance or
failure automata on the same sets of properties. From our
experimental results, we have shown that some properties
have generated additional test vectors while having a modest
increase in the test vector length. This implies that the failing
automata can generate in a relatively economical way the
additional test cases that can be included into the test suite,
which can then potentially increase the overall test coverage.

Since the edges in the automata are Boolean variables that
were defined in the property and used during test generation
with Airwolf-TG, the test generation by automata traversal
alone does not result in the sequences of primary inputs, which
will be ultimately needed. We will incorporate the methods
for justifying primary input signals from the generated test
cases obtained by our test generator, using a method as in [7].
With our tool, assertion based test generation is improved—a
much needed endeavor given the complex verification tasks
both present and future.

REFERENCES

[1] H. Foster, D. Lacey, and A. Krolnik, Assertion-Based Design. Norwell,
MA, USA: Kluwer Academic Publishers, 2003.

[2] D. A. Mathaikutty, S. Ahuja, A. Dingankar, and S. Shukla, “Model-
driven test generation for system level validation,” High-Level Design,
Validation, and Test Workshop, IEEE International, pp. 83–90, 2007.

[3] M. Boulé and Z. Zilic, Generating Hardware Assertion Checkers: For
Hardware Verification, Emulation, Post-Fabrication Debugging and On-
Line Monitoring. Springer Publishing Company, Incorporated, 2008.

[4] M. Boulé and Z. Zilic, “Automata-based assertion-checker synthesis of
psl properties,” ACM Transactions on Design Automation of Electronic
Systems, vol. 13, no. 1, pp. 1–21, 2008.

[5] R. Armoni, D. Korchemny, A. Tiemeyer, M. Y. Vardi, and Y. Zbar,
“Deterministic Dynamic Monitors for Linear-Time Assertions,” in Pro-
ceedings of the Workshop on Formal Approaches to Testing and Runtime
Verification (FATES/RV’06), volume 4262 of Lecture Notes in Computer
Science, Springer, 2006, pp. 163–177.

[6] Y. Oddos, K. Morin-Allory, D. Borrione, M. Boulé, and Z. Zilic,
“Mygen: automata-based on-line test generator for assertion-based ver-
ification,” in GLSVLSI ’09: Proceedings of the 19th ACM Great Lakes
symposium on VLSI. New York, NY, USA: ACM, 2009, pp. 75–80.

[7] H.-M. Koo and P. Mishra, “Test generation using sat-based bounded
model checking for validation of pipelined processors,” in GLSVLSI ’06:
Proceedings of the 16th ACM Great Lakes symposium on VLSI. New
York, NY, USA: ACM, 2006, pp. 362–365.

[8] K. Shimizu and D. L. Dill, “Deriving a simulation input generator and a
coverage metric from a formal specification,” in DAC ’02: Proceedings
of the 39th annual Design Automation Conference. New York, NY,
USA: ACM, June 2002, pp. 801–806.

[9] J. Calamé, Specification-based Test Generation with TGV, Centrum voor
Wiskunde en Informatica, May 2006.

[10] B. Pal, A. Banerjee, A. Sinha, and P. Dasgupta, “Accelerating assertion
coverage with adaptive testbenches,” IEEE Transactions on CAD of
Integrated Circuits and Systems, vol. 27, no. 5, pp. 967–972, 2008.

[11] C. Eisner and D. Fisman, A Practical Introduction to PSL (Series on
Integrated Circuits and Systems). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2006.

[12] S. Vijayaraghavan and M. Ramanathan, A Pratical Guide for SystemVer-
ilog Assertions. Springer, 2005.

[13] T. Ball and O. Kupferman, “Vacuity in testing,” in Test and Proofs, ser.
LNCS, vol. 4966. Springer, 2008, pp. 4–17.

[14] P. Ammann and J. Offutt, Introduction to Software Testing. New York,
NY, USA: Cambridge University Press, 2008.

[15] P. Jorgensen, Software Testing: A Craftman’s Approach. Boca Raton,
FL, USA: CRC Press, Inc., 2001.

[16] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-
rithms. Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[17] [Online]. Available: http://iml.ece.mcgill.ca/∼jaytong

113

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

