Identifying Redundant Gate Replacements in
Verification by Error Modeling

Katarzyna Radecka and Zeljko Zilic
McGill University, Montreal, Canada
{kasiar,zeljko} @macs.ece.mcgill.ca

ABSTRACT

This paper considers verification of combinational circuits by
test vectors under assumption of gate and wire replacement
faults. Identifying redundant faults is critical to the quality and
speed of such verification schemes. We propose the first known
exact redundancy identification of gate replacement faults,
together with its efficient approximations. While both solutions
use the SAT formulation of redundancy identification, we
propose the means to effectively use any single stuck-at-value
redundancy identification in the approximate schemes, with
varying detection accuracy. Critical to the latter are the novel
uses of don’t care approximations that detect many redundant
faults and quickly identify those that can be detected by methods
for stuck-at value faults. Test generation scheme that uses the
error-correcting properties of Arithmetic Transform s
incorporated into the overall verification procedure, and is
shown to provide high fault coverage for these fault models.

1. INTRODUCTION

The goal of design verification is to ensure that a circuit
behaves as specified. Among methods for detecting design
errors, techniques based on test vector simulations are
easiest to adopt by engineers. They are shown to augment
and overcome the limitations of formal verification [5],
[16]. In this paper, we address the issues important for
simulation-based verification, i.e., modeling of design
failures in combinational logic at the gate level, and the
identification of redundant faults belonging to a model.

An integral part of the verification of digital circuits via
simulations is an error model, needed to obtain a test set
for failure detection and providing confidence in fault
coverage. Such error models have been proposed in [2],
[3] and [6]. A large class of these failures consists of
erroneous replacements of a gate or wire in a network
with another gate or wire, respectively. It was shown in
[6] that most actual errors encountered fall in this
category. By applying modern design flows, 98.9% of all
design errors fall within this error model for the case of
the DLX processor, and 94.2% for PUMA floating point
units. Also, authors in [1] reported that 97.8% of design
errors that occur during the manual interventions belong
to the category of an error model from [2].

The early approach to representing the design errors at
the gate level considered failures, which were proven to

ITC INTERNATIONAL TEST CONFERENCE

0-7803-7169-0/01 $10.00 © 2001 IEEE

be detectable by testing for single or multiple stuck-at-
value (s-a-v) faults [2]. It was shown that the substitutions
with AND, OR, NAND and NOR gates could be tested by
s-a-v methods. Test sets were obtained through the
automatic test pattern generation (ATPG) for that model
(21, 3.

The major obstacle in applying the simulation-based
verification is that the coverage and the running time of
testing procedures is seriously impaired by redundant
faults. For example, the obtained fault coverage of 13x7
array divider is only 75.5% if the redundant faults are not
detected, and 100% otherwise. Unless applied
exhaustively, simulations alone cannot deal with that
problem. Redundancy identification has been mainly
considered in the context of stuck-at faults. The
algorithms use either structure-based search [15] (or its
quick approximations [11]), or rely on algebraic
approaches, such as the satisfiability formulation and its
extensions [12], [7]. In [3], the issue of redundancy
identification in the context of implementation
verifications by test vectors was brought up. The stuck-at
ATPG-based scheme was applied to determine
redundancies for a subset of gate replacements by multiple
runs of s-a-v redundancy identification for each gate
replacement fault.

Figure 1: Relation Among Proposed Methods

In this paper, we propose novel procedures for
identifying whether the gate replacement faults are
redundant. In Section 3, safe approximations to local
don't cares are used to eliminate many redundant faults
and also identify those faults that are either likely to be
redundant or detected by standard s-a-v methods.
Undetected faults are then identified by extending a s-a-v
redundancy identification. In Section 4 we construct an
exact identification for replacement faults, using an all-

Paper 29.2
803

SAT formulation. Figure 1 relates the considered
methods.

Our redundancy identification schemes are applied to
evaluating the test generation scheme based on Arithmetic
Transform (AT) decoding algorithms [17] that can be
parameterized by the size of the error.

2. REPLACEMENT FAULTS

In this paper, we say that a replacement fault is an
erroneous substitution of either a gate or a wire. In
addition to verification by error modeling [6], [19], these
faults are shown to be present in deep sub-micron
manufacturing fault models [8], [9]. Replacement faults
are affecting either single or multiple nodes. Gate
replacements influence single nodes, while wire
replacements affect either single or multiple nodes.

Definition 1: A4 single gate replacement error (SGRE)
erroneously substitutes a single gate in the netlist with
another gate of the same number of inputs and outputs.
Please note that this definition also includes the
missing/added inverter, as well as the extra gate added at
the inputs of the original gate, as shown in Figure 2.
These faults are simply subsumed to either fan-out of fan-
in of the immediate neighboring node.

a__.< ™ a__-
eyt ks

Missinginverter at nex +—— Original fine Xwith inverter
]
Figure 2: Errors in a Netlist

The gate replacements, unlike s-a-v faults, affect only
the components, while the interconnect stays fault-free.
Therefore, the deterministic tools for test pattern
generation and redundancy identification, which work
well with the s-a-v fault models, cannot be
straightforwardly applied to the detection and redundancy
identification of the gate replacement errors. To solve this
problem of incompatibility of tools and error models, we
can construct the transformation of a gate replacement
error into s-a-v fault domain, and then use standard
testing tools for the s-a-v detection and redundant error
identification. Alternatively, we can treat gate
replacement errors as an independent problem, and look

Paper 29.2
804

for some alternative ways of their detection. The former
approach is summarized in Section 2.2, the latter is the
scheme proposed in this work, and is described through
the remainder of this paper.

2.1 Redundant Replacement Faults

A redundant replacement at a given node is a
substitution that does not change the original function of
the circuit. Redundant errors of any kind significantly
deteriorate the performance of a testing scheme. By
identifying them, we avoid costly simulations of these
faults.

There are 2% —1possible SGREs at the a#-input node.
To the set of all SGREs, as special cases, belongs up to 2(n
+ 1) single s-a-v faults associated with the node. Unlike a
s-a-v fault, which permanently ties a signal to either 0 or
1, the polarity of an error caused by a replacement fault
depends on stimuli. To deal with such faults, we are
forced to seek new redundant fault identification methods.

2.2 Previous Work

Contributions to the detection of the gate replacement
errors were presented in [2] and [3]. In [2] authors
observed that the complete test set for single stuck-at
faults detects all single gate replacement errors, when
errors are restricted to gates: AND, OR, NAND and NOR.

In [3], a method was proposed for SGRE detection and
identification of redundancies. This approach first
generates a test set that uniquely distinguishes each gate
from all the other gates in the library. Then, the
replacement model of each gate is constructed. The
model, consisting of few gates, is functionally equivalent
to the original gate. Its role is to provide the
“infrastructure” for the set of single s-a-v faults which,
when injected into the model can be detected only by the
set of vectors which uniquely distinguishes a given gate
from all the other gates, Figure 3. Finally, the ATPG is
called (possibly) several times per given SGRE in order to
detect at least one of the s-a-v faults superimposed on the
gate model. The detection of at least one such s-a-v fault
guarantees that the SGRE, represented by the model will
be detected. Consequently, the gate replacement error is
declared redundant if none of the s-a-v faults is detected
by ATPG.

Figure 3 illustrates the model for erroneous replacement
with gate AND2, together with all the single s-a-v faults
injected to this model. V) is the test vector consisting of
only “0”s, Vo4 is the set of vectors with odd number of
“1”s and Vy is the vector of all “1”s.

The complete test sets for detecting AND2 and all the
imposed s-a-v faults in Figure 3 are presented in Table 1.

Entry “eg” is the fault free behavior of the model, while
the entries to the right of “eg” describe the behavior of the
model subjected to the injected single s-a-v faults.

c: sa0

e: s-a-O

d:sa0

Figure 3: The Replacement Module for Detecting a
Replacement Error with AND?2

a | b | Vec.
0 0 vnull
0 1 | Vo
1 10 | Vou
1 1 | Va

Table 1: Vectors Detecting Errors in Figure 3

Note that the single s-a-v faults in the replacement
model tackled by APTG bear no relation to the original
single s-a-v faults of the circuit, which are targeted during
testing process. Hence the resuits of verification for
SGREs cannot be reused in testing for single s-a-v faults,
and vice versa.

Secondly, in order to detect each irredundant SGRE we
should expect, on average, multiple passed of ATPG. In
the case of redundant SGRE, however, multiple runs of
ATPG are guaranteed. Therefore, although it is feasible to
used ATPG in detecting single gate replacement errors,
this may be not the most efficient way to do that.

2.3 Overview of our approach

In this paper we present the methods that can handle all

the possible SGREs without restrictions to particular -

gates. This was not the case in the method from [3],
although we understand that their extensions could
possibly handle all the cases.

We will identify the conditions that prohibit either the
excitation of a SGRE with the appropriate inputs, or the
propagation of the erroneous result to the primary outputs.
The redundant fault identification has been mostly
considered in context of s-a-v faults. To benefit from the
wealth of s-a-v methods, we propose a scheme that for
many SGREs results in a s-a-v fault representation. In
contrast to the multiple s-a-v representations, [3], we
consider at most one s-a-v fault per SGRE. Then, any s-a-
v technique can detect all such SGREs. Additionally, our
method identifies in the process many other SGREs,
which cannot be represented as single s-a-v faults.

We will demonstrate this procedure in the way
analogous to the well-known s-a-v SAT formulation by
Larrabee [13]. Structural s-a-v ATPG approaches can be
applied as well. Further, an exact SAT formulation is
presented in Section 4, together with the preprocessing
steps for the algorithm speedup.

3. REDUNDANCY DETECTION BY DON’T
CARES

Redundancies are caused by DC conditions at nodes
affected by faults. These are either observability DC
(ODC) or controllability DC (CDC) conditions inhibiting
the error detection.

Our first redundant fault identification consists of two
steps, both of which can be performed in varying degree
of approximation. First, we use the don'f care information
in the network, to screen out most of the redundant faults.
We always use the approximate don't care (DC)
construction, for performance reasons and to deal with
multiple node faults (wire replacements). The use of don't
care subsets guarantees that no irredundant fault will be
declared redundant. For selected remaining faults, we
apply the modification of single stuck-at-fault redundancy
identifications. One such method, based on the
satisfiability (SAT) formulation of the problem is
employed. Information on which replacements are to be
probed by the SAT approach is provided by the don't care
sets obtained in the first step.

The controllability and observability analyses, such as
SCOAP [10] and its successors, have been employed in
guiding the ATPG branching heuristics. While such
methods are quick and suitable for their intended
application, if applied to directly detect redundancies,
they can result in two-sided errors — the redundant faults
might be estimated as redundant or vice versa. Unlike
that, our proposal avoids that problem completely -
irredundant faults will never be discarded as being
redundant. This is why we say that our approximations
are safe.

3.1 Using Local Don't Cares

We will explicitly deal with local don't care sets at a
given node, and their complements — local care sets.
Definition 2: 4 local don’t care set associated with a
given circuit node constitute of CDCs and ODCs
associated with this node. A local care set (Carey,cq) of a
given node is the complement of the local don’t care set.

Note that the DCs observed at the primary I/Os of the
circuit are the global DCs associated with this circuit.

Paper 29.2
805

Each replacement gate / that coincides with the
original gate g on a local care set, Carey,.., at a given
node, creates a redundant fault.

Lemma 1: Let a gate g be replaced with a gate h. By
considering their respective ON-sets, g™ and h° and
local care set Carejoeq, the replacement is redundant if:

ON _1ON
g " NCarey.,, =h"" NCare,, .

Proof: Examine the local care set at a node. This set alone
can be both excited and observed. By replacing gate g
with a gate that coincides with g on the care set, the
original function has not changed. Hence, the substitution
is redundant. ¢

hONm Care hN ~ Care

g™ n Care
a) b)

gNn Care

Figure 4: Don't Care Set Influence on Replacement Errors

Figure 4 shows how a gate replacement error with

g% #h° can become hard to detect or even redundant

when a DC set overlaps the difference between the two.
The DC set that partially intersects with the Boolean
difference between g and 4#?" creates the irredundant
error, as in Figure 4.a. Due to DCs, fewer test patterns
might detect the error gate 4. The DC set that completely
covers the difference between the two creates the
redundant error, Figure 4.b.

Note that for all possible replacement faults, DC sets
have to be obtained only once. They are often available for
free as a by-product of the synthesis. If we have the full
don't care sets, Lemma 1 provides us with the exact
redundancy identification. Practical schemes use only a
subset of DCs.

3.1.1 Don't Care Approximations

Calculating don't care sets in a network consists of two
parts. CDCs that occur by impossible input combinations
are usually generated by determining an image of the care
set at the input of the network to a node of interest. ODCs
are obtained by traversing the network backwards. At
each node, the ODCs are calculated as a Boolean
difference among the downstream DCs, to which local
satisfiability DC (SDC) conditions are added. SDCs
simply express impossible assignments of values at a
node, for given gate; if the gate changes, the SDCs
change as well. Of all DC conditions, ODCs are the most
time consuming. Because of their size, they are commonty

Paper 29.2
806

represented by BDDs associated with each node. The
limitations on the practicality of this approach come from
the ability to handle large BDDs. The exact local don't
care determination often results in BDDs that are too
large, and therefore we approximate this set by
Compatible Observability DCs (CODCs) [18]. They are
generated by traversing the network backwards. At
multiple fan-out nodes, CODCs of the fan-out nodes are
simply intersected. The advantage of ODC subsets
obtained this way is that the multiple node replacements
will not change their value. Hence, CODCs can be used
for multiple location faults, such as wire replacement
faults.

3.1.2 Using S-A-V Redundancy Identification - Single
Minterm Approximation

Since we employ subsets of don't cares, not all
redundant replacements will be detected by this approach
alone.

Definition 3: An approximated don’t care set associated
with a given node is the set of local don’t cares where
ODCs are approximated with CODCs, while other DCs
are exact. Correspondingly, an approximated care set
(Caregppror) 0f a given node is the complement of the
approximated local don’t care set of this node.

The approximated local don’t care set (DCpppror) is a
subset of the exact local don’t care set (DCjy..) at a given
node

DC cD Clocal ’

approx c

while the Careg,p., is the superset of the exact local care
set of this node.

Consider the following use of the Hamming distance
d:{0,1}" x{0,1}" > N between two Boolean functions.

The distance is equal to the number of minterms (w) of the
Boolean difference between the two intersections of
functions with the local care set:

w((gONrWCar @(hONﬁCare))>0 (1)

Symbol “@” denotes the Boolean difference between two
sets, which can be calculated by XOR-mg their
characteristic functions.

dCare g>

Distance dc,. in Equation 1 is positive for redundant
faults not detected by the use of Careyypo, as well as for
irredundant replacements. Our next task will be to
distinguish these two cases. The distances obtained by the
exact and approximate local DC sets can be related,
based on the size of these sets, by the following Lemma.

Lemma 2: The following relation is true for the Hamming
distances between gate g and its faulty replacement h

calculated with the use of local (dj,cq) and approximated
(Aapprox) DC sets:

iocal (g, h) < dapprox (g, h)-

Proof: We rewrite the distance function in Equation 1 as:
W™ NCard ® " NCard)=w((g” ®r°)NCard.
Since the approximated set is a superset of the exact local
care set, i.e., Care,py,, 2Carey, , the distance from

Equation 1 can only be larger for the approximated set. ¢

The distance information provides the means to
formulate a series of further refinements to filter out the
irredundant faults from those identified in Equation 1. If
the distance is small, it is possible that the fault was
redundant, but not detected due to the use of DC subsets.

Example 1: Consider a replacement error at node b of
a circuit in Figure 5.

X b
X, _AJ a
X3 y
e
Figure 5: Circuit with replacement Error at Node b

Assuming the full controllability, the local DC set at node
b consists only of ODCs. Equations describing original
function £, ODC and Carej,.; sets are shown in Table 2.

B

L) . ’ ’
Original Function | f=x %X, *x3 +x; *x3 +Xx, *x3

Local DC Set ODC), =x, *x3 + X3

4 ’
Carelocal Car Clocal = 0D Cb =X, * X3

Table 2: ODC and Carep.s Sets for Node b in Fig. 3

Let L = {AND, NOR, NAND, XOR, XNOR} be the
possible gate replacements, and let W denote the
exchanging of input wires at node b. Table 3 describes the
effects of the replacement faults at node b. The first row
includes the Hamming distances between the correct and
faulty gates with no DC set taken into account.

W | XOR | AND | NAND | XNOR | NOR
d 0 1 2 2 3 4
dnCare | 0] 1 1 1 1 4
vec 0 1 3 3 5 6

Table 3: Hamming Distances and Number of Vectors
Detecting Error Gates for Circuit in Fig. 3

The Hamming distance, calculated according to Equation
1, is shown in the second row of Table 3. The number of
test vectors detecting the fault (the third row) increases
with the Hamming distance. &

Further redundancy identification can be parameterized
by the nonzero distance

d ((g ON Cal"eappmxl (hON Qle L—)) <e(2)

to guarantee that the s-a-v redundancy detections can be
directly applied. For that, we define the class of single-
value faults.

Definition 4: We say that the replacement fault that
results in only one polarity (0 or 1) of faulted value at a
gate output is a single-value (0 or 1) fault. For non-failing
stimuli, it behaves as a correct circuit, and can carry
signals of both polarities.

An example of a single-value replacement fault is a
substitution of a two-input AND with XNOR gate. For
input stimulus (0,0), it behaves as an output s-a-1 fault.
Otherwise, it behaves as a correct circuit.

Lemma 3: The gate replacement h, that is within a
Hamming distance of one:

OV A Care

d (g ON ~ Care approx)= 1

approx»

results in a single-value fault at the output.
Proof: Since the functions differ in only one minterm,
only one polarity of the fault can be present. ¢

3.1.3 Redundant Single Cube Replacements

A closer approximation can be considered to detect
more redundant faults while employing the modified s-a-v
identifications. We will checked for redundancies the
replacements of distance 1, measured in cubes, instead of
minterms.

Lemma 4: If the gate replacement h is within a single-
cube distance, and if

W A Care (3)

ON
g N Car eapprox 2 approx

then, the replacement is a single-value 0 fault. For a
single-value 1 fault, sign “<” is used instead in the
inequality.

Proof: The functions in this case differ in more than one
minterm. By inspecting the intersections with Carepprox,
it follows from Equation 3 that the replacement is of
single value 0. The condition opposite to Equation 3 then
holds for a single-value 1 replacement. ¢

Theorem 1: The replacements satisfying Lemma 4 are
redundant iff a single stuck-at fault at the gate outputs is

Paper 29.2
807

redundant for the single-cube input assignment that
distinguishes the two functions.

Proof: (=) Redundancy of such replacement implies
single stuck-at redundancy restricted to the input cube for
which the functions differ.

(«<=) If the s-a-v is redundant, and only the input cube for
which the functions differ is exercised, then we have a
single-value replacement, which is redundant. ¢

Example 2: Consider an error caused by replacing the 2-
input OR gate in the circuit in Figure 5 with an XOR
gate. The replacement forces a single-value 0 fault for a
single cube (x; = 1, a = 1) assignment of its inputs. This
fault can be tested as a s-a-0 fault with an additional
constraint: x;=1,a=1. &

As a corollary to Theorem 1, single s-a-v redundancy
identifications can be employed. To adjust the s-a-v
approaches, we rely on SAT-based identifications.

3.2 Use of SAT in Redundancy Identification

Satisfiability formulation for testing for s-a-v faults has
been elaborated in [13]. For each fault in a circuit, a
conjunctive normal form (CNF) is constructed. Such
product of sums (clauses) is equal to one for all solutions,
and finding one satisfying assignment amounts to
obtaining a test vector. If there is no solution, i.e., if the
expression is unsatisfiable, then the fault is redundant.
The SAT formulation for single-stuck-at fault redundancy
identification and/or test generation consists of several
types of clauses. Good circuit clauses represent the
correct operation of the whole circuit. Faulty circuit
clauses describe the effects of a single stuck-at fault on
the downstream network nodes. Active clauses are
introduced to give the activation conditions of a fault.
Finally, the fault site and goal clauses describe the
activation and observation of the fault.

Example 3: The following clauses are generated for a s-a-
0 fault at node b of the circuit in Figure 5. The variables
are associated with nodes in the network. Those with no
subscripts are the good clause variables, x, the faulty
circuit variables at the same node have the subscript £, as
in x5 while the activation variables have the subscript a.
The nodes and conditions for which the individual clauses
are created are placed in square brackets.

Good circuit clauses: [OR]: (x, +a+5 b +x, b +a),
[NAND]: (x; +a@+2)(a+c)x; +c¢),

[AND]: (b+z+d)b+d)c+d),

[XOR]: (x, + x; +@)(x, + X, + a)(¥, +x, +a)X, + X, +a).
Faulty circuit clauses:

[AND: (b, +d)c+d)d+b, +c).

Paper 29.2
808

Active clauses: [Active = (Good # Faulty)]:
(B, +5+ b, Vb, +5 + b,). [Active = Output,; (6, +d,).

Fault Location: [Node b s-a-0]: bbb Iz

Goal: [Active Output]: d,

A solution to this SAT problem, e.g. the satisfying input

assignment x; = 1, x,= x3;= 0 produces a test vector. &
This approach can be time consuming if applied to all

faults. Next, we show how our DC-based algorithm can be

used to filter out many cases of replacement faults.

3.2.1 Passing Proximity Information to SAT

We can derive a SAT formulation for replacements
not filtered by DCs using Lemma 4. The distance between
the original and the replacement gate, obtained by an
approximated DC set, can be passed to SAT. This
proximity information can represent additional criteria for
creating further approximations to the problem.

By considering only the single-cube distance
replacements, as in Theorem 1, a simple and efficient
SAT formulation can be obtained. We first create a s-a-v
SAT instance corresponding to the polarity of the single-
value faults, according to Lemma 3. It is sufficient to add
to that CNF the 1-clauses that restrict the gate inputs to a
single failing cube.

Example 4: To obtain a SAT instance for replacing the
OR gate from Figure 5 with an XOR gate, clauses are
added to restrict the inputs to their (single-cube)
assignments that differentiate the gate functions. The
following 1-clauses are added to those for s-a-0 fault at
node b (Example 3).

Additional clauses: [OR — XOR Replacement Inputs]:
X1d. &%

If the original and replaced function differ in one cube,
say in k literals, only k¥ 1-clauses will be added. Adding
each l-clause amounts to assigning the values to the
variable throughout the CNF, i.e., restricting the search
space by factor of 2. This contributes to a total reduction
by a factor of 2*. Hence, it might be significantly quicker
to find the solution to this problem, than to the original s-
a-v instance.

The approximate algorithm for redundant gate
replacement identification is outlined in Algorithm 1.
After intersecting the original and replaced gates with the
approximate care sets, their Boolean difference (®) is
obtained. If the difference is empty, the fault is redundant,
and is not simulated. Otherwise if the difference is a
single cube with properties from Lemma 4, a 1-Cube
check is performed by s-a-v identifications, augmented
with enforcing the distinguishing single-cube input
assignment. If redundancy is not detected, the fault is

assumed irredundant and is simulated by several top
lattice layer vectors.

1. Generate CODC Approx. of DC set for the network
2. foreach fault (g — h)
3. {
4 Obtain: (h ™ Careapprox), (g N Careapprox),
I = (h Careapprox) @ (g M Careappmx)

if (h N Car Capprox == g M Car eappmx)

{Fi==0"

break;

}
9. if (d(h M Careaprox, g N Careapormy) = 1)
10. {1=1, 1-Cube approx. */

®~No o

1. if (h N Careapprox 2 g N Careapprox)

12. if (detect_s-a-0_with_cube(/))

13. break;

14, else if (h N Caregprox < g M Careapprox)
15. if (detect_s-a-1_with_cube(/))
16. break;

17.

18. simulate_fault_n_lattice_layers (g, network)
19. }
Algorithm 1: Approximate Redundancy Identification

4. EXACT REDUNDANT FAULT
IDENTIFICATION

The previous solution had the advantage of reusing fast
stuck-at fault methodologies, while possibly missing some
redundant faults. We next present an all-SAT formulation
that is exact.

The SAT formulation uses the good circuit, faulty
circuit and active clauses that are the same as in the
standard single stuck-at SAT formulations. However, fault
site clauses will be modified in the following way.

OR2 replaced with XOR2

Figure 6: Exact SAT for a SGRE

To describe the conditions for activating a fault, the
assignments of the gate inputs must be such that g # A,
regardless on the fault polarity. We create an auxiliary
node that is equal to / = g @ A. Then, the fault location
clause will assert its value to / = 1, as shown in Figure 6,
on an example of replacing an OR with an XOR gate.

Hence, a SAT-based formulation of the redundant
replacement fault identification can be created by the
addition of a node that differentiates the original and the
replacement function, and by generating a clause that
forces this gate to 1. We contrast this to the verification
approach in [4], where a comparison XOR gate is added
to two complete circuit implementations, resulting in a
substantially larger problem.

Example 5: To formulate a SAT instance for replacing the
OR gate from Figure 5 with an XOR gate, clauses are
added which restrict the inputs to the assignments that
differentiate the gate functions. In this case, it is OR ©
XOR = AND, as shown in Figure 6. At the same time, as
polarity of the fault is not known, the stuck-at fault clauses
should be removed.

Additional clauses: [OR — XOR Replacement =AND]:

(il +E+bel +b)(a+l7)
Removed clauses: [s-a-0]: bb, . &

4.1.1 Preprocessing

Since invoking SAT instances can be costly, the
preprocessing steps usually precede SAT procedures.
Often, random simulations are applied. Only if they fail to
distinguish the correct and faulty circuits, SAT is
invoked.

In our case, properties of the Arithmetic Transform
(AT) vector set can be exploited to surpass what is usually
possible with random vectors. It is known [17] that, by
selecting the top |—log2 (t + 1)-]—1 layers of an input space

Boolean lattice, any fault with less than 7-term AT will be
detected. A smaller number of such layers can be used for
preprocessing. Upon their failure in detecting a fault, they
can be passed to the SAT procedure, as non-satisfying
assignments. This restricts the search space for satisfying
assignments resulting in speeding up SAT. Unlike
random vectors, this set has a very compact description.

5. EXPERIMENTAL RESULTS

The redundancy identification schemes have been
implemented and run on 440 MHz SUN Ultral0
workstation with 512 MB of main memory. We used UC
Berkeley SIS SAT solver and the BDD package for
representing local don't care sets and various subsets. No
additional ATPG-related optimizations were applied.

Paper 29.2
809

Experiments were conducted on MCNC benchmarks and
arithmetic circuits (adders, multipliers, ALU and
dividers).

As no comparison could be done with the other work,
due to the differences in fault models, the proposed
redundancy identification schemes were compared with
respect to their running times and the performance. The
exact redundancy identification finds all redundant errors
for the benchmarks considered. Also, 1-cube distance
approximation performed almost as well. We report the
fault coverage with AT test vectors generated from the
five top lattice layers.

The number of possible gate replacement faults is very
large, as many gates can substitute the correct ones. The
fault list size is significant impediment to the overall
algorithm execution time. To investigate the reduction in
the fault list, and to better expose the performance of the
proposed methods, we resort to worst-case modeling that
allows us to discard many easily detected faults.

Definition 5: We say that the gate h is the minimum
distance (M.d) replacement

I;l,lei? d(gON,hON)

among all replacement candidates in set L. If the DC sets
are available, then the gates that have the smallest
positive Hamming distance:

Ilfllll,l d(gON n Care]ocal’ hON N Carelocal)> 0
=3

are used as the minimum distance replacements.

F=

o
;¥

,

c}

Figure 7: Approximate DC Methods Used in
Experiments

Several variations of the approximate redundancy
identification were considered, as shown in Figure 7, to

Paper 29.2
810

assess the efficiencies of the parts of Algorithm 1. They
differ in the amount of DC subsets considered, and in the
application/omission of the 1-Cube distance s-a-v
identification.

In Table 4 we compare the fault coverage of typical gate
replacement design errors obtained through AT test
vectors and four methods from Figure 7. The columns
labeled as “Red” refer to fault coverage with no
redundancy removal (as in Figure 7.a), while “CODC-
SDC” columns show the coverage after removing
redundancies using DC approximations that do not
include the local SDC sets, as explained in Section 3.1.1,
(Figure 7.b). The next two columns contain the coverage
with the SDCs included (Figure 7.c), followed by the 1-
Cube distance approximation (Figure 7.d). We present the
cumulative results (4//) of simulations where each gate in
the network was replaced with all possible elements from
the gate library. The effectiveness of redundancy
identifications is compared better by the results obtained
using the worst-case modeling (M.d). Note that Table 4
demonstrates that the DC approximate methods are in
relation, as in Figure 1. Further, for all the cases, the 1-
Cube (1-C) approximation identifies all the redundant
faults, i.e., performs as well as the exact identification.
The fault coverage is less than 100% in some cases only
due to the AT test vectors.

T Red CODC-SDC
Cireuit | Size =g T an | Md | al [Mad |\ C

Look- 12 | 93.0 [84.7 | 950 | 852 | 96.1 | 88.5 | 96.7
ahead 16 | 93.8 [852 | 953 | 86.1 | 97.4 | 88.6 | 96.8
Adder 24 [941 |86.1 | 958 [87.0 | 983 | 89.0 | 96.8

10 99.1 89.6 | 99.2 | 92.7 99.2 | 945 | 95.1

ALU 12 1992 1982 [993 927 1993 |942 | 94.7
CLA 9x5 87.0 76.9 97.6 | 96.0 100 100 100
Divid 11x6 | 882 | 95.0 [974 | 96.1 | 100 | 100 | 100

" 1 13x7 [858 | 90.2 [986 | 963 | 100 | 100 | 100
Array 9x5 | 78.7 | 62.8 | 963 [926 | 100 | 100 | 100
Divid. 11x6 | 759 | 63.7 | 982 | 95.0 | 100 | 100 | 100

13x7 | 755 {643 | 97.6 [949 | 100 | 100 100

Table 4: Fault Coverage for Arithmetic Circuits:
Impact of Redundant Gate Replacement Removal

In Table 5 we compare times spent on the redundancy
identifications using DC approximations with single-cube
distance SAT and exact SAT with and without 3 top
lattice layer pre-simulations. The exact identifications are
illustrated in Figure 8. Also, included are the time and
space requirements for DC BDD constructions (second
and third column of the table), if the DCs are not readily
available in the circuit. We report two time numbers for
each benchmark. They allow us to determine bounds on
the performance of any possible preprocessing before
invoking SATs. Columns “Redund” and “Total” report
times spent on redundant and all SAT cases, respectively.

They present the lower and upper bounds on SATs with
respect to preprocessing. We don't report separately the
time required in different parts of SAT, as overall the
routines are fast. The impact of passing the information
between the BDD-based DC calculation and the SAT
procedures is obtained by comparing the SAT times in
these two cases.

From times reported, we see that the approximate
identification of DC conditions achieves almost complete
coverage in roughly half the time of the exact SAT.
Additionally, preprocessing substantially reduces exact
SAT running time, as shown in the last two columns of
Table 5. Depending on the circumstances, either the
exact and approximate redundancy identifications are
appealing.

a)

b)
Figure 8: Exact SAT Methods Used in

Experiments

Further, as the test set vectors have a very simple
structure (top layers of lattice), information on failing to
detect the fault was passed to the exact SAT procedure, to

speed it up (Figure 8.b). These times are reported last.
While BDDs perform worst with respect to their space
complexity, preprocessing can reduce the time
requirements of SAT. All the improvements in modérn
SAT solvers, such as those from [14] can be equally
applied to both approaches. Any advances in structure-
based s-a-v ATPG can be used towards speeding up the
approximate methods.

5.1 SAT vs. ATPG

Our approach to redundant faults was based on
incorporating relevant DC circuit conditions to speed up
the redundancy identification process. The soundness of
such a solution is based on the fact that all redundancies
in a given circuit are caused entirely by DCs associated
with the design and synthesis process.

As “the execution engine” of proposed solutions we
selected SAT formulation. However, the proposed
approximation algorithms can be equally easily
incorporated into a structure-based ATPG scheme.
Similarly to the SAT solution, all improvements to the
ATPG can be applied to speed up the procedure.

Further optimizations could be applied to SAT
implementation of the redundancy identification as well.
For example, the true circuit clauses could be constructed
only ones, for all the faults injected in a given circuit.
Currently, they are re-created for every fault.

6. CONCLUSIONS AND FUTURE WORK

In this paper we considered verification by test vectors.
Under a fault model that includes gate and wire

DC BDD DCs and s-a-v SAT Exact SAT Pre-sim Exact SAT

Circuit size time Redund | Total |AT Cov.| Redund | Total |AT Cov.} Redund | Total
[s] [s] [%] [s] [s] | [%] [s] [s]

il 180 0.113 0.0 0.005 94.4 0.0 0.0 94.4 0.0 0.0
alu2 2187 0.990 0.310 3.590 95.7 0.350 8.120 96.2 0.300 0.830
alu4 2148 2.330 247 48.79 95.2 11.190 | 88.650 | 959 9.690 37.820
9symm | 1252 2.364 0.083 0.223 97.5 0.110 0.400 97.5 0.080 0.260
cordic | 401 0.520 0.015 0.057 923 0.050 0.090 92.8 0.080 0.090
C499 64547 14.381 0.0 1.836 100 0.0 1.460 100 0.0 0.540
C432 173829 15.061 0.0 0.509 100 0.380 0.780 100 0.380 0.380
C17 17 0.015 0.0 0.002 100 0.0 0.002 100 0.0 0.010
C1355 | 176390 381.205 0.0 0.653 100 4,950 5.600 100 4.820 4.980
C1908 | 443558 541.553 | 0.0 0.544 91.2 4.260 5.220 91.2 4.310 4.920
C2670 | 4401323 | 540.163 | 0.101 3.587 98.3 4.360 10.310 | 98.5 - -
C6288 | oo oo - - - 88.070 | 138.660 | 100 114.100 | 114.130
C880 30501 13.176 0.069 0.857 97.6 0.320 1.170 97.6 0.290 0.900

Table 5: AT Coverage and Execution Time Comparison among Approximate, Exact and Pre-processing
Identifications

Paper 29.2
811

replacements, there are many redundant faults. These
redundancies seriously impact the verification scheme.
Simulations overhead and the confidence in fault
coverage could suffer and create an obstacle in the
practicality of these verification methods.

We proposed the methods for redundant fault
identification. The methods differ in the level of
approximation to the problem. While the exact SAT-
based solution is practical, we showed that the
consideration of replacements that are within a single-
cube distance from the replaced gate provides almost
complete redundancy identification by the use of standard
s-a-v methods. In the latter, we use the CODC subsets of
local don't cares to reduce the number of cases considered,
and to provide distance information. Further
preprocessing to SAT procedures that exploits the
properties of the test set is demonstrated. Figure 1 relates
the proposed methods. Both approaches can benefit by
improvements in underlying SAT and structure-based s-a-
v methods. The approximate construction can completely
avoid the use of SAT solvers.

We have shown that the use of test sets obtained by
Arithmetic Transform decoding results in high coverage
vectors for the considered gate and wire replacements.

As the size of the fault list is significant, to simulate
larger circuits we would have to rely on reduced fault list
by methods such as the worst case modeling (Definition
5), instead of considering of all the cases. More work is
planned on establishing the criteria to reducing the fault
list, while not sacrificing the accuracy.

The results presented in this work can be extended in
future to broader classes of wire replacement models and
their redundancy identification. Also, we believe that the
sequential and high-level design verifications can benefit
from methods presented here.

References

[1] E.J. Aas, K. Klingsheim and T. Steen, “Quantifying Design
Quality: A Model and Design Experiments", In Proc. of
EURO-ASIC, pp.172-177, 1992.

[2] M. S. Abadir, J. Ferguson and T. Kirkland, “Logic
Verification via Test Generation”, IEEE Trans. CAD of
Integrated Circuits Systems, 7(1), pp.138-148, Jan.1988.

[3] H. Al-Assad and J. P. Hayes, “Design Verification via
Simulation and Automatic Test Pattern Generation”, In
Proceedings of International Conference on Computer
Aided Design, pp. 174-180, 1995.

[4] D. Brand, “Verification of Large Synthesized Designs”, In
Proc. of International Conference on CAD, pp. 534-537,
1993.

[53 J. R. Burch and V. Singhal, “Tight Integration of
Combinational Verification Methods”, In Proc. of

Paper 29.2
812

International Conference on Computer Aided Design, pp.
570-576, 1998.

[6] D. van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge
and R. B. Brown, “High-Level Design Verification of
Microprocessors via Error Modeling”, ACM Transactions
on Design Automation of Electronic Systems, 3(4), pp.
581-599, Oct. 1998.

[7]1 S.T. Chakradhar. V.D. Agrawal and S.G. Rothweiler, “A
Transitive Closure Algorithm for Test Generation”, IEEE
Transactions on CAD of Integrated Circuits and Systems,
12(7), pp. 1015-1028, Jul. 1993.

[81 K.T. Cheng, S. Dey, M. Rodgers and K. Roy, “Test
Challenges for Deep Sub-Micron Technologies™, In Proc. of
Design Automation Conference, pp. 142-149, 2000.

[9] K. T. Cheng and A. Kistic, “Current Directions in
Automatic Test Pattern Generation”, IEEE Computer,
32(11), pp.58-64", Nov.1999.

[10] L.H. Goldstein and E.L. Thigen, “SCOAP: Sandia
Controllability/Observability Analysis Program”, In Proc.
17" Design Automation Conference, pp.190-196, 1980.

[11] M.A. Iyer and M. Abramovici, “FIRE: A Fault-Independent
Combinational Redundancy Identification Algorithm”,
IEEE Trans. VLSI Systems, 4(2), pp.295-301, Jun.1996.

{12] WKunz, and D.Pradhan, “Recursive Learning: A New
Implication Technique for Efficient Solutions to CAD
Problems - Test, Verification and Optimizations”, [EEE
Transactions on CAD of Integrated Circuits and Systems,
13(9), pp. 1143-1158, Sep.1994.

[13] T. Larrabee, “Test Pattern Generation using Boolean
Satisfiability”, IEEE Transactions on CAD of Integrated
Circuits and Systems, 11(1), pp. 4-15, Jan. 1992.

[14] J.P. Marques-Silva and K.A. Sakallah, “GRASP: a search
algorithm for prepositional satisfiability”, JEEE Trans. on
Computers, 48(5), pp. 506 -521, May 1999.

[15] P.R. Menon, H. Ahuja, and M. Harihara, “Redundancy
Identification and Removal in Combinational Circuits”,
IEEE Transactions on CAD of Integrated Circuits and
Systems, 13(5), pp. 646-651, May 1994.

[16] R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J. A.
Abraham and D. S. Fussell, "An Efficient Filter-Based
Approach for Combinational Verification", IEEE
Transactions on CAD of Integrated Circuits and Systems,
18(11), pp.1542-1557, Nov. 1999.

[17] K. Radecka and Z. Zilic, “Using Arithmetic Transform for
Verification of Datapath Circuits via Error Modeling”,
Proc. of VLSI Test Symposium, pp. 271-277, May 2000.

[18] H. Savoj and R. Brayton, “The Use of Observability and
External Don't Cares for the Simplification of Multi-level
Logic Networks”, In Proc. of International Conference on
Computer Aided Design, pp. 297-301, 1990.

[19] S. W. Tung and J. Y.Jou, “Verification Pattern Generation
for Core-Based Design Using Port Order Fault Model”, In
Proc. of Asian Test Symposium, pp. 402-407, 1998.

