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Abstract

In this paper, we consider a problem of interpolating a multi-
variate polynomial from its values at arbitrary t points over
a field F. We derive a deterministic algorithm that finds
an interpolating polynomial with ai most t terms. Rela-
tive to the univariate interpolation, minimal degree selection
of terms and uniqueness cannot be guaranteed. Qur con-
struction uses the nullspaces of the multivariate generalized
Vandermonde matric associated with the problem to make
this matriz nonsinguler in a series of steps. The structure
of this matriz allows us to deterministically find the terms
that increase the rank of this matriz. We present o practical
algorithm for finite field interpolations, together with a set
of heuristics for obtaining fast a swmall-degree interpolation
polynomial. As a special case of interpolation algorithm, we
propose the quadratic time algorithin for interpolation over

GF(2) field.

1 Introduction

Interpolations have many applications in areas such as sym-
bolic [14] and numerical computing [11], [4] decoding of the
error-correcting codes [7], learning theory [6], cte.. In this
paper, we consider a problem of interpolating a multivariate
polynomial from its values at arbitrary ¢ points over a field
F, applied originally to synthesis of logic circuits [13]. We
show that an interpolating polynomials with at most ¢ terms
can be found within a polynomial number of field operations.
Further, we provide practical algorithms for interpolations
over finite fields GF(g) and describe their efficient imple-
mentations.

1.1 Multivariate Interpolation

The Lagrange or Newton interpolation algorithms can be
used over any ficld to obtain a univariate polynomial f(2) =
Z:;(l) ciz' of degree t—1 from the values at arbitrary ¢ points.
The problem is wmuch more difficult for multivariate func-
tions. While the sclection of terms (1,z,z%,...,2'") and
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the result are unique in the univariate case, in the multi-
variate case the term selection depends on the position of
interpolation points. There is no known algorithm to se-
lect in advance the terms of a multivariate polynomial that
guarantee the existence of a solution for an arbitrary set of
points. Currently, it is possible to characterize only up to 6
points for which an interpolation exists among the 2-variable
polynomials of degree four [2]. Because of the difficulty of
the problem, most results on multivariate interpolation deal
with somewhat rclaxed problems.

1.1.1 Black box interpolation

The "black box" interpolation has been the most studied
multivariate interpolation problem. In this model it is as-
sumed that the algorithm can select the interpolation points
freely, and the degree of the polynomial is often given as an
input. Three cases need to be considered, depending if the
fields are G F(2) [5], small finite fields [3], or large finite (and
infinite) fields [1]. For GF(2), an effective procedure exists
for selecting the point by solving the interpolation problem
by decoding crror-correcting codes [5], [10]. For large fields,
the algorithms in [1] and [8] rely heavily on the large size of
the field. The algorithm [1] requires computations with very
large numbers that can occur in the process. A randomized
algorithm for interpolations over large, but finite, fields was
derived in [8] from this algorithm. For small finite fields
(other than G'F(2)) the solution exists only if the interpo-
lation points are chosen from a sufficiently large extension
field [3].

1.1.2 Interpolation on arbitrary points

Much less is known about finding a solution when the inter-
polation points cannot be selected freely by the algorithm.
The known multivariate interpolation algorithm is proba-
bilistic, and requires larger fields [14], as the probability of
failure is quadratic in the number of points and decreases
linearly with the field size. The algorithm uses univariate
interpolations to fit the one-dimensional projections of the
interpolation points. It first finds a polynomial in one vari-
able, e.g. 1, at some random assignment of other variables
Ta,T3...,¢n. When this univariate polynomial Z;' ci * T}
is found, (t1 depends on the selected points, and is bounded
by a number of points #), then, by repeating the procedure,
the coefficients ¢; are expressed as a function of variables
Ta,¥3,...,%n in subsequent steps.

Much work on multivariate interpolation has been done
in the area of numerical lincar algebra. The algorithm by



de Boor and Ron [4] tries to solve the interpolation prob-
lem by Gaussian elimination. The algorithm by Sauer [11]
tries to construct a set of the basis multivariate polynomials,
similar to the Gram-Schmidt orthogonalization. The result-
ing polynomial is then expressed by a linear combination
of the basis polynomials. Although both algorithms could
possibly be used for interpolations over any field, including
finite ficlds, the polynomial running time cannot be guar-
anteed. Interestingly, the most cumbersome aspect of these
two algorithms involves the symbolic manipulation of the
basis polynomials used towards constructing the solution.

Section 2 proves the existence of an algorithm for multi-
variate polynomial interpolation that requires a polynomial
number of field operations. The proof uses the structure of
a multivariate generalized Vandermonde matrix to find suit-
able terms. Next, an efficient implemnentation the finite field
interpolation is described in Section 3. Based on the par-
tial order between the interpolation points, we show in Sec-
tion 3.1 how the interpolation problem can be decomposed
into interpolations over suitable subspaces of the function
definition domain. The decomposition alone is sufficient to
achieve the quadratic time GF(2) interpolation.

2 Existence of a Deterministic Interpolation Algo-
rithm

We are given ¢ distinct points

p1.p2,...,pt € F"
and values

finfe,..  ft€F

that a function takes at these points. We want to fit a poly-

. . . . . t
nomial, that is a lincar combination, Zj.:l ¢; * M;, of at

. . 3 myp .
most ¢ terms (monomials) M; = ::1 2y J*  FEach term is

specified by n exponents, m;, which are the integers within
a range. For finite fields, cach of the exponents is in the
range 0...q — 1. Otherwise, by considering the interpola-
tion algorithm in [15] each of the exponents can be bounded
by t — 1. Hence, we will produce the coefficients

Ci,Cay... 0t €F
and the terms represented by the exponent vectors
My, - T

We use the lower-case letters, like p, for vectors of points,
and indexed letters, as in p;, for the individual points. For
coordinates of points, we use double-indexed letters: pi;,
denotes coordinate j of point p;. The samce convention is
used for the terms.

A solution can in principle be obtained by solving the
linear system

Te=f

which corresponds to the condition that the given vector of
values f and the sought polynomial coincide at the points
given. Vector ¢ then contains the coeflicients of the polyno-
mial.

Matrix T is the generalized multivariate Vandermonde
matrix, obtained by applying the terms to the given t points,
Tij = [1ro, pi’. We will denote the eutry 73; with cither
p;"j or m;{p;), as an application of a term to a point involves
the coordinate-wise exponentiation. The rows correspond to
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the points and the columns correspond to the terms. There
always cxist t terms for which the matrix T will be nonsin-
gular. (Proof: Consider a matrix obtained by applying all
the terms that can be in a solution, to the given points. For
finite fields, this matrix is of size ¢ x ¢™*, and for infinite fields,
it is suflicient to consider a finite matrix with # X " entries.
This matrix has rank ¢, and consequently there exists a £ x ¢
submatrix of full rank.)

It is not known in advance how to select the terms to
make the matrix of the system nonsingular. We start with
arbitrary terms and in subsequent steps replace some terms
until the matrix becomes nonsingular. Then, an inverse ex-
ists and the interpolation problem can be solved by inverting
this matrix. The higher the rank of the starting matrix is,
the fewer such replacements are needed; in the worst case,
O(t) such replacements are sufficient.

2.1 Nullspaces and Increasing the Rank

The interpolation will be possible if the matrix T is nonsin-
gular after successively replacing terms in the interpolation
polynomial. We show that the rank of T can be determinis-
tically increased by considering its nullspaces

When the rank is not full, then there exists a linear com-
bination of columns (or rows) which is zcro. Concentrating
ou rows, the following condition holds for cach row i

nn
cip;

my

+eap" + . taplt =0

, where vector ¢ = c¢ica ... c: belongs to the colurnn nullspace
Chryu of matrix T'. All such vectors are linearly independent,
as they form a basis for the nullspace, whose dimension (nwl-
lity) is v. Alternativelv, since the row and column ranks are
equal, we can consider the row nullspace, Rypyu. The vectors
r and ¢ in both nullspaces then satisfv

!

- _'f(l-]'
E rip;

i=1

t
=0, ¢ =0,i=12,...t,j=12.. .t

i=1

For our purposes, we can freely choose only the terms of
a polynomial, and considering the row nullspace will help us
select the terms. For a fixed row nullspace vector r, it is
sufficient. to find a term m, for which Z[.:l rip!'m # 0, to
remove that vector from the nullspace. We now prove that
such a replacement creates a matrix T whose rank increases
by ouc.

Theorem 1 The rank of T increases by 1 if a column v,
corresponding to a monzero component ¢y, of ¢ € Crhun i
replaced by a column obtained by a term myyy for which

Z?:l 'r'ip:'nl+l # 0. fOT re R‘n-'u[l-

Proof: By adding a term my4r for which
S ripi Tt # 0, we eliminate the row nullspace vector
r. Then ,

Sl =0 £ 141 <1>
i=1
and
t
Z rip; tt#0. (2)

i==1



Now we show that we can remove the column corresponding
to a nonzero component ¢, in the column nullspace vector
¢. Then, we obtain the nonzero lincar combination

t
m ; ™y
E CGp; T = e (3)
J=1j#e

We now claim that replacing the term m,, with 7,41 cannot
possibly create a new colummn nullspace vector ¢ For this
to be true, the component ¢, must be nonzero; otherwise,
the sum from Equation 3 is nonzero. Then, ¢ is a nullspace

vector if
t+1

‘I' ITIJ' _
E ap;’ =0
J=lj#n

for cach i. Multiplying each sum with r; and adding them
together also results in 0. This sum can be written as:

t
E r;
i=1

t+1 ttl !

L J LS
E Cip; © = E (—.iE rip; o=

=1 j=lj#v j=Lij#e i=
l t ¢
_ / LT J LS
= E C; E rip; T e E ip; .
j=1l.j#e i=1 i=1

Using Equations 1 and 2 this expression reduces to

t

!
Cty1

i=1

.-p;"""'l #0

because ¢, # 0; this contradicts the assumption that ¢ is
a null vector. Hence, replacing the column » by the column
t + 1 eliminates one nullspace vector. This replacement in-
creases the rank only by 1, because we can always choose
a basis of (), which has only one nonzero coordinate ¢,
among all vectors ¢ in the basis. Then, all the other base
vectors will remain in C),, g after this replacement, as they
act on columns that did not change. ]

This replacement. can be used in a deterministic polyno-
mial interpolation algorithm. There can be at most ¢ re-
placement steps. In each step the nullspace vectors can be
obtained in O(#*) time in a traditional way, by Knuth’s or
Berlekamp’s algorithm [9], or in O(AM (¢)) time, required for
the fast matrix multiply operation. However, it is not ap-
parent that searching for the replacement term can be done
in polynomial time, because there are O(t") (¢" in the case
of finite fields) possible terms to search from.

2.2 Searching for Replacement Terms Efficiently

We will show that the replacement term can be found in
O(nt?) time by using the structure of the multivariate Van-
dermonde matrix. We will use a fact that a basis vector
r =rira... 7+ in the nullspace can be obtained with the fol-
lowing property. For such =, there is no nullspace vector v’
with nonzero components that are a subset of the nonzero
components of . (Proof: Otherwise, a linear cowbination
" of the two can eliminate the excess nonzero compounents,
and the property will hold for »”.) We say that such a vector
T 18 coordinate reduced.
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Theorem 2 Let r € R, .1 of generalized Vandemonde ma-
trix; be coordinate reduced. Among the existing termns, there
exists a term m; with the following property. If a term myqy
is created from m; by changing a coordinate mjq by 1, then
Z:'::l -riP:-_"'Jr" # 0. It suffices to choose d such that the point
coordinates pig, i = 1,2,...,t are not constant for nonzero
components of r.

Proof: First, there must exist a coordinate d for which pyqg
is not constant for all nonzero components r; of r, because
otherwise some points would coincide.

For each existing term my = mpimez .. Mpd ... Min, WC

have
¢

Y
E Tip;

i=l

=0 (4)

By way of contradiction assumne that there is no term m;
with the above property. Then, we obtain mj, by increas-
ing the coordinate muuq by 1, ie. my = mpimgs. ..My +
1...my,, and the following expression

t 4

7",
O J . Mep
E rp, F o= E ripiap; * =0

i=1 i=1

will be true for k = 1,2, ... ¢t. By comparing 4 and 3, a vector
with components r{ = r;p;s would be a nullspace vector.
This is impossible if the nullity v is 1, because coordinates
pid are not constant for all 7’s, and these two vectors are not
collinear. The dimension of the nullspace would then be 2,
which contradicts our assumption. ’
When v > 1, in addition to the vector v’ with coordinates
rl = ripiq, we consider all lincar combinations of v = ar +
Jr' that must be in the nullspace. Since sets of nonzero
components of r and r’ are equal and the v’ and » are not
collinear, then »" will have nonzero components that are a
subsct of those in r. However, ' cannot be a nullvector
since the vector 7 is coordinate reduced, i.e. no nullspace
vector has only a subset of its nonzcro components. Hence,
there must exist a term m; with the desired property. W



[Algorithm 1 Interpolation by Vandermonde matric
nullspaces

e Find initial terms

o Create initial matriz T

mj

Tiy=p, ,i=1,...,ti=1,...,t
e Ifdet(T) # 0 return terms and coefficients T~ *
£, else v = nullity(T)
o Repeat v times

— Obtain coordinate reduced vy € Rpun, ¢1 €
C"n-u.ll

— Find d such that piq is not constant for
nonzero components r;

Find term m; for which

t
E ripia *pit # 0
i=1
— Create my 11 from m; by adding 1 to coor-
dinate mjq

— Replace column v for which ¢, # 0 with
columnn generated by my41

o Return terms and coefficients T~' x f

The replacement term will be found among O(t) alterna-
tives. The Algorithm 1 can perform such an interpolation
over any field.

The algorithmm produces an interpolation polynomial
with t terms using O(t = M (¢)) field operations when the
fast matrix multiply is used, and with O(t!) operations us-
ing standard linear algebra. We assume that t > n.

3 Interpolation Over Finite Fields

The implementation of Algorithm 1 can lead to an efficient
algorithm for interpolation over finite fields. In that case,
the operations over the Vandermounde matrix can be per-
formed exactly by a finite-word machine. Further optimiza-
tions will be presented for an important case of small finite
fields, which are important in error-correcting codes and in
the applications of synthesizing Boolean and discrete func-
tions [13].

3.1 Problem Decomposition

By considering the structure of the system Te = f, we show
that the original problem can be decomposed into several
smaller problems which can be then solved independently.
While the decomposition can be used for any ficld, it is most
effective for small finite fields, which interest us the most.

3.1.1 Partial Order and Interpolation Subspaces

We say that two points w and » are equivalent, u =~ v, if
they have 0s in the same coordinates. This relation is an
equivalence relation over the interpolation space. and the
equivalence classes are called z-subspaces. Since z-subspaces
are distinguished only by coordinates which are 0, we denote

-

0

them with expressions like Syoz0 to indicate which coordi-
nates arc zero and which have only nonzero values.

A relation of partial order < is defined between z-
subspaces. A z-subspace Si precedes or equals S» if the
set of coordinates that are 0 in S» is a subset of those in S;.
Incomparable z-subspaces arc those whose zero coordinates
form mutually non-inclusive scts. We use the symbol || for
the incomparability relation. Relations < and > are defined
using < and equality in a standard way.

Example 1 Points 1020 and 2010 belong to the z-subspace
S1 = Srozo. Pouints 1210 and 1012 belong to the z-subspaces
S2 = Spuro and Sz = Syows. respectively. Since the sets
of zero coordinates in both S2 and Sz are the subsets of zero
coordinates in Sy, it follows that S| < S» and S| < S3. Also,
the latter two z-subspaces are not comparable, i.c. Sz || Ss,
because the coordinate Saa # 0 while Ss2 = 0 and Say = 0
but S34 # 0.

This relation maps the hypercube (GF(g))" to the Boolean
algebra ,. We will use this mapping to speed up the poly-
nomial evaluation and decompose the interpolation. In our
case, for sparse functions, the posct representing the existing
z-subspaces can be any sub-poset of B,,.

3.2  Structure of the System Matrix

The following statement holds:

Theorem 3 An entry m(p) of @ matriz T is:
i) zeroifp<m
ii) zero if m and p are not comparable
1) nonzero if p > m

Proof: The proof follows from the definition of relation <.
Case 1) Some coordinate of p is zcro, while it is nonzero in
m, for which p™ results in a zero application p”. Case i)
m and p have zero coefficients such that in both m(p) and
p(m) there is a term €(0) = 0°, ¢ # 0. Case #14) whenever a
coordinate in p is 0, it is 0 in m as well, and 0° = 1. B

This characterization suffices to decompose the problem,
as follows. When the z-subspaces of points and terms coin-
cide, the system matrix is block-triangular.

Example 2 Let o sparse function be specified at z-subspaces
S00:s Sozw, Szoe and Syzr. Then, the matriz T consists of
block matrices, each of which contains applications of terms
from one z-subspace to points in another z-subspace. These
block matrices consist either of all zeros, or all nonzero ele-
ments, depending on the relotive order between the point and
term subspaces. The matriz takes the form

[0°0°7] 0 0 0
0% r"]  [0%x" 2] 0 0
[°0°27) 0 [2%0%:¥) 0
[£%2%]) [x%27x"] [¢"2%2"] [a%z®aT)

T=

where cach nonzero block matrix is represented by the values
that the point and term coordinates can take. Note that for
each block, if there exists a coordinate in which 0 is raised
to nonzero coefficient, a block matrix filled with zeros is
obtained.

The singularity condition for matrix T can be extended
to the algorithm that uses the decomposition.



Figure 1: Solving z-subspaces in order - geometric presenta-
tion for three variables

Theorem 4 A system Tc = f is singular if and only if there
are sets of points P1, Pa,... P, each completely contained in
z-subspaces S1,852,...8:, 2 > 0 where each z-subspace con-
sidered in isolation contains a singular system.

Proof: (=>) Suppose that the matrix is singular. This re-
quires that some of the rows sum to zero (anull). Tt is impos-
sible for this to happen when we apply terms to points from
incomparable subspaces. If such points are in z-subspaces
S1 and S2, then the matrix T will be block diagonal and
singular if at least one of the blocks is singular.

It is impossible that the z-subspaces that are comparable
but not equal, S1 < S2, will anull, while those over S2 and
S, alone will not. We could then solve the system for 5,
and obtain the systemn defined only over S: by subtracting
the computed values.

(<=) Conversely, if at Jeast one subspace contains a sin-
gular system, then solvability of this subspace will not be
improved if additional subspaces are taken into account. B

Since only points in the same z-subspace can create a sin-
gular system, the term search steps will only be performed
in these subspaces. Equivalent to this process is the inver-
gion of block-triangular matrices. Another view is based on
the geometric meaning of z-subspaces, which are the points,
lines, planes, etc. in n-dimensional space. Figure 1 shows
the execution order of the algorithm for the 3-dimensional
case. The solution is first obtained for the z-subspace Sqoo
(the point at origin), if present. Next, interpolations along
lines Sza0, Sozo and Seoz can be obtained, followed by planes
Sozz, Szoz and Szzo. The last z-subspace to be solved in
Szzz. Since this order of execution is given by the poset of
z-subspaces, we use that poset as a primary way to describe
the interpolation by decomposition into z-subspaces.

An interpolation algorithm can be defined, based on the
traversal of the poset of z-subspaces. After performing in-
terpolation over each subspace, the algorithm evaluates the
polynomial just obtained at all higher subspaces.
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[Algorithm 2 Interpolation using z-subspaces

o Sort z-subspaces according to <

e [or each z-subspace S; with points P; and values
fi n increasing order

— Select all polynomial terms M; and create
2l My
=R
— Interpolate in 5; to obtain a vector of coef-
ficients
ca=T"f

— For all §; > Si, update vectors of values

fi=fi = [PMe

This algorithm allows selecting the terms independently
for each subspace and even changing them during the execu-
tion because the overall matrix T is never constructed explic-
itly. All non-diagonal block matrices used in the derivation
above need not be known in advance. The following three-
valued example illustrates the proposed algorithm, including
the decomposition into smaller problems in z-subspaces.

Example 3 Consider the three-variable partial function
gtven by the points in (GF(3))%:

T, z2 z3 | f
1 0 1 1
1 2 0 1
1 2 1 2
2 1 110
2 2 1 1

The first two points belong to the z-subspaces Szo, and
Szz0, Tespectively, while the remaining three points belong
t0 Szzx. The ordering relation < between these subspaces al-
lows us to solve the first two subsystems independently. This
gives the following two terms: cior = 1 and ¢120 = 1. With
these two coefficients, the system can be updated for the
remaining points. We adjust the function values for points
in Szzz by subtracting the value of the calculated term at
these points. This results in the value vector [1,1,2] after
the first coefficient is calculated and [0, 2, 0] after both coeffi-
cients have been taken into account. The final step consists
of setting up and solving a system of equations for points
in Szzr. The matrix Tyz. is constructed by calculating all
possible values p; (p;) (terms equal points):

1 2 1
Towa=1{2 1 1
2 21

After multiplying its inverse with the vector of values {0, 2, 0],
the last three coeflicients are ci21 = 0, c211 = 1 and 221 = 1.
The resulting polynomial is:

2 2 2 2
f=mizs+ 175 + iT273 + T{TIT 3.

The decomposition lowers the number of points that have
to be considered at a time, but does not reduce the worst-
case complexity, as all the points can be in one z-subspace. It
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Figure 2: GF(2) interpolation example using Algorithm 3;
function values and coeflicients are shown next to their
points.

is easy to obtain the average-case performance: for uniform
distribution of points, the largest z-subspace is of size (1 —
f;)" * t. The worst-case performance can be improved by
using the shifted polynomials [13]. This decomposition is
obviously most useful for interpolations over small fields.

3.3 Binary Case

The decomposition of the interpolation problem can be ap-
plied to the binary case, where each z-subspace consists of a
single point - consequently, the solution trivially exists. The
polynomial terms selected will be equal to the points. The
O(t”) time algorithm will be performed as follows.

Algorithm 3 GF(2) Interpolation by Posets
¢ Sort points according to <

e For all bottom points p1.
cL=1f1
e For all other points p; in increasing < order

im1
¢ = fi—zTij*Cj = fi"zpj pi)*c; = fi— Z €i
1

i<i Py =P

(6)

i=

Example 4 Consider the function given by the poset dia-
gram in Figure 2. The function values f, associated with
each point p are used in the traversal to produce the coeffi-
cients ¢, for each term (equal to its point p).

3.4 Optimizations and Extensions

3.4.1 Initial Selections of Terms

The algorithm starts with an initial selection of ¢ terms and
makes v replacement steps. Clearly, having a large rank ini-
tial matrix would make the algorithm fast. In [12] we pre-
sented several heuristics for selecting the terms. They pro-
duce as small exponents as possible, while the rank is high.
These selections are based on the following observation. If
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Figure 3: More points than terms in projection - example

we consider any projections of points, then the number of
terms in these projections should correspond to the maxi-
mum number of points. Otherwise, if there are more points
than terms in some projection, there may exist no solution.
Figure 3 shows an example, in which a one-dimensional pro-
jection contains three points. Selecting the polynomial with
two terms in z; might not be sufficient. Hence, the number
of points in any projection defines the minimal degree of the
polynomial in the variables determined by that projection.

3.4.2 Bijective selection of terms

If we select each coordinate of the term set by some bijective
mapping from the coordinates in the point set, then the
number of points and terms in each projection will be the
same. The cost can be minimized by selecting the minimum
degree terms, by assigning the lowest degrees to the most
common point coordinates. The algorithm can be stated as
follows:

Algorithm 4 Bijective Term Selection

e For each coordinate i =1...n

—~ CS8; = set of i-th coordinates of all points

— Order the elements of CS; according to how
often they appear

— For each point p replace the coordinate p;
with its position in the ordered CS;

While this produces an optimal bijective selection with
respect to the total cost of the terms that might be used,
the optimality cannot be guarantecd for the actual forms
since it is not known which of these terms will be mul-
tiplied by nonzero coefficients. Note that the related t-
Interpolation Decision Problem is NP-complete even in the
binary case [10]. Such selection works well for large fields
and point sets, as will be shown later, but for small fields, it
can still often fail to produce a nonsingular system. resents
one such case.

3.4.3 Greedy term selection

For small fields and few points, another approach for selec-
tion of terms can lead to a nonsingular system, while pro-
ducing cven less costly terms. It does not preserve the pro-
jections; on the contrary, it tends to increase many of them.

Starting from the initial point 11...1 in a z-subspace (0s
are ignored since they will not change), a coeflicient in only
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Figure 4: Example of greedy term selection

one direction that has changed is increased. The coordinate
to increase can be chosen, for example, by lexicographically
ordering the points. Intuitively, this corresponds to ”greedy
compaction” of the points, which lowers the coordinates of
the chosen points each time there is an empty place where
the point can be moved. The highest coordinate changed
will increcase by 1, while all lower ones will be set to one.
This mapping can be done in linear time if the points are
ordered.

[Algorithm 5 Greedy Term Selection
e Order the points lexicographically
e For each point

— the highest coordinate that has changed is
increased by 1,

— all of the lower order coefficients are set to
1 (zeros ignored).

Figure 4 shows an example of such term selection. The
terms are ”compacted”, which is good for reducing the cost
of the resulting form. For many practical examples, the
greedy selection can increase the rank of the initial matrix
while keeping the overall degree lowest among the heuristics.

The greedy selection of terms produces a nonsingular sys-
tem for any three points in any field, and for some configu-
rations of n points in any field. The proofs of these claims
are given in [12].

Since it is impossible to analyze even the case with two
points in full detail, we bring some empirical evidence on the
usefulness of the term selection schemes.

We compared their performance on interpolations for
logic synthesis benchmark functions over several small fi-
nite fields. Figures 5 and 6 give the percentage of systems
for which these term selections fail to produce a nonsingular
system, for functions over GF(3) and G F(11), respectively.
The z axis on the graphs does not show the actual number
of points. Since the scale is logarithmic, the highest power
of the field size smaller than the actual number of points
is shown. Since there is no apparent difference between the
average performance of the identical and bijective term selec-
tion schemes, we conclude that the bijective term selection
is preferred, because it minimizes the degrees among all such
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Figure 5: Failure rates for three selections of terms - GF(3)
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Figure 6: Initial failure rates for three selections of terms -
GF(11)

term selection.

The greedy selection works better for fewer points, while
the bijective selection becomes better as the size of the field
increases. The results for finite fields of order between 3 and
11, not shown here, show the gradual transition between the
two cases plotted.

3.4.4 Algorithm Extensions

In [12] we presented three extensions of the proposed algo-
rithm. An incremental version of the algorithm can be useful
in logic synthesis and in learning algorithms. The problem
decomposition, although not leading directly to provably
parallel algorithms, can be very practical for many paral-
lel machine models. The shifted polynomials (those whose
variables are z1 + a1,22 + a2...z» + a,) can be used to
hoth speed up the algorithm and reduce the degree of the
resulting polynomial.

4 Concluding Remarks

In this paper we presented a new algorithm for multivari-
ate interpolation. The deterministic algorithm increases the
rank of the associated generalized Vandermonde matrix by
a series of term replacements, based on its nullspaces. The
main step of the algorithm can be used over any field, al-
though a practical algorithm was derived only for finite field



interpolation. We also presented the decomposition of the
problem which is the most useful for the small field case.
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