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Abstract 

In th,is paper, we consider a problem of interpolating a multi- 
variate polynomial from its values at arbitrary t points ouf:r 
a field F. We derive a deterministic algorithm that finds 
an interpolating polynomial with at most t terms. Rela- 
tive to the univariate inteq&otzon, minimal degree selection 
of terms and wxiqw:ness cannot be gualonteed. Our con- 
struction uses the nullspaces of th,e mlrltivnriate genwralized 
Vanderm.onde matrix associated ,with. the problem to make 
this mutrk nonsingulw in u series of stepas. Th.e strwtwe 
of this matrix ullows us to deterministicully find the terms 
thet increase the rank of this matrix. We pl’esent u pwctical 
algorithm for finite field interpolations, togeth,er with a set 
of heuristics for obtairhg fast CL small-de,gree interpolation 
polynomial. As a special case of interpolation a1gori.th.m. we 
propose the qlLadratic time algorithm for interpolation over 
GF(2) field. 

1 Introduction 

Interpolations have many a.pplications in arcas such a.s syn- 
bolic [14] and nunicrical computing [ll]? [4] decoding of the 
error-correcting codes [7], 1, earning theory [G], etc.. In this 
paper, we consider a problem of interpolating a niult,ivariat.c 
polynorriial from its values at arbitrar?; t points ovrr a field 
F, applied originally t.o synthesis of logic circuits [13]. We 
show t.hat an int,erpolating polynoniials with at most t terms 
can be found within a polynomial number of field operations. 
Further, u-e provide practical algorithms for interpolations 
over finite fields GF((I) and dcscribc their cfficicnt. iniplc- 
mr:ntat.ions. 

1.1 Multivariate Interpolation 

The Lagrange or Newton int.erpolation algorit,hms can be 
used over any field to obtain a univariate polynomial f (3’) = 
C?-‘,i cixi of degree t-l from the values at arbitrary t points. 
The problem is much more difficult for multivarlate func- 
Gons. While the sclcction of terms (1: .r. :c’: . . . :P ’ ) and 

the result are unique in the univariate case: in t.hc rnulti- 
variate CHSC thr t.crm sclcction depends on the position of 
interpolation points. Thaw is no known algorithm t.o se- 
lect in a.dvance t,ht: t.erms of a multivariate pOlgnOnlii~1 that 
guarantee the existence of a solution for an arbitrary set of 
points. Currently; if. is possible to characterixe only up to 6 
points for which an interpolation exists among the 2-variable 
polynomials of degree four [2]. Because of the difficulty of 
the problem. most. results on multivariate int,erpolation deal 
wit.h sonle\vhA rclaxccl problems. 

1.1.1 Black box interpolation 

The “black box” interpolation has been t.he most studied 
nul1tivariat.e interpolation problem. In this model it is as- 
sumcd that the algorit,hnl can wlcct the interpolation points 
freely: and the degree of t.hc polynomial is often given as an 
input. Three casts need to be considered, tlcpcnding if the 
fields arc GF(2) [j], small finibe fields [3], or large finit,e (and 
infinit,e) fields [l]. For GF(2), an effective procedure exists 
for selecting the point. by solving the interpolation problem 
by decoding error-correcting codes [5]. [IO]. For large fields, 
the algorithms in [l] and [8] rely heavily on t.he large size of 
the field. The algorithm [l] requires computabions wit.h very 
large numbers t,hat. can occur in the process. -4 randomized 
algorithm for interpolations over large, but finite, fields was 
derived in [8] from this algorit.hm. For small finite fields 
(other than G’F(2)) t,he solution exists only if the int.erpo- 
lation points arc chosen from a suf?%:icnt,ly large extension 
field [3]. 

1.1.2 Interpolation on arbitrary points 

Mnch less is known about finding a solution when the intcr- 
polation points cannot be selected freely by the algorithm. 
The known multivariatr int.erpolation algorithm is proba- 
bilist.ic: and requires larger fields [la]. as the probabi1it.y of 
failure is quadratic in the number of points and decreases 
linearly wit,11 the field size. The algorithm uws univariatc 
interpolations to fit the one-tlirilclisioIla1 projections of t,he 
int,crpolation point,s. It. first, finds a. polynomial in one vari- 
able, e.g. d:, , at some ~iHldOlll assignment, of other variables 
.cg, ~:i , :o,, When this &variate polynomial c: ci * 1:; 
is found: (,t, depends on the selected points: and is bounded 
by a number of points t), t,hcn, 1~~ repeating the procedure: 
the cocfficicnts ci are expressed iL5 a function of variables 
22; .t::j, . . i xn in subserlucnt steps. 

~Iuch work on mult.iva.riate interpolation hils been done 
in the arca of numerical linear algebra. The algorithm by 
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de Boor aud Ron [4] tries to solve the iIlterpOhtioI1 prob- 
lem by Gaussian elimination. The dgorithru by Sauer Ill] 
tries t.0 cousI.ruct. a set of the bi\SiR multivariat,e polynomials, 
similar t,o the Gram-Schnli(lt~ orfhogonalixation. The rcsult- 
ing polynomial is then exprcssetl by a linear combination 
of the basis polynomials. Although bob11 algorithms could 
possibly be used for int,erpolations over any field, including 
finite fields, the pOlJ;IlOIllii~l running time GlIlIlOt be guiir- 
mtccd. Iuterest,ingly, the most curulwrsome aspect of these 
two algorit~hms iuvolws t,he symbolic manipulation of the 
basis polynonlials used towards constructing the solution. 

Section 2 proves the cxist.cnce of Xl idgoritlim for multi- 
variate polynomial interpolation that requires ii polynoniial 
number of field operations. The proof uses t.he structure of 
a mult.ivariate grncralizcd ViHltlerIIlOIltlC Iniitris t,o find suit- 
ahlc terms. Next, RII efficient iIIlIJlclllcnbat,ioli the fir&c field 
int,erpolation is described in S&ion 3. Based on the par- 
tial order between the interpolation points, we show in Scc- 
Con 3.1 how the interpolation problem can bc &composed 
into int.erpolations over suitablr subspares of the function 
definition domain. The dccoInposit,ion alone is sufficient. to 
achieve t.he quadratic time GF(2) interpolation. 

2 Existence of a Deterministic Interpolation Algo- 
rithm 

14% are given t distinct points 

pl:])‘>...,pf EF” 

and values 
fl.fi:...,ft EF 

t,hat a funct.ion takes at. these point.s. We want to fit. a poly- 
nomial, that is a linear conlbinat.ion, c,t.=, c;j * I\[;, of at 

most. t terms (monom.in1.s) Alj = nix, .crJk. Each tern1 is 
specified by II. exponents, ?n,,1;, which are the iut.egcrs wit.hin 
a range. For finite fields, each of the exponents is in tlic 
range 0. q - 1. Ot.hcrwiw: by considrring the int.crpola- 
Con algorithm in [Is] each of the expormm can be bomdcd 
by i: - 1. Hence, WC will produce the cocfficieuts 

and the ternis rcprcsented b,v t.liP mponent vcct,ors 

in I . nlz : . 7111 

\Ire use the lower-cast letters, like IJ, for vectors of points, 
iIIld indexed letters: as in pi! for t.hC individual point,s. For 
coordinatw of point.s, we USC double-index-cd letters: /,ij : 
denotes coordinate ,j of point ~ji. The sanw convention is 
used for the terms. 

A solutiou can in principle be obt,aincd by solving the 
linear system 

Tc = f 
which corresponds t.o the condibion that the given vrctor of 
values f and the sought po1ynomia.l coincide at. the points 
given. Vector c then contains t,he rorfficicnts of the polpno- 
IlliiLl. 

Matrix T is the generalized multivariate Vandcrnlonde 
niat.rix, obt.ained I>? applying the t,ernls Lo the given t points, 
ir;j = nL=, p:yjk. Wc will dcuote the cutry 1), with tither 

P:“’ or mJ (pi), as an a.pplicat,ion of a term to il point involves 
the coordinate-wise exponeIlt.iat.ion. The rows correspond to 

the points and the co1u11Ins corrcspontl to the terms. Thcrc 
always cxisl; t terms for which Uie matrix T will be nonsin- 
gular. (Proof: Consider a matrix obtained by applying all 
the t,erms that, can be in a solut,ion: to the given points. For 
finite fields, this matrix is of size t x q”. and for infiniw fields, 
it, is sufficient to consider a finite matris with t x t” entries. 
This nmtris has rank t, a.nd consequently there exists a t x t 
submatrix of full rank.) 

It is not know1 in advance how to select the terms to 
make the mAris of the system nonsingular. We start with 
arbit,rary terms and in subscqumt steps replace SOIIW terms 
until the mat.rix becomes nonsingular. Then; an inverse ex- 
ists and the int,erpolation problem can be solved by inverting 
this matrix. The highrr the ra.nk of the st.arting matris is, 
the fewer such replaccmmts are ncedcd; iI1 the worst case, 
O(t) such replacerrwnt,s are sufficicwt.. 

2.1 Nullspaces and Increasing the Rank 

The interpolat.ion will be possible if t,he mat,rix T is uonsiu- 
gular after successively replacing terms in the interpolat.ion 
polynomial. le show t.h>Lt t,hc rank of T can IJC deberniinis- 
tically increased by considering its nullspaccs. 

1Vhcn the rank is not full, then there exists a linear conI- 
bination of colu~~ins (or rows) which is mm. C:oIIceIltratiIig 
on rows, t.hc following condit,ion holds for each row i: 

Cl$ + cplJ:)‘2 + + ctpy = 0 
where vector c = clc~ . . ct belongs to the colum7~ ndlspnce 

b 71Ull of matrix T. All such vcct,ors are linearly independent, 
as t.he,v form a basis for the uulls~>>~ce, wlIosc dimension (nrhl- 
lity) is v. -Mternativel;. since the row and column rilnkS are 
equal, we can considclr t.he I’OW 7~ulls4~acc, Rllzlll. The wct.ors 
‘r and c in 1mt.h nullspaces then satisfy 

iI “j =o;~c,ip~J =o,i=1,2t...t,j=i,2 ,... t. I’lZ)i 
i=l ,,=I 

For our purpows, we can freely choose only tile terms of 
a polynomial, and considering the row nullspace will help US 
select the tcrrns. For a fixed row nullspace vect,or 1’: it is 
sufficient. t.o find a. t,crrrl m, for which clzl I.;]J:““ # 0, to 

reruovc that vector from the nul1spac.Y. \VC now prow t.hat 
such a r~~placen~ent crcat,cs a mat.rix T ~110~~ rank iIIcre:Ises 
by enc. 

Theorem 1 The rw~k of T increases by 1 if a colmm 7:: 
corrcspon~ding to u non.zero component cu of c E Cnuil 1;s 
replaced hy (I colwnn. ohtnined by u term ~mt+~ for whzich 

cf=, ,r;py’+’ # 0. for r E R,,,lr. 

Proof: By adding a term 7711 .+I for which 
c:=, r,p:lL’+l # 0, WP elinlinate the row nullspacc vector 
r. Then 

2 ripyLJ = 0, j # 1 + 1 (1) 

i:l 

iind 
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c 7’1) - 
cJiJ, - -c,.yy 2 (3) 

J=l.j#P 

1Ve now clain1 that repliWiI1g t,hc terni nt,. with ‘/r/j+1 ca.rlu0t 
lmssibly creat,e il nt:\V cOlu1lln Il1llls~i~W vcc:t.or c’. For this 
to be t,riic: the C~JIll~OllWt~ c:+1 must IJ~ nonxero; othc~rwisc, 
the su111 from Equat,ion 3 is nowero. Then; c’ is a ~~ullspace 

v&or if 
,+I 

c 
’ “‘I = ,, CJJ’, 

J=l*j#r. 

for cxh i. ~~lultiplying C!ilCll sum with vi and adding tjllt!nl 
together also rcsult,s in 0. This sun1 ~‘a11 bc writt.cu as: 

2 ,.i 2 c(,lj:nj = $Fj r:(, 2 ,.&‘J = 

t=l J=l ,j#tm j=l,,j#r j=l 

J=,.Jf,! 1=1 i=l 

Lsing Equations 1 and 2 t,his expression wduccs to 

t 4,-l c I’;pI)“+1 # 0 1=1 
because ci+l # 0; this C0Ill.ritdiCt.s thv assimptiou that d is 
a null ucctor. Hrucc~ replacing t.hc w111nm 1: by the CO~UIIII~ 
t + 1 eliminates one nul1spa.w vector. This rqlaccumlt in- 
creases the rauk only bp 1: I:NX~US~ we (::II~ ill\ViI~S C~IOOSP 

il 1XWiS of C,, Ull which has Only One uonxero coordinat (? C,. 
i~111011~ all vectors c in the basis. Tlle~l, all the other bitsc.1 
vcc:tors will rculain in C , ,$ ,, 11 after this repla.cenient : ilS t hq 
ilC1. 011 C:OlllIIlllS that did IlOt Ch~XlgC. n 

This replaco~nc~nt. (XI lw 11scc1 iu a tlctcrnliuistic poly~lo- 
mid interpolation algorit.hnl. Thcrc CHII 1~ at. most t re- 
placement steps. In each dell t,lIe Illlll~~iKf~ vcct.ors can be 
obtained in O(P) time in a. t.rarlitionill Wily, by I<nut.h’s 01 

Brrlckarnp’s algorithltl [Cl], or in 0(M(t)) time, required for 
t.hc first. matrix multiply opcra.tion. However,, it is not. >Lp- 
parent, Ulilt searching for the roplaccnicnt~ t.cwri can Ix done 
in polynomial time. because there are 0(t”) (q” in the case 
of finite fields) possible ternls to search from. 

2.2 Searching for Replacement Terms Efficiently 

\Vi! will ShO\v t,llilt the, r(~plili;cIll(~Ilt, t.CrrIl can bC fOuIlt1 in 

0(d) tinic by using t.lic structxrc of the niu1tivariat.e Van- 
dcrnionde matrix. \Ve will llw il fact, t,llid ii hSiR vi:ct.or 
P’ = VI r’z . rt in die nullspace ca11 be ol:)t,ained with the fol- 
lowing property. For such I’! there is no riullsl~ace rector r’ 

with nonzcro coniponcnts that arc a. subset of the nonzero 
components of ‘7’. (P7~00f: Otherwise, a linear conlbiniltion 
1.” of the two can cliniinatc the csccss nonzcrc) coniponcnt~s. 
a.nd t.hC propert,\- will hold for ,d’.) 11-e Si??; t,lIilt SuClI il vector 
I’ is coodinatc mhrccd. 

Theorem 2 Let I’ E R.,, ,,ll of ~~enerdized I'cL71deino7rdt? rrrn- 

trix he coordinntc reduced. Among the eaistirq terms. the~~c 

exists n term 711,; with the foll0win.g propcrtg. If n term 7nt+l 
is created from ill,; lly chnying a coordinntc lll,j,f by 1, then 
Cl_., ‘l’ij3:“‘+’ # 0. It sufices to choose tl such thut the point 
f:OOl~diTL~Lt~~<S ]I,<,: i = 1 : 2. , t Ul’f: Wt W7MtU7lt fO1’ TLOTLZl:l’O 

co7npo’onfmts of v. 

Proof: First., there 11lust. csist. it coordinate tE for which ~)i,r 
is not COIlStilIlt~ for id1 nonzcro COItlpOIICIltS I’i Of I’: tWC~I.lIse 

othcrwisc sonle points would coinciclc. 
For each existing tcrnl ‘WA, = /t~~,l’n11;:! rnkd n~b,~: w’c 

llil.VF 
I 

c r,y;‘h = () (4) 
,:I 

Bv \vilv of contratlic%ion RSSIIIINI t.hat there is IIO term ‘n/1 
wit.h t hc abow property. Then: WC obt,ain 9)/i. hv incrcas- 
ing the 03OrtliI~i~te nlk,t by 1. i.e. ,ltlh = 7n1;17171;2 ?t/kd + 
1 lfl.k,, : ad t.he following csprcssion 

r=l i=l 

will be t.rue for k = 1: 2. f. By cornparing 4 and 5: il vect,or 
with coruponents r: = rll,,,j woultl be a niillspacc vector. 
This is irnpossiblc if the nullit,y v is 1: because coordinates 
pj<i are not. constant for all 7s: illld thew two vectors are not. 
collinrar. ‘l%e dimension of the ~iullspa.c:e would then be 2: 
which contraclict,s our assumption. 

When 21 > 1: in ildditi011 to t.lie vector r’ with coordinates 
r: = r,l~j~l; wc consider all linear conibinations of 1.” = 0)’ + 
;jr’ that must. be in t,lic 1iI~lls1x3c:e. Since srt,s of nonzero 
conqmnents Of t’ iHld 1.’ MC cqua.1 a.ntl the ,r’ allcl 7’ are not. 
collinear, the11 r” will 1lilVC IIoIizcro CoIllp0IleIltS that, iire a 
suhct, of those in r. Howcvt:rZ r” cannot be il nullvcctor 
sinw t,hc vector r is coordinat.e rduccd, i.e. no ~~ullspacc 

wct.or has ody a subset of it.s nonzcro components. Hcuce, 
t.hcrc nest, csist a term in; with the desired property W 
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. Find initd terms 

l Crcatc in.i.tial matrix T 

T,j=l,;“;i=l? . . . . t,j=l!... ;t 

l If det(T) # 0 return Icrm.s and coefic~ients T-’ * 
f? else u = nullity(T) 

l Repeat u times 

- Ohtain coo&nate reduced r1 E R,,,ll! CI E 
CL”/1 

- Find d such that I);(/ is n.ot constant fo7 
no7izern compon.ents 1'1 i 

- Find term ‘7nI for which 

- Creute mt +I from nc,, 01~ addl.n.g 1 to coor- 
din.ate ‘nljd 

- Replace column 1: for which cl ,; # 0 ulith 
col~rmn generated b?l .m,+l 

l Return terms u71.d coeficients T-l * f 
The replacement term will IX found among O(t) altcrna- 

tives. ‘l?he Algorithm 1 can pcrforrn such an interpolat,ion 
over any field. 

The algorithnl produces an interpolation polynomial 
with t tcruls using O(t * M(t)) field operations when t.he 
fast nlatrix nn~ltiply is used. and with O(t”) operations us- 
ing standard linear algebra. We assunle that. t > n. 

3 Interpolation Over Finite Fields 

The implementation of Xlgorithnl 1 can lead to an efficient 
algorithru for interpolation over finit,e fields. In that case, 
the operat,ions oVf:r the Vandcrruondc~ matrix can be pcr- 
formed exactly by a finite-word nlachinc. Further optinliza- 
tions will bc prc:sfmted for au iruportanl: (XX of sniall finit,c 
fields: which are important iu error-correcting codes a.nd in 
the applications of synthesizing Boolean and discrct,c func- 
tions [13]. 

3.1 Problem Decomposition 

By considering the structure of the syst.om Tc = f, wve show 

t,ha.t the original probleu~ cm lx deconlposed int.o scvcral 
srnallcr problems which can be then solved independently. 
1Vhilc the deconipositiou Ciln be used for any field, it is most 
effective for sniall finite fields; which interest us t.lie most. 

3.1.1 Partial Order and Interpolation Subspaces 

I;(: say that two points ‘u and l: iLIT equivalcut,, u 2 1:: if 
thev have OS in the saulc c:oordina.tes. This relation is an 
eq&alencc relation over the interpolation space. and the 
cquivalcnce classes arc <Aled t-.subspacas. Since z-subspacc!s 

arc distinguished only by coordinatrs which are 0, w-e dcnotc 

theul wit,h expressious like S E(~2.1) to int1icat.c which coordi- 
nates arc zero and which have only nonzcro values. 

A relat.ion of partial order 5 is dcfiuc~l bct,wct:n z- 
subspaces. A z-subspacc SI precedes or equals 522 if t,ho 
set of coordinates that are 0 in S;! is a subset. of those in S1. 
Inconiparablc z-subspaces arc Oiose whose zero coordinates 
form nlutunlly non-inclusive sc1.s. We use tht: sy1111~01 11 for 
the inco~llparahilil.~ relation. R&lt.ions 4 and k are dcfincld 
using -C and e<llAt,>F iu a. standard way. - 

Example 1 Points 1020 and 2010 belong to the z-s,ubspace 
St = SjrOrO. P0i76tS 1210 und 1012 heloq to the z-subspaces 
5% = ST.,.,0 and SJ = S.,z~).,.., . respect%12/. Since the sets 
of zero coordl:n.atcs in both SZ an,d SX uw the s&sets of zero 

coordin.ates in SI : it follows thnt SI 4 S:! and SI < Ss. Also, 
the lotte7, two z-szab,spaces are not compa7able. %.c. Sp 11 SJ! 
hecause the coordi7t.utC: $2 # 0 while S:j:! = 0 and SL’.I = 0 
but S:<,I # 0. 

This relation maps the hypcrcube (GF(q))” to t.hc Boolean 
algebra U,, We will use t.his nlapping t.0 speccl up t.he yoly- 
noulial evaluation and dccoulposc: bhe interpolatiou. In our 
case, for sparse fiuu%ons, the posct reprc5enting the esist.iug 
Z-SIlbS~XlCC3 ran bc any Sub-poset of B,,, . 

3.2 Structure of the System Matrix 

The following statement holds: 

Theorem 3 An entvg m(p) of (I 7nutriz T is: 
i) zero if p < ni. 
ii) zero if ,711 (171d p ale not compamlile 
iii) no71zero if 11 k nt 

Proof: The proof follows from t.he definitiou of r&Aon 4. 
Cast: i) Some coordiuato of p is zero: while it is nonzcro in 
411, for which 11”’ results in a zero application IJ”‘. C&e ii) 
IIL and 1, have zero cocfficicnt.s such bhat in both m(1)) autl 
p(m) there is il term e(0) = 0’ : e # 0. Case 1:1:i/ whenever ii 
c:00rdiIli~te iI p is 0. it is 0 ill 711. iLS wvrll; ilIl(l 0’ = 1. W 

This characterization suffices to ~HYJIII~OSC the problcnl, 
as follows. 11l1cn the z-sul~spa.res of 1~oint.s aud t.cruls coiu- 
cidc, the system mat.rix is hloc1:-tl~icr,7~~~ul(L7~. 

Example 2 Let (I spu~se f;llnction. he -specified at z-subspc~ce.s 
soo:c 1 som 1 STOl a7111 S.,.,, . T/f.en.! the matria: T consists of 

block 7natrices, r:nch of which contains u~$icutions of terms 

fwru 071~ z-suhspace to points irr arlother z-subspacc. Thcsc 
iilocli: 7nmtrice.s consist either of all 7x1’0s. or all n.on.2cro ele- 
me7rta, depending on the relati~uc order between th.e point and 
term sub.spc~ce.s. The 7natri2 takes /he form 

whcrc each nolrL(Aro block nlatrix is represented by the values 
that the point and t,crul coordinates can t.ake. Kot.e that for 
each block: if t.ht:rc csist.s a coorc1inat.e in which 0 is raised 
t.0 nonxcro coefficient? a block ruatrix filled with zeros is 
Obt iliIld 

The singularity condit.iou for nlat.ris T can be extended 
to the itlgorit,linl that. uses the decorriposit.ion. 
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Figure 1: Solving a-subspaces in order - geometric presenta- 
tion for three variables 

Theorem 4 A system ‘7’~ = f is singular 2f and only if there 
are sets of points 9, P2,. . Pr each completel~y contained in 
z-subspaces S1, S2,. S,, z > 0 where each .z-s&space con- 
sidered in isolation contains a singular system. 

Proof: (=>) Suppose t.hat the matrix is singular. This re- 
quires that some of the rows sum to zero (anull). It is impos- 
sible for this to happen when we apply terms to points from 
incomparable subspaces. If such points are in z-subspaces 
Sr and &, t.hen the matrix T will be block diagonal and 
singular if at least one of the blocks is singular. 

It is impossible that the z-subspaces that are comparable 
but not equal, Sr 3 Sz, will anull: while those over Sz and 
Sr alone will not. We could then solve the system for Sr 
and obtain the system defined only over SZ by subtracting 
the computed values. 

(<=) Conversely, if at least one subspace contains a sin- 
gular system, then solvability of this subspace will not be 
improved if additional subspaces are taken into account. W 

Since only points in the same z-subspace can create a sin- 
gular system, the term search steps will only be performed 
in these subspaces. Equivalent to this process is the inver- 
sion of block-triangular matrices. Another view is based on 
the geometric meaning of z-subspaces, which are the points, 
lines, planes, etc. in n-dimensional space. Figure 1 shows 
the execution order of the algorithm for the J-dimensional 
case. The solution is first obtained for the z-subspace Socc 
(the point at origin), if present. Xext, interpolations along 
lines Szoc, Sezc and See+ can be obtained, followed by planes 
S ezr, SXc, and Szsc. The last z-subspace t.o be solved in 
S zz.t!. Since this order of execution is given by the poset of 
z-subspaces, we use that poset as a primary way to describe 
the interpolation by decomposition into z-subspaces. 

An interpolation algorithm can be defined, based on the 
traversal of the poset of x-subspaces. After performing in- 
terpolation over each subspace, the algorithm evaluates the 
polynomial just obtained at all higher subspaces. 

Algorithm 2 Interpolation using z-subspaccs 

l Sort z-subspaces according to 4 

l For each z-subspuce Si with points Pi and value; 
fi in increasing order 

- Select all polynomial terms Mi and creatt 
I; = [piM’] 

- Interpolate in Si to obtain a vector of coef- 
ficients 

- POT all S,i + Si, update vectors of values 

This algorithm allows selecting the terms independently 
for each subspace and even changing them during the execu- 
tion because the overall matrix T is never constructed explic- 
itly. All non-diagonal block matrices used in the derivation 
above need not be known in advance. The following t.hree- 
valued example illustrates the proposed algorithm, including 
the decomposition into smaller problems in z-s&spaces. 

Example S Consider the three-variable partial function 
given by the points in (GF(3))“: 

1 2 0 1 
1 2 1 2 
2 1 1 0 
2 2 1 1 

The first two points belong to the z-s&spaces Szez and 
SXze, respectively, while the remaining three points belong 
to s,zp The ordering relation + between these subspaces al- 
lows US to solve the first two subsystems independently. This 
gives t:he following two terms: cl01 = 1 and crse = 1. \15th 
these two coefficients, the system can be updated for the 
remaining points. We adjust -the function values for points 
in Szz, by subtracting the value of t,he calculated term at 
these points. This results in the value vector [I.: 1,2] after 
the first coefficient is calculated and (0: 2, O! after bot,h coeffi- 
cients have been taken into account. The fmal step consists 
of setting up and solving a system of equations for points 
in S,,,. The matrix Tz,, is constructed by calculating all 
possible values pj (pi) (terms equal points): 

1 2 1 
Tj:,, = [ 1 2 1 1 

2 2 1 

A.fter mul.tiplying its inverse with the vector of values [O; 2,0]: 
t.he last three coefficients are crzr = 0: ~211 = 1 and c2zl = 1. 
The resulting polynomial is: 

f = 21233 + 21.x; + .T:Q.T:~ + z:z;.x3. 

The decomposition lowers the number of points that have 
to be considered at a time, but does not reduce the worst- 
case complexity, as all the points can be in one z-subspace. It 
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i,,,=o 
cm=1 

111 cl,,=1 
c111=1 
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co1()=0 

u 000 fooo=l cooo=l 
Figure 2: GF(2) interpolation example using Algorithm 3; 
function values and coefficients are shown next to their 
points. 

is easy to obtain the average-case performance: for uniform 
distribution of points! the largest z-s&space is of size (1 - 
y * t. The worst-case performance can be improved by 
using the shifted polynomials [13]. This decomposition is 
obviously most useful for interpolations over small fields. 

3.3 Binary Case 

The decomposition of the interpolation problem can be ap- 
plied to the binary case, where each z-subspace consists of a 
single point - consequently, the solution trivially exists. The 
polynomial terms selected will be equal to the points. The 
O(t’) time algorithm will be performed as follows. 

Llgorithm 3 GF(2) Interpolation by Posets 

l Sort points accordl;ng to 4 

l For all bottom points pl 

Cl = fi 

l For all other points pi in increasing 4 order 

i-l 

Ci = fi- C Zj*Cj = fi-cpj (pi)*cj = fi- C cj 

j=l j<i Pj 4Pi 

(6) 

Example 4 Cans&r the function given bly the poset diu- 
gram in Fiyure 2. The fun&on vnlues fp associutecl with 
eaclb point p are used in the truversal to produce the cue@ 
cients c,, for ench term (equal to its point p). 

3.4 Optimizations and Extensions 

3.4.1 Initial Selections of Terms 

The algorithm starts with an initial selection oft terms and 
makes u replacement steps. Clearly, having a large rank ini- 
tial matrix would make the algorithm fast. In [1.2] we pre- 
sented several heuristics for selecting the terms. They pro- 
duce as small exponents as possible, while the rank is high. 
These selections are based on the following observation. If 

(P3, fp,> 

a 

A 
f 

(PI) fp,) 02, fpJ 
a b 

(~2x3 .II:, fixed) 

Figure 3: More points than terms in projection - example 

we consider any projections of points, then the number of 
terms in these projections should correspond to the maxi- 
mum number of pdints. Otherwise, if there are more points 
than terms in some projection, there may exist no solution. 
Figure 3 shows an example, in which a one-dimensional pro- 
jection contains three points. Selecting the polynomial with 
two terms in ~1 might not be sufficient. Hence, the number 
of points in any projection defines the minimal degree of the 
polynomial in the variables determined by that projection. 

3.4.2 Bijcctive selection of terms 

If we select each coordinate of the term set by some bijective 
mapping from the coordinates in the point set, then the 
number of points and terms in each projection will be the 
same. The cost can be minimized by selecting the minimum 
degree terms, by assigning the lowest degrees to the most 
common point coordinates. The algorithm can be stated as 
fol1ows: 

&lgorlthm 4 Bz.lective Term Selectron 

l For each coordinate i = 1.. n 

- CSi = set of i-th coordinates of (~11 points 

- Order the elemenks of CSi according to how 
often they appenr 

- For each puint p replace the coordinate pi 
with its position in the ordered CSi 

While this produces an optimal bijective selection with 
respect to the total cost of the terms that might be used, 
the optimality cannot Ix guaranteed for the actual forms 
since it is not known which of these terms will be mul- 
tiplied by nonzero coefficients. Note that the related t- 
Interpolation Decision Problem is NP-complete even in the 
binary case [lo]. Such selection works well for large fields 
and point sets, as will be shown later, but for small fields, it 
can still often fail to produce a nonsingular system. resents 
one such case. 

3.4.3 Greedy term selection 

For small fields and few points, another approach for selec- 
tion of terms can lead to a nonsingular system, while pro- 
ducing even less costly terms. It does not preserve the pro- 
jections; on the contrary, it tends to increase many of them. 

Starting from the initial point 11.. . 1 in a z-subspace (OS 
are ignored since they will not change), a coefficient in ody 
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Figure 4: Example of greedy term selection Figure 5: Failure rates for three selections of terms - GF(3) 

one direction that has changed is increased. The coordinate 
to increase can be chosen, for example, by lexicographically 
ordering the points. Intuitively, this corresponds to “greedy 
compaction” of the points, which lowers the coordinates of 
the chosen points each time there is an empty place where 
the point can be moved. The highest coordinate changed 
will increase by 1; while all lower ones will be set to one. 
This mapping can be done in linear time if the points are 
ordered. 

lgorithm 5 LYeed?/ Terln Selection 
I 

l Order the points lexicographically 

l For each point 

- the highest coordinate that has changed is 
increased by -I, 

- all of the lo~wer order coefficients are set to 
1 (zeros ignored). 

Figure 4 shows an example of such term selection. The 
terms are “compacted”, which is good for reducing the cost 
of the resulting form. For many practical examples, the 
greedy selection can increase the rank of the initial matrix 
while keeping the overall degree lowest among the heuristics. 

The greedy selection of terms produces a nonsingular sys- 
tem for any three points in any field, and for some configu- 
rations of n points in any field. The proofs of these claims 
are given in [12]. 

Since it is impossible to analyze even the case with two 
points in full detail, we bring some empirical evidence on the 
usefulness of the term selection schemes. 

We compared their performance on interpolations for 
logic synthesis benchmark functions over several small fi- 
nite fields. Figures 5 and 6 give the percentage of systems 
for which these term selections fail t.o produce a nonsingular 
system, for functions over GF(3) and GF(ll), respectively. 
The z axis on the graphs does not show the actual number 
of points. Since the scale is logarithmic, the highest power 
of the field size smaller than the actual number of points 
is shown. Since there is no apparent difference between the 
average performance of the identical and bijective term selec- 
tion schemes, we conclude that the bijective term selection 
is preferred, beCaUSe it minimizes the degrees among all such 

Failure Rate 
Percent 

loo- 

80 - 

60 - IdenticaVRijective 
@3.-.-., __.-. -.-‘-‘-‘-.s ,_,_, ~, 

40 - 
I 

I 

/ 

-‘-. ~ 
i 

i 

I , I I I I I I I 

1 3 9 21 81 243 729 2187 

Specified Points 

60 - 

40 - 
Failure Rate 

Percent 

20 - 

O- 
I 1 I I 
1 11 121 1331 

Specified Points 

Figure 6: Initial failure rates for three selections of terms - 
GF(ll) 

term selection. 
The greedy selcct.ion works better for fewer points, while 

the bijective selection becomes better as the size of the field 
increases. The results for finite fields of order between 3 and 
11, not shown here, show the gradual transition between the 
two cases plotted. 

3.4.4 Algorithm Extensions 

In [12! we presented three extensions of the proposed algo- 
rithm. An incremental version of the algorithm can be useful 
in logic synthesis and in learning algorithms. The problem 
decomposition, although not leading directly to provably 
parallel algorithms, can be very practical for many paral- 
lel machine models. The shifted polynomials (those whose 
variables are 21 + al, 2:~ + 0,~ zn + a,) can be used to 
both speed up the algorithm and reduce the degree of the 
resulting polynomial. 

4 Concluding Remarks 

In t.his paper we presented a new algorithm for multivari- 
ate interpolation. The deterministic algorithm increases the 
rank of the associated generalized Vandermonde matrix by 
a series of term replacements, based on its nullspaces. The 
main step of the algorithm can be used over any field, al- 
though a practical algorithm was derived only for finite field 
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interpolation. We also presented the decomposition of the 
problem which is the most usefiil for the small field case. 
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