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ABSTRACT 
In this paper, we address the issue of obtaining compact 
canonical representations of datapath circuits with 
sequential elements, for  the purpose of equivalence 
checking. First, we demonstrate the mechanisms for  
efficient compositional construction of Arithmetic 
Transform (AT), which is the underlying function 
representation, used in modern word-level decision 
diagrams. Second, we introduce a way of generating the 
canonical transforms of the sequential datapath circuits. 
Using these principles, we verib by AT highly sequential 
Distributed Arithmetic (DA) architectures. 

1. INTRODUCTION 
Design verification aims at providing an answer to the 

question: "Does the implemented circuit conform to the 
specification?" Verifications are often conducted through 
equivalence checking. Under this scenario, a canonical 
representation of the circuit is constructed and compared 
against the description obtained from the specification. 

Original equivalence checking methods that relied on 
graph-based Binary Decision Diagram representations 
were unable to deal with arithmetic circuits such as 
multipliers. However, efficient word-level graphs like 
Binary Moment Diagrams (BMDs) [4] and their 
generalizations [5] can overcome this obstacle. Due to 
their word-level nature, the construction from binary 
signals is possible by backwards circuit traversal [6 ] ,  but is 
generally quite tedious. Further, sequential circuits 
including arithmetic datapaths present an obstacle to the 
efficient representation. Related work in [9] partly 
overcomes these difficulties by using univariate real- 
number polynomial representations that can deal with 
sequential components. However, as only real numbers can 
be used in [9], representations are only approximated. 

In this paper we introduce new ways of generating the 
canonical descriptions of large datapath circuits. We 
propose techniques for compositional verification of 
digital signal processing (DSP) datapaths, consisting of 
adders, multipliers, memories, etc., as in Figure 1. The 
goal of such verification is to assure correctness of the 
composition of blocks. Blocks are either individually 
verified, or include Intellectual Property (IP) cores that are 
only given by their specifications. Our method is based on 
Arithmetic Transform (AT), which is an underlying 

representation used in word-level decision diagrams, 
enabling the compact canonical description of arithmetic 
circuits. The results are given in this paper in terms of AT, 
but also apply to graph representations. 

In Section 3 we present the extensions to AT that 
provide the concise and easily obtainable description of 
datapath arithmetic circuits, including sequential ones. 
This allows us to develop the scheme for describing and 
verifying sequential datapaths that have been addressed 
mainly with complex theorem proving or model checking 
techniques [l], [7 ] .  In Section 5 we demonstrate the 
efficiency of our method at work on the example of highly 
sequential Distributed Arithmetic (DA) circuits, that are 
well suited for field programmable gate array (FPGA) and 
deep sub-micron circuit implementations. 

Figure 1 : A Datapath Example 

2. ARITHMETIC TRANSFORM 
Arithmetic Transform is a canonical polynomial 

representation of multi-output Boolean functions 
f : B" + B" . To describe multi-output functions with a 
single polynomial, function outputs are "grouped together" 
into word-level (W) quantities, e.g. integers, resulting in a 
pseudo-Boolean function f : B" 
Definition 1: Arithmetic Transform (AT) of a pseudo- 
Boolean function f : B" + W  is a polynomial with 
arithmetic "+ " operation, word-level coefticients c,,,~.. ," , 
binary inputs XI , .  . ., xn and binary exponents i,, . . .,in: 

W . 

that uniquely and exactly interpolatesf. 
The transform coefficient vector C = ( c~ ,~~ . . .~"  } is 

obtained by multiplying the vector f of word-level function 
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outputs with the transform matrix T,,, C = T, * f , where T,  
is defined recursively by arithmetic Davio expansion: 

T, = [ 1, To = I .  ( 2 )  
-',-I Tn-1 

To show that the polynomial with coefficients generated 
in this way reconstructs exactly (interpolates) a function, 
note that according to Equation 1 AT is a linear 
polynomial in n variables. For n = 1, the coefficients co and 
CI of a single-variable linear form f = co+clx are obtained 
from cofactorsfo and f l .  By multiplying the values with T I ,  
we get co=fO and cI  =fi-fO, which is a more familiar form of 
Davio expansion. Matrix T, extends this expansion 
recursively to n-variable functions, one variable at a time. 

Once AT of a circuit implementation is generated, the 
comparison to AT of the specification is straightforward. 
Its canonicity and compact size for most arithmetic 
circuits, excluding the dividers, make AT very appropriate 
to use in equivalence checking of datapaths. Further, the 
error correcting properties of AT facilitate its application 
to verification by test vectors [8]. Hence, by using AT, a 
continuum of verification methods can be applied, 
including various combinations of formal and vector-based 
schemes. Additionally, as AT can represent IP core 
specifications, verification of systems including proprietary 
IP can be performed as well. 

2.1 Word Encoding and Norm Function 
AT accepts inputs as binary n-tuples and generates 

outputs in the word-level form. A word-level encoding is 
explicitly expressed by the number norm function 
I 1 :  B" + W , which defines how a Boolean vector is 
interpreted in the word-level domain. Table 1 contains 
several common integer and fractional number norms. 

Number Norm 1x1 

Unsigned I Sign Extended I 2's Complement 
Word 

Table 1 : Norm Functions for Common Word Encodings 

Definition 2: Binaly encoding (x,,x2. ..,x,) of a word w 

is the inverse ofthe norm function, 1wl-l = ( X I ,  xq . . . , x, ) . 
Note that there is no closed-form expression for binary 

encoding; instead, binary conversion algorithm must be 
applied to obtain IwI-'. Hence, there is no simple AT(1wl-l). 

Lemma 1: Consider a pseudo-Boolean function 
f : B " + W  withanorm1 I : B " + W . T h e n ,  

W f  1 =If I * 

Proof: By applying the transform to quantities in W, an 
interpolation polynomial is obtained, such that for all 

Example I :  AT of Multiplier. Let the input bits to the 
unsigned integer multiplier be X k  and Y k ,  k= 0 ,..., N-1. Its 
AT is equal to the number norm of the product: 

inputs ATCf(xl, XZ . . . x,)) = Iflxl, x2. . . . x,) I. 0 

N -1 N-l 

k=O k=O 
A T ( x * y ) =  x x k 2 k  * z Y k 2 k  $ X * y I $ X I * I y I .  + 

Note that the norm of the sum (product) of two numbers 
equals the sum (product) of their norms. Further, the norm 
of an arbitrary algebraic expression is equal to the 
expression applied to the norms of its components. 

3. ARITHMETIC TRANSFORM EXTENSIONS 
We consider the construction of AT for the composition 

of several blocks, Figure 2.a. To compose ATs of two 
blocks where the outputs of the first block are fed to the 
inputs of the second one, we must convert the word-level 
output of the first block into a binary vector, Figure 2.b. 
The problem with this approach is that the binary encoding 
has to be explicitly constructed at each interface. No simple 
AT compositions are possible in this scenario. 

Instead of using the binary conversion, we propose the 
alternative solution that allows the direct composition of 
transforms, as well as handling of sequential circuits. To 
achieve these goals, we need to introduce two extensions 
to basic AT. 

AT(B2(81(1))=? __________________________________________-  
I I 

I 

I __________________________________________- 
a) AT of Block Composition 

R =AT(Bl(l)) S = AT(B20) 
r------___-- T = IRV c _ _ _ _ _ _ _ _ _ _ _  

I 

Figure 2: Naive Compositional AT Construction 

3.1 First Extension: Mixed Transform 
Our first extension facilitates the compositional 

approach to representing the complex datapaths. We allow 
the inputs to be a mix of binary, xi ,  and word-level, wj, 
quantities, i.e., f (x l  . . . x,,,wI .. .wk). 
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Definition 3: Mixed AT (MAT) of function J 
f : B" x W k  + W is a polynomial with binary exponents 
il, .... in and el, .... ek: 

that interpolates$ 
We will use the MAT transformation when some sets of 
inputs are known to be word-level quantities, such as 
outputs of previous blocks. 
Lemma 2: The coeflcients of MAT can be calculated 
using the transformation given by Equation 2, expanded 
around binary input variables, with word-level input 
variables unassigned, i.e., treated as symbols 

Pro03 Application of the transform to the quantities in B" 
results in an interpolation polynomial that, according to 
Lemma 1, is MAT(f(xl, x2, ... x, W I ,  w2, .... wk)) = I f (  w1, 
w2, .... wk)l. Assigning concrete word-level values to 
unassigned word-level variables still preserves the norm 
function, according to the norm properties. Hence, this 
transform is equal to I f  I which implies that the resulting 
MAT polynomial exactly interpolates the function. 
Example 2: MAT of MUX. A multiplexer (MUX) with 
inputs a, b and the control signal x can perform selection of 
either bit- or word-level quantities a and b. Arithmetic 
Davio expansion (Equation 2)  around variable x ,  leads to 
MAT(Mux) = a(1- x )  + bx . This example also illustrates 
the use of MAT for a non-arithmetic function. 

MAT facilitates the composition, by which the outputs 
of one AT can be directly used as inputs to MAT, Figure 3. 
For example, variables a and b in Example 2 can be given 
by ATs of previous blocks. To  obtain the final AT of the 
composition, we need to apply the following conversion. 

C(WI,w2,- . .wk)=T,  * f . 

+ 

AT(B2(B1(1,),12)) 
r......----~..............................-....--.- 

MATIB2) 

'............-~-....................................., 

Figure 3: Use of MAT in Composition of ATs 

Proof: By using norm of the quantities in W ,  we get an 
interpolation polynomial in binary inputs, with AT(f)=I f I. 

Example 3: MAT of Adder. Consider an unsigned 
fractional adder, where input a is represented at word- 
level, i.e., unsigned fractional, while input b is treated as 
binary vector. Then, by substituting binary encoding of a 
in the defining MAT equation, we obtain its AT as: 

This is a correct ATU) according to Lemma 1. 0 

N - l  N - l  
M A T ( a + b ) = a + z b j 2 - '  = z ( a , + b j ) 2 - '  = A T ( a + b ) .  

+ 
i=l i=l 

Note that "+" has the same meaning in AT and MAT. 
To calculate AT of the whole combinational circuit, ATs 

should be generated for each block fed by primary inputs, 
while MATS should be applied to all other blocks. The 
overall AT is created by substituting AT transforms for 
intermediate word-level quantities. 

3.2 Second Extension: Sequential Transform 
To describe datapaths with sequential components, we 

introduce to MAT the notion of a timedfunction. A timed 
function A n ]  represents the value o f f  at the nrh clock 
period. 
Definition 4: MAT Sequential (MATS) is a MAT transform 
MAT(f)[n], of timed function f at time instance n. 

Many datapath blocks are time invariant. Hence, the 
timed transform of arithmetic blocks will be exactly the 
same as the original MAT transform. The simplest role that 
the timed transform plays is to represent the state 
information kept in memory elements. A defining equation 
for a memory is mour[n] = mj,[n- 1 I. 
Example 4: MATS of Add-Accumulate Loop. Consider 
the addition in nrh step, where one of the summands is taken 
from the primary inputs, while the other is supplied from 
the register storing the accumulated values of the previous 
n-1 additions, Figure 4.a. Assume that the register has been 
initially reset. 

pdd dpaxnU la teLcq~  

VI n I ail 

Lemma 3: AT(f) can be obtained from MAT of function a) b) 

f : B" x W k  + W through the syntactical replacements, Figure 4: Add- and Multiply-Accumulate Loops 

intermediate word-level function An], representing the 
input to the register after n additions. Assuming that the 

A n ]  is given by the recurrence equation: 

word-level input w i  E is substituted bY its To obtain MATS of the add-accumulate loop, consider the 
binary encoding I I-' : W + B",  i.e., 

MAT( f (xi .... ,x, ,I wi I-', ... ,I wk I- ' )  = A T ( f )  . free input a[n] is also a word-level quantity, the value of 
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f [n] = urn] + f [ n  - 13, 
The corresponding MATS is then: 
MATS( f )[n]  =a[n] + MATS( f )[n - 11, MATS( f ) [ O ]  = 0 .  
After the nrh addition, MATS of the add-and-accumulate 
loop is obtained as the following solution to the above 
recurrence equation: 

f [O] = 0 .  

n 

MATS ( f > [ n ]  = C a [ i ] .  + 
i=l 

Lemma 4: MATS of a composition of a combinational 
element described by function f with sequential blocks can 
be obtained from MATcf) by replacing each input that is 
generated by a sequential block with its defining MATS. 
Proof: Since MAT describes the combinational function of 
a block, with memory elements disconnected, then, by 
Definition 4, such a syntactical replacement presents the 

Corollary 1: MATS of sequential function f can be 
obtained from MAT of the combinational part o f f  by 
replacing each MAT input that is generated by a memory 
element with its defining MATS. 

Corollary 2: r f  at least one input variable of 
combinational function f is generated by a sequential 
block, then the transform of the composition, instead of 
MAT, needs to be presented as MATS: 

MATS(( f ( x  ,,... wi ..., w,)) = MAT( f ( x ,  ,... MATS(w,) ..., wk)) 
Lemma 5: MAT of a circuit at time instance n can be 
obtained by solving MATS as a recurrence equation. 
Sequential elements need to be initialized. 
Proof: MATS represents the function of a block at each 
time instance. By solving the recurrence equation, the 
circuit behavior at a given time instance is obtained. 

Recurrence equations describing sequential elements in 
datapaths posses forms that are easily solvable analytically 
and symbolically by tools such as Maple or Mathematica. 
Example 5: MATS of Multiply-and-Accumulate (MAC) 
loop - a common element of DSP datapaths. Consider the 
transformation of the composition performed over the 
MAC, Figure 4.b, using previously derived MAT 
transforms of its individual blocks. Inputs to the MAC at 
the time instance i are N-bit binary vectors x and y ,  the 
output z is a binary vector of size 2N. MATS of the 
multiplier block is defined for inputs occurring at time 
instance i as: 

MATS(x*y ) [ i ]=  x ~ , [ i ] 2 ~  * x ~ ~ [ i ] 2 ~  =a[ i ] .  

The transform of the accumulator-register loop, obtained 
by solving the same recurrence type as in Example 4 is: 

correct functionality of the sequential function. 0 

N-l N-l 

P = o  P = o  

Please note that the above representation corresponds to 

4. VERIFICATION OF DATAPATHS 

A datapath of a typical DSP architecture, Figure 1, 
performs arithmetic and logic operations. Its main building 
blocks are: register files, ROMs, shift registers, 
multiplexers, multipliers and adders connected into a MAC 
structure, as shown in Figure 1 .  

To verify the complete datapaths, we will rely on the 
verified implementations of its basic blocks, done either 
through equivalence checking [5] ,  or vector-based methods 
[8].  For overall datapath verification, we can use the 
library of datapath blocks, together with their transforms. 
The transform of each element only depends on its 
functionality, and not on the actual implementation. For 
example, AT of an adder is the same, for a ripple, look- 
ahead or skip adder. The transforms (AT, MAT or MATS) 
of the most common arithmetic circuits were presented in 
Examples 1-5. Next, we introduce the algorithm to verify 
the datapath composition from blocks. 

4.1 Transform of Complete Datapaths 
Having defined transforms of individual blocks in a 

datapath, the automated construction of the overall AT can 
proceed by forward traversal from primary inputs, as 
shown in Algorithm 1. For each block encountered, the 
transform is constructed from its immediate inputs. Each 
combinational block depending entirely on primary inputs 
requires only AT description (line 4, Algorithm 1). Blocks 
with inputs generated by previous blocks will be 
represented in MAT form (line 6, Algorithm 1) if none of 
its inputs perform a sequential function, Corollary 2. 

the MAC loop specification. + 

Generate MATS of the network of blocks 
1. for each block B,in topological order 
2. I 
3. Assign: inputs (6,) to output(predecessor(B,)) 
4. if (combinationa/(BJ && alLinputs-primary) 

6. if (combinationa/(BJ && no-se9-input) 
7. f, = MAT(B,, assigned-input-list); 
8. else I*sequential(t3,)7 
9. f, = MATS@,, assigned-input-list); 
IO. f, = reccurence-solve(f, ); 
11. } 
12. Overall-AT = f, 

5. f, = AT(6,); 

Algorithm 1 : Composition of Block Transforms 

Every time a sequential block is encountered, its 
recurrence equation is solved symbolically. The outputs 
are then expressed in terms of the block inputs, 
MATS(w)[n], at the time n of their occurrence at the block 
inputs w. The inputs are then substituted by transforms of 
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the previous blocks in the overall expression. The process 
is repeated until all the blocks are traversed, and all the 
outputs are expressed in terms of primary outputs of the 
circuit. 

5. VERIFICATION OF DISTRIBUTED 
ARITHMETIC CIRCUITS 

Distributed Arithmetic (DA) refers to datapath 
architectures where the inner product of a vector by a 
constant is performed as a bit-serial operation [ l o ] .  DA 
leads to efficient FPGA implementations of specialized 
DSP circuits like filters, but also of basic arithmetic 
functions, such as multipliers [3]. In filter applications, the 
word-level quantities are usually fractions. Hence, the 

signed numbers are represented as: x = -xO + xi 2-' , and 

for unsigned numbers, the sign digit xo is not used. 

constants A& with input vectors xk, k = 1, 2,. . .,h? 

M-l 

i=l 

The calculation of inner products of a vector of 

M-l , 

y = t A , x , ,  where xj =-x jo+  c x j , 2 - '  

is performed bit-wise. Instead of inputting the whole M-bit 
xk vector in parallel, and then executing the multiplication 
by a M-bit constant Ak, all vectors are serially shifted in. In 
each cycle every shifted bit is "multiplied" in parallel by its 
constant Ak. Partial sums maintained in this way do not 
resemble the standard partial results of inner product 
calculations. The product: 

k=I i=l 

( i=l 

N 
y = Z A j x j  = C A j  - x , ; ~  + 

j=l j=l 

is transformed by changing the order of summation into 

Equation 3 represents the form in which the inner product 
is calculated in the DA arithmetic. 

The multiplications in brackets, Equation 3, do not have 
to be calculated with multipliers. Instead, bit products can 
be pre-computed for all the possible combinations of bits 
x,, of vectors x,, and stored in ROM. Then, based on the 
actual combination of x,' among all x,'s, the corresponding 
ROM location is addressed [lo].  One possible hardware 
implementations of the DA inner product of four 4-bit 
vectors is presented in Figure 5. 

5.1 Transforms of Building Blocks of DA 
A typical DA circuit consists of the following blocks. 

Shift registers are used to serially input the vector bits. 
ROMs store the pre-computed partial sums, and add- 
accumulate loops maintain the partial results of the 
multiplication, Figure 5. 

Transforms of a few major datapath blocks were derived 
in Sections 3.1 and 3.2. Now, we present the transforms of 
the remaining DA blocks. For presentation purposes, we 
initially assume that the sign bits are zero, or, equivalently, 
that the unsigned encoding is employed. 
AT of ROM. The content of ROM represents the bit 
multiplication of a constant Ak by bit vector xk, k = 1, ..., N ,  
Figure 5. It is easily verifiable from Figure 5 that, for the 
case N = 4, AT of ROM is given by 

N 
A T ( R O M ) = A i x ,  + A , x ,  + . . .+ANxN = z A j ~ j ,  

j = l  

where each variable xj is one-bit wide and the coefficients 
A,, j = 1, . . ., N are fractional numbers. 

................................ 

~ inpits 

n 

Figure 5: Distributed Arithmetic - ROM/Accumulator 
Structure 

MATS of Shift Registers. A shift register is a purely 
sequential circuit, consisting of a chain of storage cells. 
For each register, its discrete time defining equation is 
given as f[n]  = a[n - 11, where the inputs a[n] are treated 
as bits. Building the shift register out of individual storage 
cells amounts to composing the word-valued transfer 
functions. For jrh shift register with M-1 stages, MATS at 
time k is M A T S ( S R ( x j ) ) [ k ]  = x j ( M - l - k ) .  

MATS of Add-Accumulate Sum with Delay Element. 
MATS of this block is calculated by constructing and 

solving the recurrence: f [ n ]  = a[n]+- f [ n  -11, f[O] = 0 ,  

where variable a[n]  is a word-level ROM output quantity 
and the initial condition in the register is 0. By solving the 
recurrence equation at time n,  we get: 

1 
2 

n n 
f [n]=Ca[ i ]*2 ' -"  =Ca"]*2-'"-i' , 

i=o l=O 

5.2 AT Description of Complete Unsigned DA 
The transform of the complete circuit in Figure 5 is 

obtained by forward traversal, following Algorithm 1. The 
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intermediate variables will be substituted in all the 
expressions during the traversal. By substituting the 
outputs of the shift registers to the ROM inputs, we obtain 
the following timed expression: 

N 

M A T S ( R O M ) [ k ] = x A . x .  J j ( M - 1 - k ) .  

Next, substituting these variables, as the inputs to the add- 
accumulate sum results in: 

j = l  

# 
Terms 

(4) 

Unsigned I Signed I Encoded Time 
ROM I AT 1 ROM I AT I ROM I AT [SI 

The overall function AM-21 is completed at time instance 
M-2 as Equation 4 at time M-2: 

M-2 N 
A T ( f )  = MATS(f)[M -21 = CCAjX jcM- l -k ,2 - (M- ’ -P ) .  

k=O j=l 

The result is the same as in Equation 3 (circuit 
specification) with the assumption that the sign bits are 
zero. To  verify that, we notice that by applying the change 
of indices of the first summation, the final AT is given by 
the expression that is equivalent to Equation 3: 

4 
8 
16 
32 

5.3 AT Description of Signed and Encoded DA 
The signed DA algorithm differs from the previous case 

in (M-Z)‘h step added at the end of the execution, when the 
sign bits are incorporated. Then,f=AM-I] is obtained as 

N 

A T ( f )  = MATS(f)[M - 11 = - Z A j x j o  +MATS( f ) [M - 21. 
j=l  

This expression is equal to Equation 3; hence, the 
equivalence is proven. 

The same approach was used to prove the equivalence of 
additional DA forms, including encoded DA circuits from 
[IO] that achieve the reduction in ROM sizes by alternative 
internal number encoding. Each new circuit can have a 
different, non-trivial DA implementation. The presented 
method can check the correctness of DA realization 
already on the algorithmic level. 

We implemented Algorithm 1 in Mathematica, for its 
ease of integration with the recurrence solver rsolve (by 
M. Petkovsek), already incorporated in Mathematica. The 
obtained representation is canonical and compact. By 
comparing the sizes (measured in words) of the resulting 
AT with the sizes of ROMs employed in DA circuits, as in 
Table 2, we observe that the overall AT representation is 
logarithmic in the size of a ROM. The last column presents 
worst case times spent on a 440MHz Ultra 10 workstation 
with 128MB of main memory in generating overall AT 
from ATs of DA components. As Mathematica is an 
interpreter with lots of overhead, these times could be 
greatly reduced by compiled code. 

16 60 32 64 8 64 0.5 
256 120 512 128 128 128 2.0 
16k 240 32k 256 8k 256 9.2 
4G 480 8G 512 

Table 2: AT vs. ROM Sizes in DA Implementations 

6. Conclusions 
We presented two extensions to Arithmetic Transform 

that facilitate the compositional verification of sequential 
datapaths. The first extension makes the easy composition 
of transforms of individual blocks possible, while the 
second one allows sequential circuit representations. The 
compact canonical descriptions of large circuits can be 
quickly obtained by symbolic composition of transforms of 
individual blocks. Verification of highly sequential 
Distributed Arithmetic architectures was presented using 
these transforms. We intend to apply the method to the 
larger classes of sequential datapaths. 
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