
Arithmetic Transforms for Verifying Compositions of Sequential Datapaths

Katarzyna Radecka and Zeljko Zilic
McGill University, Montreal, Canada
{ kasiar,zeljko} @macs.ece.mcgill.ca

ABSTRACT
In this paper, we address the issue of obtaining compact
canonical representations of datapath circuits with
sequential elements, for the purpose of equivalence
checking. First, we demonstrate the mechanisms for
efficient compositional construction of Arithmetic
Transform (AT), which is the underlying function
representation, used in modern word-level decision
diagrams. Second, we introduce a way of generating the
canonical transforms of the sequential datapath circuits.
Using these principles, we verib by AT highly sequential
Distributed Arithmetic (DA) architectures.

1. INTRODUCTION
Design verification aims at providing an answer to the

question: "Does the implemented circuit conform to the
specification?" Verifications are often conducted through
equivalence checking. Under this scenario, a canonical
representation of the circuit is constructed and compared
against the description obtained from the specification.

Original equivalence checking methods that relied on
graph-based Binary Decision Diagram representations
were unable to deal with arithmetic circuits such as
multipliers. However, efficient word-level graphs like
Binary Moment Diagrams (BMDs) [4] and their
generalizations [5] can overcome this obstacle. Due to
their word-level nature, the construction from binary
signals is possible by backwards circuit traversal [6] , but is
generally quite tedious. Further, sequential circuits
including arithmetic datapaths present an obstacle to the
efficient representation. Related work in [9] partly
overcomes these difficulties by using univariate real-
number polynomial representations that can deal with
sequential components. However, as only real numbers can
be used in [9], representations are only approximated.

In this paper we introduce new ways of generating the
canonical descriptions of large datapath circuits. We
propose techniques for compositional verification of
digital signal processing (DSP) datapaths, consisting of
adders, multipliers, memories, etc., as in Figure 1. The
goal of such verification is to assure correctness of the
composition of blocks. Blocks are either individually
verified, or include Intellectual Property (IP) cores that are
only given by their specifications. Our method is based on
Arithmetic Transform (AT), which is an underlying

representation used in word-level decision diagrams,
enabling the compact canonical description of arithmetic
circuits. The results are given in this paper in terms of AT,
but also apply to graph representations.

In Section 3 we present the extensions to AT that
provide the concise and easily obtainable description of
datapath arithmetic circuits, including sequential ones.
This allows us to develop the scheme for describing and
verifying sequential datapaths that have been addressed
mainly with complex theorem proving or model checking
techniques [l], [7] . In Section 5 we demonstrate the
efficiency of our method at work on the example of highly
sequential Distributed Arithmetic (DA) circuits, that are
well suited for field programmable gate array (FPGA) and
deep sub-micron circuit implementations.

Figure 1 : A Datapath Example

2. ARITHMETIC TRANSFORM
Arithmetic Transform is a canonical polynomial

representation of multi-output Boolean functions
f : B" + B" . To describe multi-output functions with a
single polynomial, function outputs are "grouped together"
into word-level (W) quantities, e.g. integers, resulting in a
pseudo-Boolean function f : B"
Definition 1: Arithmetic Transform (AT) of a pseudo-
Boolean function f : B" + W is a polynomial with
arithmetic "+ " operation, word-level coefticients c,,,~.. ," ,
binary inputs XI , . . ., xn and binary exponents i,, . . .,in:

W .

that uniquely and exactly interpolatesf.
The transform coefficient vector C = (c~ ,~~ . . .~" } is

obtained by multiplying the vector f of word-level function

0-7695-1200-3/01$10.00 Q 2001 IEEE 348

outputs with the transform matrix T,,, C = T, * f , where T,
is defined recursively by arithmetic Davio expansion:

T, = [1, To = I . (2)
-',-I Tn-1

To show that the polynomial with coefficients generated
in this way reconstructs exactly (interpolates) a function,
note that according to Equation 1 AT is a linear
polynomial in n variables. For n = 1, the coefficients co and
CI of a single-variable linear form f = co+clx are obtained
from cofactorsfo and f l . By multiplying the values with T I ,
we get co=fO and cI =fi-fO, which is a more familiar form of
Davio expansion. Matrix T, extends this expansion
recursively to n-variable functions, one variable at a time.

Once AT of a circuit implementation is generated, the
comparison to AT of the specification is straightforward.
Its canonicity and compact size for most arithmetic
circuits, excluding the dividers, make AT very appropriate
to use in equivalence checking of datapaths. Further, the
error correcting properties of AT facilitate its application
to verification by test vectors [8]. Hence, by using AT, a
continuum of verification methods can be applied,
including various combinations of formal and vector-based
schemes. Additionally, as AT can represent IP core
specifications, verification of systems including proprietary
IP can be performed as well.

2.1 Word Encoding and Norm Function
AT accepts inputs as binary n-tuples and generates

outputs in the word-level form. A word-level encoding is
explicitly expressed by the number norm function
I 1 : B" + W , which defines how a Boolean vector is
interpreted in the word-level domain. Table 1 contains
several common integer and fractional number norms.

Number Norm 1x1

Unsigned I Sign Extended I 2's Complement
Word

Table 1 : Norm Functions for Common Word Encodings

Definition 2: Binaly encoding (x,,x2. ..,x,) of a word w

is the inverse ofthe norm function, 1wl-l = (X I , xq . . . , x,) .
Note that there is no closed-form expression for binary

encoding; instead, binary conversion algorithm must be
applied to obtain IwI-'. Hence, there is no simple AT(1wl-l).

Lemma 1: Consider a pseudo-Boolean function
f : B " + W withanorm1 I : B " + W . T h e n ,

W f 1 =If I *

Proof: By applying the transform to quantities in W, an
interpolation polynomial is obtained, such that for all

Example I : AT of Multiplier. Let the input bits to the
unsigned integer multiplier be X k and Y k , k= 0 ,..., N-1. Its
AT is equal to the number norm of the product:

inputs ATCf(xl, XZ . . . x,)) = Iflxl, x2. . . . x,) I. 0

N -1 N-l

k=O k=O
A T (x * y) = x x k 2 k * z Y k 2 k $ X * y I $ X I * I y I . +

Note that the norm of the sum (product) of two numbers
equals the sum (product) of their norms. Further, the norm
of an arbitrary algebraic expression is equal to the
expression applied to the norms of its components.

3. ARITHMETIC TRANSFORM EXTENSIONS
We consider the construction of AT for the composition

of several blocks, Figure 2.a. To compose ATs of two
blocks where the outputs of the first block are fed to the
inputs of the second one, we must convert the word-level
output of the first block into a binary vector, Figure 2.b.
The problem with this approach is that the binary encoding
has to be explicitly constructed at each interface. No simple
AT compositions are possible in this scenario.

Instead of using the binary conversion, we propose the
alternative solution that allows the direct composition of
transforms, as well as handling of sequential circuits. To
achieve these goals, we need to introduce two extensions
to basic AT.

AT(B2(81(1))=? __-
I I

I

I __-
a) AT of Block Composition

R =AT(Bl(l)) S = AT(B20)
r------___-- T = IRV c _ _ _ _ _ _ _ _ _ _ _

I

Figure 2: Naive Compositional AT Construction

3.1 First Extension: Mixed Transform
Our first extension facilitates the compositional

approach to representing the complex datapaths. We allow
the inputs to be a mix of binary, xi , and word-level, wj,
quantities, i.e., f (x l . . . x,,,wI .. .wk).

349

Definition 3: Mixed AT (MAT) of function J
f : B" x W k + W is a polynomial with binary exponents
il, in and el, ek:

that interpolates$
We will use the MAT transformation when some sets of
inputs are known to be word-level quantities, such as
outputs of previous blocks.
Lemma 2: The coeflcients of MAT can be calculated
using the transformation given by Equation 2, expanded
around binary input variables, with word-level input
variables unassigned, i.e., treated as symbols

Pro03 Application of the transform to the quantities in B"
results in an interpolation polynomial that, according to
Lemma 1, is MAT(f(xl, x2, ... x, W I , w2, wk)) = I f (w1,
w2, wk)l. Assigning concrete word-level values to
unassigned word-level variables still preserves the norm
function, according to the norm properties. Hence, this
transform is equal to I f I which implies that the resulting
MAT polynomial exactly interpolates the function.
Example 2: MAT of MUX. A multiplexer (MUX) with
inputs a, b and the control signal x can perform selection of
either bit- or word-level quantities a and b. Arithmetic
Davio expansion (Equation 2) around variable x , leads to
MAT(Mux) = a(1- x) + bx . This example also illustrates
the use of MAT for a non-arithmetic function.

MAT facilitates the composition, by which the outputs
of one AT can be directly used as inputs to MAT, Figure 3.
For example, variables a and b in Example 2 can be given
by ATs of previous blocks. To obtain the final AT of the
composition, we need to apply the following conversion.

C(WI,w2,- . .wk)=T, * f .

+

AT(B2(B1(1,),12))
r......----~..............................-....--.-

MATIB2)

'............-~-.....................................,

Figure 3: Use of MAT in Composition of ATs

Proof: By using norm of the quantities in W , we get an
interpolation polynomial in binary inputs, with AT(f)=I f I.

Example 3: MAT of Adder. Consider an unsigned
fractional adder, where input a is represented at word-
level, i.e., unsigned fractional, while input b is treated as
binary vector. Then, by substituting binary encoding of a
in the defining MAT equation, we obtain its AT as:

This is a correct ATU) according to Lemma 1. 0

N - l N - l
M A T (a + b) = a + z b j 2 - ' = z (a , + b j) 2 - ' = A T (a + b) .

+
i=l i=l

Note that "+" has the same meaning in AT and MAT.
To calculate AT of the whole combinational circuit, ATs

should be generated for each block fed by primary inputs,
while MATS should be applied to all other blocks. The
overall AT is created by substituting AT transforms for
intermediate word-level quantities.

3.2 Second Extension: Sequential Transform
To describe datapaths with sequential components, we

introduce to MAT the notion of a timedfunction. A timed
function A n] represents the value o f f at the nrh clock
period.
Definition 4: MAT Sequential (MATS) is a MAT transform
MAT(f)[n], of timed function f at time instance n.

Many datapath blocks are time invariant. Hence, the
timed transform of arithmetic blocks will be exactly the
same as the original MAT transform. The simplest role that
the timed transform plays is to represent the state
information kept in memory elements. A defining equation
for a memory is mour[n] = mj,[n- 1 I.
Example 4: MATS of Add-Accumulate Loop. Consider
the addition in nrh step, where one of the summands is taken
from the primary inputs, while the other is supplied from
the register storing the accumulated values of the previous
n-1 additions, Figure 4.a. Assume that the register has been
initially reset.

pdd dpaxnU la teLcq~

VI n I ail

Lemma 3: AT(f) can be obtained from MAT of function a) b)

f : B" x W k + W through the syntactical replacements, Figure 4: Add- and Multiply-Accumulate Loops

intermediate word-level function An], representing the
input to the register after n additions. Assuming that the

A n] is given by the recurrence equation:

word-level input w i E is substituted bY its To obtain MATS of the add-accumulate loop, consider the
binary encoding I I-' : W + B", i.e.,

MAT(f (xi ,x, ,I wi I-', ... ,I wk I- ') = A T (f) . free input a[n] is also a word-level quantity, the value of

350

f [n] = urn] + f [n - 13,
The corresponding MATS is then:
MATS(f)[n] =a[n] + MATS(f)[n - 11, MATS(f) [O] = 0 .
After the nrh addition, MATS of the add-and-accumulate
loop is obtained as the following solution to the above
recurrence equation:

f [O] = 0 .

n

MATS (f > [n] = C a [i] . +
i=l

Lemma 4: MATS of a composition of a combinational
element described by function f with sequential blocks can
be obtained from MATcf) by replacing each input that is
generated by a sequential block with its defining MATS.
Proof: Since MAT describes the combinational function of
a block, with memory elements disconnected, then, by
Definition 4, such a syntactical replacement presents the

Corollary 1: MATS of sequential function f can be
obtained from MAT of the combinational part o f f by
replacing each MAT input that is generated by a memory
element with its defining MATS.

Corollary 2: r f at least one input variable of
combinational function f is generated by a sequential
block, then the transform of the composition, instead of
MAT, needs to be presented as MATS:

MATS((f (x ,,... wi ..., w,)) = MAT(f (x , ,... MATS(w,) ..., wk))
Lemma 5: MAT of a circuit at time instance n can be
obtained by solving MATS as a recurrence equation.
Sequential elements need to be initialized.
Proof: MATS represents the function of a block at each
time instance. By solving the recurrence equation, the
circuit behavior at a given time instance is obtained.

Recurrence equations describing sequential elements in
datapaths posses forms that are easily solvable analytically
and symbolically by tools such as Maple or Mathematica.
Example 5: MATS of Multiply-and-Accumulate (MAC)
loop - a common element of DSP datapaths. Consider the
transformation of the composition performed over the
MAC, Figure 4.b, using previously derived MAT
transforms of its individual blocks. Inputs to the MAC at
the time instance i are N-bit binary vectors x and y , the
output z is a binary vector of size 2N. MATS of the
multiplier block is defined for inputs occurring at time
instance i as:

MATS(x*y) [i]= x ~ , [i] 2 ~ * x ~ ~ [i] 2 ~ =a[i] .

The transform of the accumulator-register loop, obtained
by solving the same recurrence type as in Example 4 is:

correct functionality of the sequential function. 0

N-l N-l

P = o P = o

Please note that the above representation corresponds to

4. VERIFICATION OF DATAPATHS

A datapath of a typical DSP architecture, Figure 1,
performs arithmetic and logic operations. Its main building
blocks are: register files, ROMs, shift registers,
multiplexers, multipliers and adders connected into a MAC
structure, as shown in Figure 1 .

To verify the complete datapaths, we will rely on the
verified implementations of its basic blocks, done either
through equivalence checking [5] , or vector-based methods
[8]. For overall datapath verification, we can use the
library of datapath blocks, together with their transforms.
The transform of each element only depends on its
functionality, and not on the actual implementation. For
example, AT of an adder is the same, for a ripple, look-
ahead or skip adder. The transforms (AT, MAT or MATS)
of the most common arithmetic circuits were presented in
Examples 1-5. Next, we introduce the algorithm to verify
the datapath composition from blocks.

4.1 Transform of Complete Datapaths
Having defined transforms of individual blocks in a

datapath, the automated construction of the overall AT can
proceed by forward traversal from primary inputs, as
shown in Algorithm 1. For each block encountered, the
transform is constructed from its immediate inputs. Each
combinational block depending entirely on primary inputs
requires only AT description (line 4, Algorithm 1). Blocks
with inputs generated by previous blocks will be
represented in MAT form (line 6, Algorithm 1) if none of
its inputs perform a sequential function, Corollary 2.

the MAC loop specification. +

Generate MATS of the network of blocks
1. for each block B,in topological order
2. I
3. Assign: inputs (6,) to output(predecessor(B,))
4. if (combinationa/(BJ && alLinputs-primary)

6. if (combinationa/(BJ && no-se9-input)
7. f, = MAT(B,, assigned-input-list);
8. else I*sequential(t3,)7
9. f, = MATS@,, assigned-input-list);
IO. f, = reccurence-solve(f,);
11. }
12. Overall-AT = f,

5. f, = AT(6,);

Algorithm 1 : Composition of Block Transforms

Every time a sequential block is encountered, its
recurrence equation is solved symbolically. The outputs
are then expressed in terms of the block inputs,
MATS(w)[n], at the time n of their occurrence at the block
inputs w. The inputs are then substituted by transforms of

351

the previous blocks in the overall expression. The process
is repeated until all the blocks are traversed, and all the
outputs are expressed in terms of primary outputs of the
circuit.

5. VERIFICATION OF DISTRIBUTED
ARITHMETIC CIRCUITS

Distributed Arithmetic (DA) refers to datapath
architectures where the inner product of a vector by a
constant is performed as a bit-serial operation [l o] . DA
leads to efficient FPGA implementations of specialized
DSP circuits like filters, but also of basic arithmetic
functions, such as multipliers [3]. In filter applications, the
word-level quantities are usually fractions. Hence, the

signed numbers are represented as: x = -xO + xi 2-' , and

for unsigned numbers, the sign digit xo is not used.

constants A& with input vectors xk, k = 1, 2,. . .,h?

M-l

i=l

The calculation of inner products of a vector of

M-l ,

y = t A , x , , where xj =-x jo+ c x j , 2 - '

is performed bit-wise. Instead of inputting the whole M-bit
xk vector in parallel, and then executing the multiplication
by a M-bit constant Ak, all vectors are serially shifted in. In
each cycle every shifted bit is "multiplied" in parallel by its
constant Ak. Partial sums maintained in this way do not
resemble the standard partial results of inner product
calculations. The product:

k=I i=l

(i=l

N
y = Z A j x j = C A j - x , ; ~ +

j=l j=l

is transformed by changing the order of summation into

Equation 3 represents the form in which the inner product
is calculated in the DA arithmetic.

The multiplications in brackets, Equation 3, do not have
to be calculated with multipliers. Instead, bit products can
be pre-computed for all the possible combinations of bits
x,, of vectors x,, and stored in ROM. Then, based on the
actual combination of x,' among all x,'s, the corresponding
ROM location is addressed [lo]. One possible hardware
implementations of the DA inner product of four 4-bit
vectors is presented in Figure 5.

5.1 Transforms of Building Blocks of DA
A typical DA circuit consists of the following blocks.

Shift registers are used to serially input the vector bits.
ROMs store the pre-computed partial sums, and add-
accumulate loops maintain the partial results of the
multiplication, Figure 5.

Transforms of a few major datapath blocks were derived
in Sections 3.1 and 3.2. Now, we present the transforms of
the remaining DA blocks. For presentation purposes, we
initially assume that the sign bits are zero, or, equivalently,
that the unsigned encoding is employed.
AT of ROM. The content of ROM represents the bit
multiplication of a constant Ak by bit vector xk, k = 1, ..., N ,
Figure 5. It is easily verifiable from Figure 5 that, for the
case N = 4, AT of ROM is given by

N
A T (R O M) = A i x , + A , x , + . . .+ANxN = z A j ~ j ,

j = l

where each variable xj is one-bit wide and the coefficients
A,, j = 1, . . ., N are fractional numbers.

................................

~ inpits

n

Figure 5: Distributed Arithmetic - ROM/Accumulator
Structure

MATS of Shift Registers. A shift register is a purely
sequential circuit, consisting of a chain of storage cells.
For each register, its discrete time defining equation is
given as f[n] = a[n - 11, where the inputs a[n] are treated
as bits. Building the shift register out of individual storage
cells amounts to composing the word-valued transfer
functions. For jrh shift register with M-1 stages, MATS at
time k is M A T S (S R (x j)) [k] = x j (M - l - k) .

MATS of Add-Accumulate Sum with Delay Element.
MATS of this block is calculated by constructing and

solving the recurrence: f [n] = a[n]+- f [n -11, f[O] = 0 ,

where variable a[n] is a word-level ROM output quantity
and the initial condition in the register is 0. By solving the
recurrence equation at time n, we get:

1
2

n n
f [n]=Ca[i]*2 ' -" =Ca"]*2-'"-i' ,

i=o l=O

5.2 AT Description of Complete Unsigned DA
The transform of the complete circuit in Figure 5 is

obtained by forward traversal, following Algorithm 1. The

352

intermediate variables will be substituted in all the
expressions during the traversal. By substituting the
outputs of the shift registers to the ROM inputs, we obtain
the following timed expression:

N

M A T S (R O M) [k] = x A . x . J j (M - 1 - k) .

Next, substituting these variables, as the inputs to the add-
accumulate sum results in:

j = l

Terms

(4)

Unsigned I Signed I Encoded Time
ROM I AT 1 ROM I AT I ROM I AT [SI

The overall function AM-21 is completed at time instance
M-2 as Equation 4 at time M-2:

M-2 N
A T (f) = MATS(f)[M -21 = CCAjX jcM- l -k ,2 - (M- ’ -P) .

k=O j=l

The result is the same as in Equation 3 (circuit
specification) with the assumption that the sign bits are
zero. To verify that, we notice that by applying the change
of indices of the first summation, the final AT is given by
the expression that is equivalent to Equation 3:

4
8
16
32

5.3 AT Description of Signed and Encoded DA
The signed DA algorithm differs from the previous case

in (M-Z)‘h step added at the end of the execution, when the
sign bits are incorporated. Then,f=AM-I] is obtained as

N

A T (f) = MATS(f)[M - 11 = - Z A j x j o +MATS(f) [M - 21.
j=l

This expression is equal to Equation 3; hence, the
equivalence is proven.

The same approach was used to prove the equivalence of
additional DA forms, including encoded DA circuits from
[IO] that achieve the reduction in ROM sizes by alternative
internal number encoding. Each new circuit can have a
different, non-trivial DA implementation. The presented
method can check the correctness of DA realization
already on the algorithmic level.

We implemented Algorithm 1 in Mathematica, for its
ease of integration with the recurrence solver rsolve (by
M. Petkovsek), already incorporated in Mathematica. The
obtained representation is canonical and compact. By
comparing the sizes (measured in words) of the resulting
AT with the sizes of ROMs employed in DA circuits, as in
Table 2, we observe that the overall AT representation is
logarithmic in the size of a ROM. The last column presents
worst case times spent on a 440MHz Ultra 10 workstation
with 128MB of main memory in generating overall AT
from ATs of DA components. As Mathematica is an
interpreter with lots of overhead, these times could be
greatly reduced by compiled code.

16 60 32 64 8 64 0.5
256 120 512 128 128 128 2.0
16k 240 32k 256 8k 256 9.2
4G 480 8G 512

Table 2: AT vs. ROM Sizes in DA Implementations

6. Conclusions
We presented two extensions to Arithmetic Transform

that facilitate the compositional verification of sequential
datapaths. The first extension makes the easy composition
of transforms of individual blocks possible, while the
second one allows sequential circuit representations. The
compact canonical descriptions of large circuits can be
quickly obtained by symbolic composition of transforms of
individual blocks. Verification of highly sequential
Distributed Arithmetic architectures was presented using
these transforms. We intend to apply the method to the
larger classes of sequential datapaths.

7. References
[l]M.D. Aagaard and C-J. H. Seger, “The Formal

Verification of Pipelined Double-precision IEEE
Floating-point Multiplier”, In Proc. IEEEIACM Int’l
Con$ CAD, ICCAD, pp. 7-10, 1995.

[2] R. Amirtharajah, T. Xanthopoulos and A. Chandrakasan,
“Power Scalable Processing Using Distributed
Arithmetic”, In Proc. ISLPED, pp. 170-175, 1999.

[3] A. Berkeman, V. Owall, and M. Torkelson, “A Complex
Multiplier with Low Logic Depth”, IEEE lnt’l. Con$ On
Electronics, Circuits and Systems, pp. 47-50, 1998.

[4] R.E. Bryant and Y-A. Chen, “Verification of Arithmetic
Functions with Binary Moment Diagrams”, In Proc. of
32”“ Design Automation Conference, pp. 535-541, 1995.

[5] R. Drechsler, B. Becker and S. Ruppertz, “The K*BMD:
A Verification Data Structure”, IEEE Design and Test of
Computers, Vol. 14, No. 2, pp. 51-59, April-June 1997.

[6] K. Hamaguchi, A. Morita and S. Yajima, “Efficient
Construction of Binary Moment Diagrams for
Verification of Arithmetic Circuits”, In Proc. ICCAD,

[7] J. D. Kim and S-K. Chin, “Assured VLSI design with
formal verification”, In Proc. 12th Annual Con$
Computer Assurance, COMPASS, pp. 13 -22, 1997.

[8] K. Radecka and Z. Zilic, “Using Arithmetic Transform
for Verification of Datapaths via Error Modeling”, Proc.
of VLSI Test Symposium, pp. 271-277,2000.

[9] J. Smith and G. De Micheli, “Polynomial methods for
allocating complex components”, In Proc. Design,
Automation and Test in Europe, pp. 217 -222, 1999.

[IO] S.A. White, “Applications of Distributed Arithmetic to
Digital Signal Processing: A Tutorial Review”, IEEE
ASSP Magazine, pp. 4-19, July 1989.

pp.78-82, 1995.

353

