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Abstract

We address verification of imprecise datapath circuits with
sequential elements. Using Arithmetic Transform (AT) and its
extensions, we verify the sequential datapath circuits with finite
precision. An efficient formulation of the precision verification is
presented as a polynomial maximization search over Boolean
inputs. Using a branch-and-bound search for the precision error
and the block-level composition of ATs, we verify the
approximated, rounded and truncated pipelined datapaths.

1. Introduction

The push for intellectual property (IP) core reuse has created a
host of design, verification and test problems. New methods are
required for efficient specification, verification, and IP
component matching. This is especially true for arithmetic and
datapath blocks, which are among the most used cores. Early
equivalence checking methods that relied on BDD representations
were unable to deal with arithmetic circuits such as multipliers.
Word-level graphs like *BMDs [1] remove this obstacle by
employing Arithmetic Transform (AT). Extensions to AT in [6]
facilitate verification of sequential datapaths and their
compositions. Such blocks are either verified individually, or
include IP cores given only by their specifications.

Virtually all datapath verification methods assume that the
circuit is implemented exactly, implying either infinite precision,
or the specification of only one of many implementations within
allowed imprecision. In this paper, we address the more complete
case of verification within some error tolerance. We use the fact
that AT deals efficiently with word-level quantities and allows
efficient symbolic manipulation [4] and interpolation [9].

Previous work involving verification of imprecise datapaths
considered a bit-level case [2] that does not capture precision
properly. In related matching of a (single) IP core, rational-valued
polynomials [7] accommodate some imprecision.

1.1 Arithmetic Transforms

Arithmetic Transform is a canonical representation of multi-
output Boolean functions f: B” — B™ that is often compact for
datapaths. AT is a polynomial, obtained by considering outputs at
word-level (W), resulting in pseudo-Boolean f:B" > W .
Definition 1: Arithmetic Transform is a polynomial with
arithmetic “+” operation, binary inputs x,,..., x, word-level
coefficients c,;,., and binarjy exponents iy, ..., i,

AT(H)= 3

Z c,‘,2 i, Jc1 )c2 )
11—012-0 i,=0

that exactly and uniquely interpolates pseudo-Boolean function f.
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AT is a multi-output function representation that uses familiar
(integer) arithmetic in adding the polynomial terms, each of
which has a subset of variables present. For example, AT
polynomial 2+x;+4x;x,x; describes a unique 3-bit input, 4-bit
output function whose truth table is obtained by polynomial
valuation for all inputs, followed by decoding integers as multi-
bit vectors. AT achieves compact description because many
outputs are grouped in a single word level quantity, often given
by a simple arithmetic expression, as in the following example.
Example 1: AT of Multipliers Consider an unsigned integer
multiplier with inputs x; and y;, k=0, ..., N-1. Unlike with BDDs,

N-1 N-1
AT is polynomial in size: AT(x*y)= Fx; 25 * $,2F o
k=0 k=0
Once AT of a circuit implementation is generated, the
comparison to the specification is straightforward. This makes
AT particularly suitable for equivalence checking of datapaths
[6], verification by test vectors [5] and in their combinations.

1.1.1 Arithmetic Transform Extensions - MAT and MATS

To accommodate increasing use of IP and block-level
components, extensions to the basic AT form were presented in
[6]. In order to use AT of a block as an input to the second one,
we must convert the word-level output of the first block into a
binary vector. No simple AT.compositions are possible in this
way. Instead, we extend AT. The first extension facilitates the
compositional approach to representing the complex datapaths.
Mixed AT (MAT) treats the inputs as a mix of binary, x; and

word-level, w;, quantities, i.e., x| ... X, w; ...w;), Figure 1.
AT(B2(B1(.1,)
ATBY) WiE) |

Figure 1: MAT in Composition of ATs
Definition 2: Mixed AT (MAT) of f:B"xW* W is a
polynomial with binary exponents ipy .-

,i,andey, ..., e.:

AlAT(f)— Z 2 Z Z cxl gl ekxl
h=0 i,=0eg=0 ¢;=0

Example 2: MAT of Adder and Multiplier. Consider an
unsigned adder and multiplier with word-level a and binary b:

i, el . ek
-x,," W] k

N-1 . N-1 .
MAT(a+b)=a+ ¥, b;2~ ,MAT(a*b)=a* ¥ b;2~

i=1 i=1
Note that “+> and “*” are the same in AT and MAT. ¢

~
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To describe sequential datapaths we introduce MAT Sequentiai
(MATS), representing the value of £ at the #™* clock period.
Definition 3: MAT Sequential (MATS) is a MAT transform
MAT(Hn), of function f at time instance n.

To obtain AT from MATS, MAT of a sequential circuit must
first be generated from its MATS description by symbolically
solving MATS as a recurrence equation J6]. The overall AT is
created by substituting ATs for intermediate word-level quantities

in all MATs throughout the circuit.
Number Valuation V(x)
Word
Unsigned Sign Extended 2’s Complement
n-l . n-2 n-2 .
m. | 2x2 [(-2x, )52 | Yx2-x 2™
i=0 i=0 i=0
: {n-1 . n--1 . -1 .
ch:l 227 | (1-2x9) X270 | ~xp+ 2x27
ona i=1 i=1 i1
: n=1 . n-=1 ] .
l;,‘:;‘: ¥ 5271 - 2x0) Ta 20| T x; 28 — xg 2™
i=0 i=l i=l

Table 1: Valuations for Common Word Encodings

2. Verifying Imprecise Arithmetic Circuits

Specification and verification of arithmetic circuits consider
mainly the cases when results are exact. However, for many
practical datapath circuits, results are rounded and otherwise
imprecise, due {0 the finite wordlength of a datapath. The
challenge of the verification is to distinguish between cases of an
erroneous circuit behavior and outputs that are correct within
some error bound due to imprecise arithmetic. Equivalence
checking deals only with exact computations and such {mprecise
cases are declareqd incorrect. However, the use of the word-level
representations, as in the considered Arithmetic Transforms, will
be critical for verifying imprecise datapaths efficiently.

AT and related forms deal explicitly with word-level quantities.
A word-level encoding is explicitly expressed by the number

valuation function ¥ : B” — W, which defines how a Boolean
vector 1s interpreted in the word-level domain. Table 1 contains
several common integer and fractional number valuations. We
concentrate on fixed-point representations that are preferred in
circuit implementation for their simplicity and rely on tools that
compile floating-point code to fixed-point implementations [8].

2.1 Precision Case: Fractional Multiplier

We illustrate the steps undertaken in the precision verification
on an example of a multiplier operating over two fractional
numbers. In this case, two fractional inputs, g and b, are
represented by n bits. While the output should be kept 2a-bit
wide, the implementation assuming the n-bit wide datapath is
forcing the result of the multiplication to be represented by » bits.
For simplicity, we discuss only the unsigned operations.

Case 1: Rounding and Truncation. The 2n-bit result is first
calculated exactly, and then rounded to first n bits, In the case of
rounding, the error is half of the LSB, ie., 2™" In the case of
truncation, the maximum error is bounded by the LSB.

Case 2: Approximation by r most significant bits. In addition
to rounding and truncation, there exist approximation modes

where significant hardware resources can be spared when
precision is net critical. For multipliers over fractional numbers,
the » least significant terms are simply not calculated. Savings of
half the gates are obtained at the expense of the mismatch:

2n i .
e= ]AT(a #0) = AT(a* D) = 2. (Xaij6)27". ()
i=n+l j=1
As the function is monotonous, the maximum is attained for all
inputs equal to one, and the worst case error is O(n2™).

3. Verification Formulation

With AT, the formulation of verification under precision
constraints is simple. The precision objective is directly expressed
for the output quantities at a word level, unlike the bit-level
approaches [2]. Also, inputs are binary values, suitable for binary
search. Precision verification compares specification AT
{SpecAT) to an implementation AT (I4T). For a given precision &,
the maximum absolute value of the difference between the
transforms needs to be smaller than € for all inputs X

max | SpecAT(X) -~ IAT(X) <€ . 3)

When SpecdT is itself imprecise, and represents f up to
absolute precision error of §, the same procedure can produce the
maximum mismatch between the function value and the circuit
implementation. By triangle inequality, the imprecision is:
max | AT(X) - f(X)|<
< max{AT(X) - SpecAT(X)| + max|SpecAT(X) - f(X)| <& +8
Hence, it suffices to verify the imprecision relative to its AT
specification, Eq. 3. In practice, it is ofien § <<t .

Verifying a circuit under the precision constraints amounts to
finding a maximum absolute value that the difference between a
specification and an implementation takes. Since AT is linear,
and the difference of two ATs is still an AT polynomial, we seek
either a maximal positive or a minimal negative valuc of the
mismatch AT. Hence, the verification under constraints of
arithmetic precision is expressed as & search for a maximum of an
mismatch AT, i.e., finding binary inputs x, x;, ... x, for:

LW B
mAX Cyyio iy X1 X7 Xy | -

@)

3.1.1 Constrained and Unconstrained Cases

If all possible input combinations are allowed, we say that the
search is unconstrained. In practice, many input combinations are
don 't cares, and the search is constrained.

An unconstrained case is easier to handle, as there is no
limitation on searching for the solution. Further, for functions and
the mismatches that are unate, the maximum and minimum values
are obtained when all inputs are Is or Os. Adders and multipliers
are unate for unsigned encoding, and all polynomial coefficients
are positive, as seen from Example 1. Also, the mismaich
function in Section 2.1 is upnate. In that case, the maximum that
these functions take is obtained at the input point 11...1. The
unconstrained case is useful when considering the easily
obtainable bounds on the maximum and minimum value that AT
polynomial takes. One such upper bound is obtained as the sum
of all polynomial coefficients that are positive and the coefficient
Coo...q, that contributes a constant offset for all input assignments.
We call such a bound ub,,.; and denote its calculation as:
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Uboer = Copu0 + Eﬂ iy

AT will clearly attain this upper bound if there is a combination
of inputs for which all positive coefficients are multiplied by 1
and all negative coefficients are multiplied by 0. The constant
coefficient coq. g is not affected by any input combination. In the
same way, we define Ib,,, as the sum of all negative coefficients
and the constant coefficient ¢y _o. Using these two bounds, the
following lemma will be needed in the algorithms to follow.
Lemma 1: The sum of the bounds .. and ub...; is equal to the
sum of the finction values fo_gand fi; ;-

ubcogf +1bcoef = foo-0 + fi11
Proof: From definitions of /b and ub.,,s, their sum is:
Wbger +Ibger = Cog...0 + Z c1|12 i, TC00-0 Z Cl]lg

which is equal to o and the sum of all coefﬁclents. The
former is equal to the function value at the point (minterm)
00...0, and the latter is equal to the value at 11...1. I

In the unconstrained case, this lesmnma is used to obtain one
bound (say upper) from another (lower) and the function values
at points 00...0 and 11...1. The bounds can be used in the
unconstrained case as well, but will be less tight. The tighter
bounds obtained for function restrictions, i.e,, when a subset of
variables is assigned a value, will be used as well.
Example 3: Let AT(f)=2-x;+x3-3xx3 + xixx3. The
maximum and the minimum values are f,., = 3 and f,;, = -2. The
bounds are quickly obtained from AT{H) as
Ubgoef = Cop...0 + Zo Cijigeniy =2+1+1=4 and Ib,= -2. The

o>

lower bound is equal to the minimum value. By setting inputs to
all 0s and Is, we obtain fj0y=2 and f;;,=0. Hence, we verify that:

ubcoq‘ +Ibcoef = fOﬂO +f]1...1 .

3.1.2 Branch-and-Bound Search for Imprecision Error

We developed an algorithm for finding the maximum of AT
(Eq. 4), with binary inputs X= {x, i=1, ..., n} and polynomial
terms multiplied by word-level coefficients. We seck the
mismatch maximum by a branch-and-bound search, where
bounds on polynomial and Lemma 1 guide early terminations.

We deal separately with cases when the assignment of
variables is known without a search at each call of the main
search routine, For simplicity, we refer to it as preprocessing.
Preprocessing: The search is preceded by an iterative application
of two rules for assigning a value to binary input x;, and, hence,
reducing the search space:

1) I all coefficients in x; are positive, assign x;=1.

2) If all coefficients in x; are negative, assign x;=0.

Clearly, these assignments lead to the maximum overall value of
the polynomial. In the example of the truncated multiplier in
Section 2.1, we notice that rule 1 is sufficient to find the
maximum error in Eq. 2, as all the coefficients (27) are positive.

Main Search Loop: The search investigates first, in a heuristic
manner, the variables that likely lead to a function maximum. For
each variable, we calculate the sum of all coefficients multiplying
terms in which the variable is present. The most positive variable
is the one for which this sum is the largest. In Example 3, x; is the
most positive variable that contributes most to the maximum
value. In the case of a draw, the easy lower bounds (by Lemma

1), are compared as well. Only algorithm speed, rather than its
correctness depends on that heuristic choice.

The search is terminated when a current upper bound is smailer
than the currently largest value. The upper bound of the current
function restriction #by{47,—) is the sum of all positive AT
coefficients when 2 variable x is set to v. Algorithm | summarizes
the search for the absolute value of the mismatch AT polynomial,

for each variable x I'pmprooessing ki
it {all ¢ >0} x~1 elsif (all o <0) x0

uboer = Cop-0 + Eoczm.--r #beoer = foo---a +f11 q-u
c>

CurrentBest={beoer, Current=ubees; )

beaef

Max_Abs (AT, Current)

i NonasignedVars { Y
x=MostPositiveVariable;
CAT=AT(f)=1  Ftryx=1"/
if {(ubeoed CAT)<CumentBest) backdrack; /cut search branch b

else Cument=Max_Abs(CAT Current); frecur further/

CAT=AT(Res  [Firy x=0" b
# (ubcoer(CAT)<CurrentBest) backirack; i
eise Current=Max_Abs(CAT Current);} i
else{ !
Current = AT; /* all variables assigned, leaf case */
if (Cument>CurrentBest) {CurrentBest=Current; retum(Cunent)}}
Algorithm 1: Finding Maximum Mlsmntc_h

Example 4: Consider searching for maximum of the followmg AT
specification/implementation mismatch:
2x1 3.}.'2 + 213 + 3x4 3X1X3 + 312X3 — 2)'.'114 + 3le214

Figure 2: Execution of Max_Abs for Example 4

The upper bound is equal to the sum of all positive coefficients,
ie.,, 13; the lower bound is -8. The preprocessing step cannot
assign any variable, and the main search loop is.invoked. By
adding coefficients in each variable, we obtain that the coefficient
sums are 0, 3, 2 and 4 in variables x;, xy, X3 and xy, respectively.
The most positive variable x, is first set to 1, followed by
variables x; and x3. The final assignment to x; lei'ads to the
terminal node in the search tree, when the current best value is 5.
The algorithm then backtracks to traverse the search tree, as
shown in Figure 2. Curtent upper bounds {(ub) are inscribed next
to each node. First, the variable x; is re-assigned to 0.. The upper
bound (3) at this stage is found to be lower than the carrent best
value, and the search is terminated. Similarly, the other
backtracks are terminated when the upper bound is smaller or
equal to the currently obtained value. Upon reaching the root, the
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order of variables changes, as variable x; is examined first. After
exhausting input space, the maximum value is 5. ¢

While Algorithm | seeks the solution for the unconstrained
case, the constrained case is dealt by adding one more condition
for terminating the search. The search will also stop when a
subtree of the search space to be visited is included in don’t care
set. To represent don’t care sets, one can, in general, use BDDs,
The traversal of the BDD mimics nicely the traversal of the input
search space tree, as in Figure 2. In our case, restrictions on the
input space described by AT and an inequality, eg.,
AT(X)>CaresetBound are often most compact. For that reason,
we use an inequalify as a default representation of the input space
constraints. Constraints given by a BDD can be used as an option.

3.1.3 Representing Pipelined Datapaths
Pipelined circuits contain registers separating combinational
elements into pipeline stages. Pipelined datapaths have been hard

to verify. While formal methods suffer from the state space
explosion, the vector-based verification cannot deal with the

inherent deep sequentiality of pipelined circuits. In contrast, to .

verify k-stage pipelined circuits by MATS, it suffices to specify
that the output produces the result delayed by k clock cycles.

Fxample 5: MATS of Add-Multiply Pipeline Stage. A
commonly used pipeline stage consists of a multiplier-adder pair,
fed by two sets of primary inputs x and z, and the outputs of a
circuit y. The output a of the adder is registered, and the overall
MATS is: MATS(S)[r] = z[n — 1]+ x[n - 1]* MATS(y)[n-1]. ¢

3.2 Verifying Complete Datapaths

The imprecise datapath composition verification is outlined in
Algorithm 2. For each block encountered in a forward traversal,
the transform is constructed from its immediate inputs. Each
combinational block depending entircly on primary inputs
requires only AT (line 3). Blocks with inputs from previous
blocks require MAT form (line 5) if none of its inputs perform a
sequential function. Every time a sequential block is encountered,
its recurrence equation is solved. The process is repeated until all
the blocks are traversed, and the outputs are expressed in terms of
pnmary inputs, Finally, we invoke Algorithm 1 to verify requlred
precision (line 10).

3.2.1 Experiments with Pipelined Cosine Circuits

We implemented Algorithm 2 in Mathematica, for its ease of
integration with its recurrence solver raolve. The algorithm has
been tested on pipelined cosine circuits. The function cos(x) is
approximated in interval [0, n /4) using the Taylor series. As the
required series are infinite, the actual calculation is bound to
introduce emor. To approach the verification, specification is
given by AT of sufficient precision, SpecdT{cos), augmented
with the bounds on the error e. The verification goal is to assert
that the implementation 47{cos), is within error bounds.

We compared the pipelined cosine circuits with respect to their
precision, AT size and the time required to verify the circuit. The
verified implementations are: 64-bit, 8-bit rounded and truncated
{Section 2.1, case 1), and approximated by 8 bits (case 2),
respectively, as shown in Table 2. Obtained AT is compact, as
shown by the 3™ column with sizes of all intermediate (and final)
AT, MAT and MATS polynomials. The last column presents

worst case times spent on a 440 MHz Ultra 10 workstation with
128MB of main memory. Note that the results could be improved
by compiled code instead of interpreted Mathematica code.

Circuit Terms | AT Size i Error Time [5]
cos — 64bit 4 6111 9.9E-16 | 121
cos — 8bit round 4 447 3.7E-6 73
cos — 8bit trunc 4 367 7.1E-6 51
cos — 8bit only 4 54 5.1E-3 319

Table 2: Results for Verifying Pipelined Cosine Circuits

Verify_Imprecise {network, SpecAT, €)

1. for each block Biin topological order{

2. Assign: inputs (B) to output{predecessor{Bi)}

3 If (combinational(B;) && all_inputs_primary)

4 fi= AT(B);

5. if (combinational(B) && no_seq_| :nput)

B. fi= MAT(B, assigned_input_list);

7 else  [sequential(B)*/

8 fi= MATS(B;, assigned_input_tist);

9, fi = reccurence_solve(fi ); }

10. retum{Max_Abs{f — SpecAT ) < €); /max | fi- SpecAT|)
Alporithm 2: Verification of Imprecise Datapaths

4. Conclusions and Future Work

We presented an algorithm for verifying the correciness of
imprecise arithmetic operations. Compact descriptions of large
circuits can be quickly generated by symbolic composition of
transforms of individual blocks. The advantage of AT is that it
directly expresses the sought worst case error in its numerical
value, while the input search space is kept in the binary form.
Also, compared to the traditional analysis methods, where the
worst case is first obtained for each block, the obtained mismatch
bound on the overall datapath is tighter and more accurate.

While we used the maximum absolute mismatch as a precision
measure, other measures are possible within the proposed
framework. We believe that these techniques can be used in
future for floating-point verification.
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