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Abstract-Range analysis is an important task in obtaining the 
correct, yet fast and inexpensive arithmetic circuits. The 
traditional methods, either simulation-based or static, have the 
disadvantage of low efficiency and coarse bounds, which may 
lead to unnecessary bits. In this paper, we propose a new method 
that combines several techniques to perform fixed-point range 
analysis in a datapath towards obtaining the much tighter ranges 
efficiently. We show that the range and the bit-width allocation 
can be obtained with better results relative to the past methods, 
and in significantly shorter time.

I. Introduction 
Since designers increasingly replace ASICs with FPGAs, 

which are not well-suited for floating-point arithmetic even if 
non-binary [1], there is a renewed interest in fixed-point 
arithmetic. Allocating bit-widths in a datapath has a direct 
impact on resources and circuit speed. The fixed-point 
arithmetic entails the precision and the range problem, where 
we focus on the latter. Manual or sub-optimal range analysis 
might result in misallocated bit-widths; too few bits cause 
overflow, while too many are costly. As many FPGA 
applications are in reconfigurable and parallel computing [2], 
where many optimizations are needed, the speed of range 
analysis is important. 

To obtain the optimal allocation of bit-widths, a data 
representation that exposes well the variable ranges plays a 
key role. If we can find the exact ranges for all intermediate 
variables, we can achieve the smallest bit-widths, leading to a 
reduction in the circuit area and the delay. To perform range 
analysis, a simulation-based dynamic analysis [3-4] is 
common. 

Although dynamic analysis is conceptually straightforward, 
the inherent low efficiency of exhaustive simulations confines 
them to small datapaths. Static analysis attempts to determine 
the range, often approximately, without simulations. Interval 
arithmetic (IA) is a usual approximate method to calculate the 
value bound, but it unavoidably leads to coarse results. The 
affine arithmetic model (AA) is a derivation of IA, in which 
the quantities of interest are represented as linear 
combinations (affine forms) of certain primitive variables 
standing for sources of uncertainty in the data or for 
approximations made during the computation. Work in [5] 
adopts AA to investigate integer bit-widths and implement 
FPGA by different bit-widths.  

Other static methods include these based on saturation 
arithmetic [6], AT [7] and the SAT-Modulo Theory (SMT) [8]. 
Authors in [9] adopt a spectral technique, Arithmetic 
Transform (AT), to explore precision in the imprecise 
representation of Taylor series and real-valued polynomials. 
The above methods show that conventional approaches such 
as SAT and spectral ones used elsewhere [10] can be easily 

extended from handling precision [11] to the range analysis.  
Fig. 1 compares the time requirement for each method. 

Static methods can lead to over-allocation of integer 
bit-widths (IBs) and, in consequence, enlarged area 
requirements. Dynamic methods can exhibit a double-sided 
error, including underestimating a range, while all other 
methods only err on the side of being conservative. 
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Fig. 1. Tradeoff between ranges and calculation times 
In the range analysis so far, there was a clear separation 

among the solutions that focus on the quality of the result and 
those where the computation time has been the goal, without 
the explicit possibility to exploit well the specifics of a given 
problem. Dynamic methods and SMT focus on tight ranges, 
while IA and AA are designed to shorten the calculation time.  

In this paper, we develop an efficient hybrid engine, which 
combines advantages of IA, AA and AT. Our solution can get 
tighter ranges, while reducing the calculation time. This is 
achieved through analyzing the correlation between variables, 
which then lends itself to the smallest bit-widths for a given 
(sub-)problem. We note that among the existing methods only 
the AT-based technique can obtain the tight range, while at 
the same time is being able to measure the distance to the 
precise solution, so we will capitalize on that. 

II. Background 
Definition 1: The error bound labeled as E in Fig. 1 is the 
largest difference between the exact and the obtained ranges, 
while the error ratio er calculated as 

 represents the effective size of the obtained range.  
The objective is to find the smallest value of E and er whilst 

maintaining the one-sided error, i.e., not underestimating the 
bit-width. Towards this goal, two static methods are 
introduced in the following sections that rely on interval and 
affine arithmetic.  

2.1Intervaland Affine Arithmetic 
The traditional static analysis is based on IA and AA. IA 

defines a set of operations on intervals. An operation <OP> 
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on two intervals with <OP> is defined by:  
[x1, x2] <OP> [y1, y2] = { x<OP>y | x [x1, x2], y [y1, y2] } 
  In AA, an ordinary interval  for an input 
variable can be converted into an equivalent affine form 

with: 

  The intermediate signal or the output is represented as a 
first degree polynomial:     (2) 
w h e r e   a r e  r e a l - v a l u e d  n u m b e r s  a n d 

are symbolic uncertain variables whose values 
are not exact, but only known to lie in the range [-1,+1].
Example 1: Using IA and AA to calculate ranges. Consider a 
datapath represented by a polynomial z=ab+c-b and the 
ranges of primary inputs as shown in square brackets in Fig.2.  

Fig. 2. An example performing range analysis by IA and AA 
Fig. 2 describes the exact ranges (subscript ex), as well as 

the ranges calculated by IA (subscript I) and AA (subscript A)
respectively. Both error bounds for the primary output z are
computed as -31-(-34)=3, and the error ratios are 

and . Therefore, 
the range by AA is better than that of IA.    

Note that the error bounds and ratios in Example 1 are 
based on the known exact ranges, as IA and AA cannot obtain 
them by themselves. The intermediate variable eA (AA 
method) as well as the primary outputs zI and zA calculated by 
IA and AA must be represented by 7 signed integer bits. 
However, 6 bits are enough for the exact ranges to represent e
and z since their exact ranges are [-32, -2] and [-31, -4]. 
Definition 2: Correlation is present if at least two monomials 
in a polynomial have in their support the same variable.  

The correlation in two monomials means that if the value 
of one monomial changes, the other will follow the change. 
Clearly, the correlation may lead to the overestimation of 
range because the two monomials might not reach their 
maximum or minimum values at the same time, so handling 
the correlation becomes a key task in range analysis. 

2.2 Arithmetic Transform 
Definition 3: The Arithmetic Transform (AT) [9] is a 
polynomial representing a pseudo Boolean function 

with an arithmetic operation “+”, word-level 
coefficients c, binary inputs and binary exponents 

:

By Def. 3 and Eqn. (3), it is easy to conclude that AT is a 
linear transformation, that is: 

(4)

Given a real-valued polynomial with word-level variables 
made of binary vectors( ),
the AT can be constructed by replacing word-level variables 
by their defining polynomial. For instance, if X and Y are
unsigned input integers represented by 2 and 3 bits, and the 
polynomials is , then its corresponding 
AT polynomial form is: 

     

After an exact polynomial is converted to AT, we need to 
calculate its maximum and minimum values for the range and 
precision analysis. To achieve this goal, the AT generation 
algorithm and a branch-and-bound searching method have 
been fine tuned in [11] to efficiently handle the intermediate 
expression swell during the calculation of the extreme values 
of the AT polynomial. We note that since the uncertain 
variable  in AA normalizes to [-1, 1], AT may easily 
represent it by a signed fractional number.  

Based on the above analysis, we propose a hybrid method 
for range calculations, which combines IA, AA and AT. The 
above mathematical forms describe the fact that AA can get a 
tighter range than IA if the datapath has correlation such as 
the final output z (Example 1). Otherwise, IA is better, as 
illustrated by the intermediate variables d and e. Furthermore, 
AA can represent the arbitrary input range compactly while 
AT might not, so the input is better to be expressed by AA. 
For the intermediate variables, since the uncertain variable 
in AA normalizes to [-1, 1], AT may easily represent it by a 
signed fractional number, and hence is a useful tool to 
determine a suitable value of .

Hence, the advantages of IA, AA and AT are 
complementary and can be used together, as long as they are 
employed in suitable environments. We next present a hybrid 
algorithm for the static range analysis and the bit-width 
optimization. 

III. Hybrid Range Analysis Engine 
In this section, we describe the hybrid engine to allocate 

IBs for a fixed-point datapath and use an example to clearly 
explain it. 

3.1 Description of the Hybrid Engine 

       Fig. 3. Abstract model of the proposed algorithm
Fig. 3 illustrates the way that the algorithm invokes 

different methods to handle a datapath. Furthermore, it can 
distribute correlation to AA and AT for the two-step  
processing, in which AA partly handles correlation first, and 
AT continues to refine the results. In contrast to ours, the 
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SMT-based method is time consuming, as it invokes 
underlying exhaustive engine pretty much all the time to 
refine the initial IA ranges, Fig. 4.  

Fig. 4. SMT model to perform range analysis 
Fig. 5 summarizes our algorithm for allocating integer 

bit-widths in a datapath. It first retrieves the polynomial 
description representing a datapath (Step 1) and generates the 
AA expression for future utilization (Step 2). If the 
polynomial has no correlation, IA is used to compute the 
exact range so the bit-widths will be determined (Steps 4 and 
5); otherwise, the uncertain variables are quantized in the AA 
expression (Step 6), and the conversion algorithm is invoked 
to convert the expression to its AT form (Step 7). Then, the 
branch-and-bound searching algorithm is applied to find the 
upper and the lower bounds, and estimate the bound intervals 
(Step 8). Finally, the IBs of the datapath are allocated (Steps 9 
and 10). 

Fig. 5. Algorithm for allocating IBs in a datapath 
  In order to clearly explain the propose hybrid engine in Fig. 
5, we apply it for Example 1 to calculate ranges in the 
following section. 

3.2 Datapath Analysis 
3.2.1 AA Expressions of the Outputs  

The first task is to express the output range by AA. The 
datapath of Example 1 has three primary inputs, two 
intermediate outputs and one primary output. The three 
primary variables a, b and c are represented by Eqn. (1) as:         

The first intermediate variable is d = ab. Confirming no 
correlation in the polynomial is easy for only one monomial, 
so the range of d can be determined by IA as [-10, 20]. The 
AA expression is 

The next intermediate variable in the datapath is e=ab+c.
Again, there is no correlation because the two monomials “ab”
and “c” do not include a same variable, so the range of e
calculated by IA is [-32, -2]. The AA expression of e is: 

Finally, we determine the range of the primary output
z=ab+c-b. As the variable b occurs two times, the two 

monomials of “ab” and “-b” are correlated making the case is 
much more complex. The AA expression of z is then: 

(5)
3.2.2 Determining Quantization Bits of Uncertain Variables   

As and belong to [-1, 1], AT can represent the scope 
approximately by an m-bit signed fractional number, where 
the contribution of each bit is shown in Table 1. 

sign 0.5 0.25 0.125 
x0 x1 x2 x3

Table 1.Format for representing a signed factional number 

Let  and  be quantized uncertain variables to replace 
 and . Their corresponding AT representations are: 

(6)

Here m1 and m2 are integers representing the quantization 
bits for and  respectively. Note that compared to 

and , and  cannot be equal to -1 and 1 but only 
approximate these border values, that is, -1< ( , ) < 1. If 
we can determine the values of m1 and m2, the output is 
represented compactly and the approximation error can be 
estimated. Hence, the next step is to calculate the suitable 
bit-widths for the uncertain variables. 

The worst case occurs if the approximation error is beyond 
1 for an integer number, when it is possible to generate an 
additional bit, Eqn. (7). 

(7) 
Based on the obtained value z, we can estimate a scope [z-0.5, 
z+0.5] for the exact output zex, and the approximation error 
will be limited in 1. Using the AA form zA and two 
quantization variables and , Eqn. (7) reduces to: 

(8)
By the triangle inequality, if the following equation can be 
satisfied, then Eqn. (8) is also satisfied: 

(9)
represent error bounds 

of the three monomials respectively. The monomial error 
bound is defined as 
Note that Eqn. (9) uses absolute values for each monomial 
error instead of actual ones. In some specific cases, all 
monomial errors have negative values, and hence contribute 
the most to the overall error. Although monomial errors with 
opposite polarity may be counteract leading to the smaller 
overall error than the addition of absolute monomial errors, 
Eqn. (9) avoids specific cases and guarantees that the 
obtained error cannot exceed the assumed one. 

As it is impossible to address all monomial errors 
concurrently, we process each monomial case individually. 
Hence the assumed error value for the first processed 
monomial is the whole error space, that is, “0.5”: 

 (10)
The reason to choose the monomial  as the first 

one is because it has an uncertainty degree “2” while for the 
remaining monomials and , this degree is one. The 
preferential choice of the monomial with the highest 
uncertainty degree is helpful to decrease the calculation time. 
Obviously, when all bits in the data format are “1” except the 
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sign bit, the fractional number has the largest approximation 
error 2-m+1. For instance, using four bits in Table 1 to 
represent the value “1” or “-1”, when x1, x2 and x3 are all set 
“1”, the maximum error is 2-3 = 0.125. If the representation of 
other values is restricted to the interval [-1, 1], then the error 
changes to 2-4 = 0.0625. When the monomial reaches the 
maximum error, the corresponding values of 
and  are equal to 1 and (1-2-m+1)2 respectively. As there 
are no additional restrictions on individual variables, we 
assume that  and  have same bit-widths m. Therefore, 
the maximum error is represented as 
4.5[1-(1-2-m+1)2].

The value m is obtained to be 6 by solving Eqn. (10), which 
means that  and both require at least six bits to satisfy 
Eqn. (10). The maximum fractional value represented by six 
bits is 0.96875, hence by substituting = = 0.96875, the real 
value is 4.5 * 0.968752 = 4.223. This results in 
the obtained maximum error of 4.5 – 4.223 = 0.277 for the 
monomial “ ”. Therefore, the value of 

cannot exceed the remaining error space calculated to 
be 0.5–0.277 = 0.223, which is referred to Eqn. (11): 

(11) 
Next we explore the monomial “ ”. Again, similarly to 

Eqn. (10), the assumed error for this monomial is the 
remaining error space described by the following equation: 
                  (12) 

To satisfy Eqn. (12), must be expressed using at least 
four bits. Hence, to fulfill the two requirements on the size of 

, i.e., six bits in the monomial “ ” and four bits in the 
monomial “ ”, must be represented by 6 bits. This 
results in = 1.5 * 0.96875=1.4531.  
  The obtained maximum error for the monomial is
then 1.5-1.4531=0.0469, and the remaining error space is 
0.223-0.0469=0.1761. The final monomial must satisfy 
this error, which is indicated by the following equation: 
                           (13) 

The bit-width of  is 7 determined by Eqn. (13). This, in 
combination with the bit-width of 6 in the monomial ,
result in the final 7-bit representation of . So we determine 
bit-widths for  and  as m1=6 and m2=7. Hence, the error 
bound for the monomial = 9*2-7+1 is 0.1406. Since the 
final bit-width of  is different from the obtained bit-width 
in the monomial , the maximum error of this 
monomial is re-calculated as: 

        0.2087
Above values indicated by italic numbers denote error 

bounds for each uncertain monomial: 

                 (14) 

The obtained error bound for the primary output z is 
calculated as 0.0469+0.1406+0.2087= 0.3962, Fig. 6. 

The AT representation of z is determined by expanding 
and  into their bit-level expressions: 

Fig. 6. Description of the final calculation 

AT(z)
(15) 

By invoking the conversion algorithm and the 
branch-and-bound search [11], the upper and the lower 
bounds for the scope of the output z, Eqn. (15), can be 
computed as -4.4 and -30.7. Based on Eqn. (14), we can 
conclude that the exact upper and lower bounds belong to the 
following intervals: 

(16) 

The values of upper and lower bounds of the range of 
outputs are estimated to lie within very tight intervals, Eqn. 
(16). The capability of our method to produce such 
estimations puts it in a clear advantage over other methods 
such as AA [5] and SMT [8]. Applying the ceiling function to 
the values in Eqn. (16), we obtain two ranges: [-31, -4] and 
[-32, -4]. To guarantee that there is no overflow, the range 
[-32, -4] is selected. The error bound between the obtained 
and the exact ranges in Fig. 2 is only “1” and the error ratio is 
3.7%. Compared to the results of IA and AA in Example 1, 
both two indicators are much better. Note, that Eqn. (16) 
provides information of the exact bounds for the output 
variable z, and all past explorations only calculate course 
ranges and cannot estimate the intervals of the exact bounds 
leading to know the error bound and error ratio.  

If the monomial  is not chosen first, and need 
9 and 8 signed bits, respectively. Although the obtained range 
of z is the same, the calculation time would significantly 
increase since more quantization bits burden the conversion 
and the branch searching algorithms. Hence, the first choice 
of the monomial with the highest uncertain degree is very 
significant. 

3.3 Subroutine Description 

Fig. 7. Determining bit-widths for uncertain variables 
  The key step of quantizing uncertain variables in Fig. 5 
(Step 6) is described in Fig. 7. The subroutine first sorts the 
monomials in the AA expression. The monomials with higher 
uncertain degrees would be explored first (Steps 1 – 2). 
Considering the worst case, the initial error space is set to be 
0.5 (Step 3), and the subroutine begins to process each sorted 
monomial (Step 4). The quantization value Vq of one 
monomial is calculated in Step 5, and the bit-widths can be 
obtained in Step 6. Here d represents the uncertain degree of  

Determine_uncertain (AA_Expre) 
1. {  loop all monomials in the AA expression 
2.   { if the uncertain degree in the current monomial is smaller than 

that of the next monomial, move forward the next monomial; 
     } // sort monomials with higher uncertain degrees;   
3. ep = 0.5;    // initial error space
4.  for (p=0; p<monomial_num; p++)  // loop all sorted monomials  
5.  {  Vq = ;      

6.     // calculate quantization bits 

7.    ep =ep-mono_coeff * ;  // Update error space 

8.     store mp for corresponding uncertain variable;  } 
9.  for (i=0; i<uncertain_ num; i++)  // loop all uncertain variables  
10. {  for (p=0; p<monomial_num; p++)
         // loop all obtained bit-widths for comparison 
11.     qi= max (present in mp); };   

}
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Table 2: AA vs. simulation vs. SMT vs. hybrid engine for various datapaths 
the monomial. The subroutine updates the error space by the 
just calculated bit-widths mp which is stored for the 
corresponding uncertain variables in Step 8. Then the 
subroutine processes the next monomial. After the loop 
terminates, the obtained bit-widths for each uncertain variable 
are compared, and the maximum one is chosen as the final 
bit-width for this uncertain variable (Steps 9 – 11). Note that 
the efficient AT conversion and branch-and-bound searching 
are instrumental to the high efficiency in performing the range 
analysis. Our method combines techniques of IA, AA and AT. 
For instance, range calculations of variables d and e use IA, 
while AA and AT are used for z. Although AA partly neglects 
the correlation, the quantization of uncertain variables in AA 
expressions helps tracing the correlation, leading to much 
more precise results. Therefore, our method avoids 
disadvantages of AA, IA and AT while emphasizing their 
advantages, and hence it can obtain tighter ranges faster.  

IV. Experimental Results 
We implemented our algorithm in C++ and applied it to 

several benchmarks to evaluate our method. All experiments 
are done on a 512MB, 2.4GHz Intel Celeron machine. 

4.1 Ranges and IB Allocations   
1) Filter Polynomial
  Image processing applications often use a polynomial filter  
with a representation given by z = a1X4 + a2X3 + a3X2. Here 
we consider an example with the input X belonging to the 
interval X∈[-20, 10]:  

F = 4X4 + 16X3 + 20X2

 The implementation has four intermediate variables: 
q1 = X2 q2 = q1X   q3 = q2X  q4 = 4q2+16q3    z = q4+20q1

2) Hermite polynomial is an orthogonal polynomial 
sequence which can be used in ultra wide-band 
communications. We consider the case of n =6, that is: 

  The implementation contains three intermediate signals as: 
q1 = x2 q2 = q1(q1-15)    q3 = q1 (q2+45)   z = q3-15 

3) Dickson polynomials have applications in coding. Here 
we explore the implementation of the 4th order polynomial 

over real numbers (assume x∈[-50, 50], a∈[-20, 40]), and 
the goal is to find the integer ranges to allocate IBs: 

D4(x, a) = z= x4 -4x2a+ 2a2= x2(x2-4a)+ 2a2

The implementation has 4 intermediate variables, q1 to q4:
q1=x2     q2 = q1-4a   q3 = q1q2      q4= 2a2       z= q4+ q3

4) Multivariate Datapath. Some datapths realize multiple 
variable polynomials. For example, the following polynomial 
has 3 word-level variables:  

F= 30A2– 60AB - 40BC  
where A∈[-20, 30], B∈[10, 40] and C∈[-10, 30]. 

The case is broken intermediately into: 
q1 =30A2 q2 =60AB   q3 = 40BC  q4 = q1 -q2 z = q4 - q3

We use AA and SMT for range comparison and adopt AA, 
simulation and SMT for time comparison presented in Table 
2. Experimental results indicate that the ranges by SMT are 
close to the ranges obtained by our proposed method, which 
are much tighter than the ranges of AA, and the error ratios of 
our method are by far smaller than these of AA indicated by 
Column 5. In fact the values are approximately “0” which 
means the obtained ranges are very precise. Note that no other 
methods, such as AA and SMT, can calculate error ratio by 
itself, hence this value is based on the ranges calculated by 
our method, as it can automatically compute the error bound 
leading to estimation of the error ratio. Furthermore, AA and 
SMT may require one additional bit for representing some 
signals leading to the cost increase.  

Column 6 of Table 2 describes the execution times of 
several past methods and our proposed method. Simulation 
method takes much longer time than our method for the 
datapaths beyond one variable such as benchmarks 3 and 4. 
SMT often needs a long time for computation since it is based 
on the first-order SAT theory. Processing high-order 
polynomials such as benchmarks 2 and 3 is very difficult 
resulting in long execution time. Since the pure AT method 
can require huge number of terms, it can lead to low 
efficiency. The execution time of our method is acceptable 
both for high order and multivariate polynomials. Considering 
the tight results and short calculation time, our method is the 
best overall, especially if the quick calculation is a must.  
4.2 Area of Optimized Implementations 

As the exact area of the resulting circuit depends on the 

Case Out- 
put 

Range Bit Error Ratio (%) Time (s) 
      AA SMT Ours AA SMT Ours AA Ours Sim SMT AT Ours 

Image 
filter 

q1 [-350, 400] [-1, 401] [0, 400] 10 10 9 87.5 0  

5.12 15.6 26.1 7.8 
q2 [-8000, 7750] [-8001, 1001] [-8000, 1000] 14 14 14 75 0 
q3 [-158750,160000] [-1, 160001] [0, 160000] 19 19  18 99 0 
q4 [-511000,534000] [-112, 512001] [-109,512001] 21 20 20 99 <0.01 
z [-511000,542000] [-2, 520001] [-1, 520001] 21 20 20 99 <0.01 

Hermite 

q1 [-92, 100]   [-1, 101]     [0, 100] 8 8 7 92 0  
9.32 52.7 83.5 33.7 q2 [-9036, 8948] [-60, 8502] [-58, 8501] 15 15 15 100 <0.01 

q3 [-865820, 865828]  [-42, 854501] [-40, 854501] 21 21 21 103 <0.01 
z [-865835, 865813] [-57, 854490] [-55, 854486] 21 21 21 103 <0.01 

Dickson 

q1 [-2500, 2500] [-1, 2501] [0, 2500]  13 13 12 100 0  

163 124 213 51.5 
q2 [-2660, 2580] [-162, 2582]  [-160, 2580] 13 13 13 91 0 
q3 [-6450000,6450000] [-6401,6450003] [-6401,6450001] 24 24 24 99.8 <0.01 
q4 [-2800, 3200] [-1, 3201] [0, 3200] 13 13 12 87.5 0 
z [-6452800,6453200] [-6403,6453205] [-6401,6453201] 24 24 24 99.8 <0.01 

Multi- 
variate 
polyno- 
mial 

q1 [-25650, 27000] [-1, 27001] [0, 27000] 16 16 15 95 0  

>500 19 >500 9.2 
q2 [-57000,72000] [-48001, 72001] [-48000, 72000] 18 18 18 7.5 0 
q3 [-28000, 48000] [-16001, 48001] [-16000, 48000] 17 17 17 18.8 0 
q4 [-82500, 60000] [-45002, 60002] [-45001, 60001] 18 17 17 35.7 <0.01 
z [-130500, 97000] [-93004, 76003] [-93001, 76001] 18 18 18 34.6 <0.01 
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implementation technology, we perform further experiments 
based on the FPGA platform. We map the circuits to Xilinx 
Virtex5 FPGAs using ISE tool, version 8.1, to evaluate the 
real area impact of impact of the proposed algorithm in Table 
3. Implementations obtained by AA are used as comparison. 

Table 3: Area comparison of our method and AA 
We choose different input ranges for benchmarks 1 –3 

resulting in different bit-widths. Of course, the increase of 
bit-widths reflects the area increase. Column 4 indicates the 
saving ratio of our method. With the increase of the input 
ranges, the saving ratio decreases because the auxiliary area 
caused by additional bits is reduced. Our method can achieve 
the implementations with area smaller for around 4% - 8%. 
The implementation delays are compared in Column 3. Due 
to the smaller bit-widths, we are able to decrease delay by 
around 5% - 9%. Hence, the proposed method is helpful for 
both area and delay reduction. 

 Fig. 8. Comparison of area and execution time for all methods 
Fig. 8 illustrates comparison of area and execution time for 

Hermite and Dickson polynomials based on the same input 
range given in Section 4.1. Fig. 8.a) compares area of AA and 
our proposed method for the Hermite polynomial with orders 
4 - 6.With the order increase, the area difference between the 
two methods decreases because the additional generated area 
grows more slowly. Fig. 8.b) shows calculation time in 
different methods for the Dickson polynomial with orders 3 – 
6. The time of AA is obviously far shorter than other methods, 
and the two curves of SMT and simulation grow fast with 
order increase while the time of our method increases 
modestly.  

. Conclusions and Future Work 
Range analysis plays an important role in high-level 

synthesis of arithmetic circuits. Especially nowadays, when 
FPGAs are a preferred implementation technology, as well as 
useful computing substrate, fixed-point arithmetic has gained 
in prominence. Previous methods for fixed-point optimization 
and verification, including the improved simulation-based 
techniques, are of low efficiency, while the AA-based 
solution reaches coarse bounds. The coarse ranges may 
generate unnecessary bits, leading to more costly circuits. We 

propose a new static method to calculate ranges. It combines 
techniques of IA, AA and AT to find ranges efficiently, while, 
at the same time, the obtained ranges can be tight, hence 
avoiding the generation of additional bits. The key to our 
hybrid method is the ability to handle the correlation. Each 
intermediate output can be expressed using the smallest 
satisfying bit-width. The experiments indicate that our 
method needs much less time than SMT and obtains 
significantly tighter ranges than AA, and leads to the efficient 
area and delay of synthesized circuits. We plan to extend this 
work to various debug scenarios [12] and DSP applications on 
multiprocessors on chip [13]. 
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Circuit Area (Slices)     Delay (ns) 
Ours   AA Saving Ours AA Saving 

Filter  686 740 7.3% 23.5 25.4 7.5% 
Filter  725 768 5.6% 24.6 26.2 6.1% 
Filter  756 787 3.9% 25.4 26.8 5.2% 
Hermite 809 870  7% 31.3 33.5 6.6% 
Hermite 845 897 5.8% 32 33.9 5.6% 
Hermite 876 919 4.7% 32.4 34.1 5% 
Dickson 532 578 8% 27.4 29.9 8.3% 
Dickson 557 596 6.5% 27.9 30.2 7.6% 
Dickson 588 623 5.6% 28.7 30.7 6.5% 
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