
978-1-4244-2953-0/09/$25.00 ©2009 IEEE 360 10th Int'l Symposium on Quality Electronic Design

Accelerating Jitter Tolerance Qualification for High Speed Serial Interfaces

Yongquan Fan and Zeljko Zilic
Department of ECE, McGill University

yongquan.fan@mail.mcgill.ca
 zeljko.zilic@mcgill.ca

Abstract

We witness a phenomenal increase in the use of high-
speed serial interfaces (HSSIs). Post-silicon validation and
testing of HSSIs are critical to guarantee the design quality
and the device quality. Jitter tolerance at 10-12 Bit Error Rate
(BER) is a key parameter that is very costly to qualify due to
the long test time. This paper considers an acceleration
scheme to quantify post-silicon jitter tolerance. It can reduce
the test time from hours to seconds in validation and to tens
of milliseconds for compliance testing. Experimental results
at 3 Gigabit per second (Gbps) data rate demonstrate the
accuracy of our technique in pico-second range.

Keywords
 Jitter, jitter tolerance, serial interface, bit error rate

1. Introduction
The aggressive scaling in deep submicron technologies

has enabled the System-on-Chip (SoC) integration of a
microcontroller/DSP, ADC/DAC, memory blocks, power
management unit, PLL and external interfaces. The
staggering complexity makes it challenging to design fault-
free electronic products. As a consequence, close to 25% of
all design resources at Intel are now spent on post-fabrication
validation [1]. Furthermore, according to the data by Collett
International, the timing, mixed-signal interfaces, clocking
and crosstalk are among the prime failure reasons, each
contributing 18% or more to failing the first silicon. HSSIs,
which are interchangeably referred to as
Serializer/Deserializer (SerDes), personify all such issues,
and are hence critical to achieving the overall system quality.

It is challenging and expensive to qualify the SerDes
devices, especially one key parameter - jitter tolerance. Jitter
is the deviation of a signal from its ideal timing. The timing
deviation may cause bit errors. Numerous HSSI standards
define jitter tolerance performance at the 10-12 BER level,
which requires running at least 1013 bits. This requirement
fundamentally limits test speed: for instance, at 3Gbps data
rate, it takes around one hour to run that many bits. With
some emerging applications demanding 10-14 BER, direct
measurement is even further from being practical.

Because of the long test time, it is usually only possible to
validate the jitter performance on a bench in limited
combinations of Process, Voltage and Temperature (PVT).
In production, it is only assumed that jitter specifications are
�“guaranteed by design�”. Unfortunately, this assumption is not
valid anymore as we keep advancing the semiconductor
technology and increasing the data rate, which results in
tightening the jitter budget. Devices could fail in real
applications just because of their poor jitter tolerance

performance. It is hence becoming imperative to perform
jitter tolerance characterization thoroughly and implement
jitter tolerance test in production [2][3][4]. This is the only
way to ensure the design quality and device quality.

In this paper, we present a scheme to accelerate post-
silicon qualification for SerDes devices. It drastically reduces
jitter tolerance characterization time, and hence can improve
design quality by validating the design at different PVT
combinations. The scheme also makes it possible to
implement jitter tolerance test in production to guarantee the
quality of each device. In the remainder of the paper, we give
a brief introduction of the SerDes jitter specification
qualification in Section 2. In Section 3, we present the jitter
injection mechanism and test signal calibration results.
Section 4 introduces the jitter extrapolation algorithm and
Section 5 details how we accelerate jitter tolerance
qualification.

2. Background
SerDes has been widely used in communication standards

such as SATA, Fiber Channel and XAUI, either standalone
or as a component of a SoC. Figure 1 shows the architecture
of a typical SerDes device. The transmitter (Tx) takes parallel
data, converts it into serial format, and then drives the serial
data to the transmission media. The PLL generates an internal
high-speed serial clock for the serializer by multiplying the
reference clock.

The receiver (Rx) accepts high speed serial data and
restores it to the original parallel format. The Clock Data
Recovery (CDR) circuitry generates a recovered clock from
the received serial data, and then the recovered clock re-times
the received serial data. The re-timed data is restored to
parallel format by the deserializer. This transmission
mechanism needs the encoding and decoding logic to
manipulate the transmitted data transition density to make
sure that the CDR circuit can function correctly.

Figure 1: The architecture of a typical SerDes device

By encoding the clock into the data stream, CDR circuitry
guarantees that the clock and data are in phase when the jitter
frequency is in the bandwidth of the CDR. The CDR, along

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:47 from IEEE Xplore. Restrictions apply.

Fan, Accelerating jitter tolerance qualification �…

with other high-speed technologies, has pushed the serial data
rate above 10Gbps. However, if there is high frequency jitter
in the data stream, the recovered clock may not track the data
and the jitter may cause bit errors.

Jitter is composed of both deterministic and random
contents. Deterministic Jitter (DJ) includes Periodic Jitter
(PJ), Duty Cycle Distortion (DCD) and Inter-Symbol
Interference (ISI). Random Jitter (RJ) is usually characterized
statistically by a Gaussian distribution. Two parameters that
can quantitatively characterize RJ are the Root-Mean-Square
(RMS) value and the peak-to-peak value. The peak-to-peak
value is associated with a certain level of BER. Total Jitter
(TJ) is hence related to BER: the TJ is different when defined
at different BER levels.

Most communication standards specify jitter in terms of
DJ and TJ as separate specifications. For example, the 3Gbps
SATA receiver should tolerate 0.60UI TJ at 10-12 BER level
and should tolerate 0.42UI out-of-band DJ [5]. To guarantee
the design quality, we need to validate and test whether
silicon devices meet these specifications. While the details of
the Tx testing on ATE are presented in [6], we concentrate on
Rx jitter tolerance testing in this paper. The whole SerDes
test solution is illustrated in Figure 2. Our Rx testing solution
relies on an Arbitrary Waveform Generator (AWG), such as
Teradyne AWG6000 [7].

Figure 2: SerDes test solution on ATE

To perform jitter tolerance testing, we need to stress the
receiver using test signals with controllable amount of jitter,
to be able to test it at high BER levels and then extrapolate to
the low BER level. An early investigation in [8] presents the
concept of jitter tolerance extrapolation based on experiments
at 1.5Gpbs data. This paper refines the extrapolation
algorithm, provides analytical model and verifies its
application. More importantly, we propose systematic
acceleration schemes for post silicon validation and
production testing, including test signal setting, jitter
specification translation, and test limits determination. We
verify the schemes at 3Gpbs data down to 10-12 BER.

3. Test signal generation �– jitter injection
In our implementation, we inject jitter to the test signals

by modulating ideal AWG binary signals with a user defined
jitter profile. Our jitter injection involves the following four
steps:

(1) Create a digitized sinusoidal signal of proper amplitude
and frequency representing the PJ to inject

(2) Over-sample ideal binary data stream with sub-
picosecond resolution

(3) Modulate data edges, converting jitter amplitude
information to timing information by moving the data
signal edge based on the jitter amplitude

(4) Filter out components above the Nyquist frequency and
decimate the waveform to get desired AWG samples

On ATE, we calibrate the amount of injected jitter by
connecting the AWG output to the input of a high bandwidth
digitizer. The digitizer captures the AWG output and we then
extract the jitter from the captured waveform [6]. To further
verify our jitter injection scheme and to report a confident
jitter tolerance number, we used a Wavecrest SIA-3000 to
calibrate the jitter that we injected. Figure 3 shows the
measured PJ and TJ values at different injected PJ levels on
one tester. As can be seen, from 20ps to 200ps, the measured
PJ correlates well to the injected PJ and there is a constant
offset between the PJ and the measured TJ. In this case, the
offset is around 80ps. When the injected PJ is below 20ps,
the TJ does not change much due to the noise floor of the
AWG. This does not impact us as we will show later that the
test signals we need should have PJ values more than 100ps.

Figure 3: 3Gbps Test signal calibration

The constant offset between the injected PJ and the
measured TJ is caused by the intrinsic RJ of the AWG, and
DCD and ISI from the AWG and cables. The offset enables
us to relate the PJ to TJ. Therefore, we can translate the TJ
compliance test into PJ testing, where we can control the
amount of PJ in the test signal.

4. Post-silicon jitter tolerance extrapolation

4.1 Jitter and BER
Jitter can cause bit errors in serial communication when

the recovered clock re-times the data signal as shown in
Figure 1. Figure 4 illustrates the relationship between jitter
and BER. Ideally, the data is always sampled in the mid-bit
(sampling instance ts = UI/2 in Figure 4(a)). This is usually
true if the jitter frequency is within the bandwidth of the
CDR because the sampling clock is recovered from the data
signal. However, for out-of-band jitter, the sampling clock
can not track the data any more and the jitter can cause bit
errors.

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:47 from IEEE Xplore. Restrictions apply.

Fan, Accelerating jitter tolerance qualification �…

Figure 4: Jitter and BER in the receiver

Figure 4(b) shows an example of the jitter profile. The
signal edge transition is disturbed by RJ. The RJ is assumed
to be Gaussian. The Probability Density Function (PDF) of a
zero-mean Gaussian variable is written by

e xxp
22 2

2
1)(

where is the standard deviation.
One important function used to characterize the Gaussian

distribution is Q function, which represents the area under the
tail of the Gaussian PDF. The Q function is widely used for
computing the error probability in communication systems
[9]. Normalized to zero mean and unit variance, Q)(x is
defined as

x

t dtxQ e 22

2
1)(, 0x

)
2

(
2
1 xerfc (1)

where erfc(x) denotes the complementary error function,
defined as

x

t dtexerfc
22)((2)

As shown in Figure 4(b), the PDF of the left and right
edges of the data bit in Figure 4(a) can be expressed by

 e x
left xp

22 2
_

2
1)(

 e UIx
right xp

22 2)(
_

2
1)(

Bit errors may occur when the left edge occurs after the ts
(illustrated by back slash) or the right edge occurs before the
ts (illustrated by forward slash). Assuming uniform bit
distribution, i.e., a 50% chance of errors in these two cases,
the BER can be expressed by

s

s

t

right
t

lefts dttpdttptBER)()((*5.0)(__

)
2

1
2

1(*5.0 2

2

2

2

2
)(

2 dtdt
s

s

t UIt

t

t
ee

 dt
st

t
e 2

2

22
1 (3)

By substituting equations (1) and (2) to (3), we have:

)
2

(*5.0)(sterfctsBER (4)

By substituting with the RMS value of the RJ, RJRMS.,
equation (4) becomes

)
2

(*5.0)(
RMS

s

RJ
terfctsBER (5)

Equation (5) directly links the jitter to BER. The BER and
jitter relationship can further be transferred to BER and Q-
factor. As shown in Figure 4(c), the receiver works at the
crossing points of the bathtub curves. Therefore, we have
 2/UIts (6)
 RMSRJQDJUI *2 (7)
where Q is)(xQ defined in equation (1) with BERx [10].

By substituting st and RMSRJ in equation (5) according to
equations (6) and (7), we have

)
2

(*5.0 QerfcBER (8)

or
)*2(*2 1 BERerfcQ (9)

Equations (8) and (9) directly link BER and Q-factor. If
we know one parameter, the other can be calculated
accordingly. Our jitter tolerance extrapolation would need
these two equations.

In the above analysis, we ignore the DJ effects. This is
reasonable since the bit errors are caused by RJ at low BER
regions. Because the DJ is bounded, it only adds offsets to a
bathtub curve; it does not change the shape of the lower part
of the bathtub curve [10].

4.2 Jitter tolerance extrapolation algorithm
The goal of jitter tolerance extrapolation is to predict the

jitter tolerance at low BER based on high BER region data.
The jitter sources that stress the CDR can come from the
AWG, connection cables and the CDR itself. Figure 5
illustrates these jitter sources, where we use the following
symbols to represent the different jitter sources:

o PJINJECTED: the PJ injected in the AWG signals
o DCDEXT: the DCD from the AWG and cables
o ISIEXT: the ISI from the AWG and cables
o RJEXT: intrinsic RJ of the AWG
o DJCDR: intrinsic DJ of the device
o RJCDR: intrinsic RJ of the device

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:47 from IEEE Xplore. Restrictions apply.

Fan, Accelerating jitter tolerance qualification �…

CDR

PJINJECTED

ISIEXT

DCDEXT

Receiver

DJCDR

RJCDRRJEXT

AWG & Cables

Figure 5: Jitter sources to the CDR

Under the �“black box�” assumption, we have no
knowledge about the DJCDR and RJCDR. However, we can
assume that RJCDR is a constant for the same device with the
same injected jitter frequency because the RJCDR results from
the CDR response to the jitter frequency. We also assume
that the RJEXT is a constant when we sweep through the
different amounts of PJ at a fixed frequency. This is
reasonable because the RJ in the AWG comes mostly from
the sampling clock, which is constant when we change the
programmed samples for PJ injection. It can also be proved
by the jitter calibration result shown in Figure 3, where RJEXT
is included in the constant offset between the PJ and TJ.
Considering RJCDR and RJEXT are independent, if we denote
the total RJ seen by the CDR with RJTOT, RJTOT is a constant
and we have:

 CDREXTTOT RJRJRJ (10)
The ISI and DCD are assumed to be constant when the PJ

is incremented. This is also a reasonable assumption, because
they are mainly determined by the group delay caused by
bandwidth limitation. It is also proved by the constant offset
between the PJ and TJ shown in Figure 3. Of course, how the
PJ combines with the ISI depends on the relative phase
relationship, which is unknown inside the DUT. As all the DJ
sources are uncorrelated, the total DJ seen by the CDR,
DJTOT, can be expressed as:
 CDREXTEXTINJECTEDTOT DJDCDISIPJDJ)((11)

Under the Q-factor model at the bathtub crossing point
(filling up 1UI), by plugging equations (10) and (11) to
equation (7), we have

TOTDELTAINJECTED RJQDJPJUI *2 (12)

where DJDELTA is a constant defined as
 CDREXTEXTDELTA DJDCDISIDJ

Rewriting equation (12) to solve Q and PJ, we have
 SPJCQ INJECTED (13)

C

SQPJINJECT (14)

where C and S are constants defined by

TOTRJ
C

2
1 (15)

TOT

DELTA
RJ
DJUIS

2
 (16)

Equation (13) demonstrates that the Q factor is a linear
function of the injected PJ. Plugging equation (13) into
equation (8), we have:

)
2

*(*5.0 SPJCerfcBER INJECTED (17)

Equation (17) enables us to estimate BER according to the
injected PJ in the test signal. We can extrapolate the PJ
tolerance at low BER levels (such as 10-12) once we know the
two constant values C and S, which can be obtained using
higher BER data (such as 10-10 and higher).

5. Accelerating jitter tolerance qualification

5.1 Jitter tolerance characterization
In design validation and production characterization, we

need to get the jitter tolerance number at different PVT
corners. Our scheme is to perform a jitter tolerance BER scan
using test signals with different levels of injected PJ. High
BER data is collected in the range of 10-6 to 10-10. Q-factor
values at different BER levels are calculated according to
equation (9). Theoretically, we only need two data points to
get the two constant values C and S in equation (13)
according to

21

21
PJPJ
QQC

21

2112 **
PJPJ

PJQPJQS

However, we need to catch a large number of bit errors when
testing BER in order to get a repeatable result because of the
randomness of the RJ. A better approach is to use more data
points and perform linear regression fitting. Table 1 lists one
example of measured BER and calculated Q values at
different PJ levels. Figure 6 is a linear regression fitting of
the Q factor versus PJ.

Table 1: High BER data for jitter tolerance extrapolation

PJ(ps) 216 218 220 222 224 226 228

BER 2.13
E-10

4.37
E-10

3.90
E-9

2.43
E-8

1.05
E-7

7.06
E-7

2.05
E-6

Q 6.24 6.13 5.77 5.46 5.19 4.82 4.60

Figure 6: Q factor vs PJ

Based on the Q factor fitting result, we can now plot the
BER curve as a function of the injected PJ according to
equation (17), and thus predict the jitter tolerance at low BER
levels. Figure 7 shows the BER curve based on the fitting
result from the measurements in Table 1 (diamonds). It also
shows low BER measurements for extrapolation accuracy
verification (star points). As we can see, at 10-12 BER there is

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:47 from IEEE Xplore. Restrictions apply.

Fan, Accelerating jitter tolerance qualification �…

only 1ps discrepancy between the actually measured PJ
tolerance and the extrapolated PJ tolerance based on the BER
data above 10-10. We tried the procedure on different devices
and the accuracy is within 2% while our solution can speed
up the characterization >100.

Figure 7: BER extrapolation

The jitter tolerance result presented in Figure 7 is in terms
of PJ. To include the ISI+DCD and RJ, we need to link this
diagram with jitter injection calibration curves shown in
Figure 3. The delta between the injected PJ and the actual TJ
observed by the SIA-3000 is a constant around 80ps. For this
particular device under test, the jitter (TJ) tolerance at 10-12
BER is 292ps or 0.88UI while PJ is 212ps.

5.2. Jitter tolerance testing in production
If we directly apply the jitter tolerance characterization

technique to production, the test time overhead is still a bit
high because it involves BER to Q-factor translation, Q-
factor fitting and BER extrapolation down to 10-12 level. It
takes around one second, which is still too long for one
parameter testing �– on average an SoC device may have
hundreds of parameters to test.

Considering production test is only a go/no-go judgment
process, we do not need to know the exact value of the jitter
tolerance for each device; we only need to know whether the
jitter tolerance of a device is better than the jitter
specification defined at 10-12 BER. Instead of performing the
jitter tolerance extrapolation down to 10-12 BER and
comparing it with the specification, we perform the jitter
tolerance compliance test at a higher BER level. For example,
we can do the test by qualifying 10-6 BER performance. We
apply a test signal with a certain amount of injected PJ to the
device: if the measured BER of the device is better than 10-6,
it passes; otherwise, it fails. For this approach, we need to
solve two issues:

o Translating the total jitter tolerance specification
from 10-12 BER level to 10-6 BER level

o Translating the TJ specification to injected PJ
specification

The proposed jitter tolerance extrapolation algorithm can
transfer jitter tolerance specifications at different BER levels.

Because the Q-factor values at 10-12 and 10-6 BER levels are
known (7.0374 and 4.7534 respectively [9]), according to
equation (14), the PJ tolerance difference between 10-12 and
10-6 BER levels can be calculated by

C
QQPJ)10()10(612

1010 612

which is 25ps in the above example. According to equation
(15) and equation (10), the difference is determined by the RJ
in the test signal and the intrinsic RJ of the device that
slightly varies from device to device. For each new design,
we need to perform the jitter tolerance extrapolation to
characterize the PJ difference distribution. Then we use the
worst case value (the minimum value) to set test limits for
production.

Next, we need to translate the SATA TJ specification into
PJ specification because we can only control the amount of
PJ in the test signal. The test limit we need to set in
production should be based on the amount of the injected PJ.
This translation is done according to the offset value between
the measured TJ and the injected PJ as shown in Figure 3. To
do this translation for production, we need to perform the test
signal calibration at all the testers because the offset may
vary from tester to tester. Figure 8 shows the offset at some
testers. For these testers, it is valid to claim that the offset
between the injected PJ and the actual TJ is at least 70ps.

Based on this offset, we can translate the SATA TJ
specification into the PJ tolerance requirement in this case. In
SATA II, the TJ specification is 200ps at 10-12 BER level.
We can guarantee the TJ specification by checking the PJ
tolerance at 130ps: if a device can tolerate 130ps PJ at 10-12
BER level, we can guarantee that the device meets the SATA
jitter tolerance specification. Even though this might slightly
overstress devices on some testers (such as Tester2 and
Tester3), this is acceptable as long as it does not cause yield
issues.

65

70

75

80

85

90

50 100 150
Injected PJ (PS)

M
ea

su
re

d
TJ

-P
J

(P
S)

Tester1 Tester2 Tester3 Tester4

Figure 8: The offset between PJ and TJ at different testers

According to the jitter specification translation result, the

PJ difference between 10-12 and 10-6 BER levels in the
example is 25ps. Because at 10-12 BER level, the PJ tolerance
requirement is 130ps, the PJ tolerance limit should be set to
155ps at 10-6 BER level. We can source a test signal with
155ps injected PJ to the receiver and check 107 bits of
recovered data. If no errors are detected, this device is
classified as a good one; otherwise, it fails the jitter tolerance
compliance test.

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:47 from IEEE Xplore. Restrictions apply.

Fan, Accelerating jitter tolerance qualification �…

5.3. Discussions
In the proposed acceleration scheme for jitter tolerance

qualification, the injected jitter calibration and the jitter
tolerance extrapolation are the two key techniques we
employ. When applying the solution to production testing,
we need to especially pay attention to them.

We need to calibrate the test signals on all testers to make
sure that the difference between injected PJ and measured TJ
is bigger than the offset we used to derive the test limit,
which is 70ps in the example. If it is below this, we need to
tighten our test limit accordingly. In the same time, we also
need to keep an eye on the possible yield loss because we
overstress devices on some testers, such as on Tester2 we
overstress the device by around 10ps. This should not cause
issues because the design margin normally is big enough to
accommodate it. Another source that provides extra margin
for the test is that we classify devices with errors between 1
and 10 out of 107 bits as bad devices. Actually, they can be
classified as good ones as they meet 10-6 BER performance
with the injected jitter. This gives us extra guard band.

In addition, we need to do the jitter specification
translation (from 10-12 to 10-6 BER levels) based on devices
that can cover the product to be tested, such as devices from
all process corners. Doing this from one device may not be
enough. The good thing is that we only need to do this once
for every new design.

Even though the experiment is conducted on Teradyne
AWG6000, the jitter tolerance extrapolation technique can be
used on any platform that has jitter injection capability and
that can perform BER testing. The technique can rapidly
report the actual jitter tolerance value or qualify a jitter
tolerance specification.

6. Conclusions
We have demonstrated an innovative method to make the

time-consuming jitter tolerance test run faster by at least 100
times. Experimental data collected at 10-12 BER demonstrates
the accuracy of our technique in pico-second range. This
method can drastically reduce the validation and test time.
The reduced time-to-market and guaranteed performance
form the foundation of a quality electronic design.

7. Acknowledgments
The authors would like to acknowledge the support from

LSI Corporation. We would especially like to thank Dr. Yi
Cai for providing invaluable insights to an early version of
our paper. Our acknowledgement also goes to Mr. Liming
Fang for exchanging knowledge and helping calibrate the test
signals.

8. References
[1] P. Patra, �“On the Cusp of a Validation Wall,�” IEEE

Design & Test, vol. 24, n. 2, Mar.-Apr. 2007.
[2] S. Sunter, A. Roy, J. Cote, �“An Automated, Complete,

Structural Test Solution for SERDES�”, IEEE
International Test Conference, 2004

[3] M. Hafed, D. Watkins, C. Tam and B. Pishdad,
�“Massively Parallel Validation of High-speed Serial
Interfaces using Compact Instrument Modules�”, IEEE
International Test Conference, 2006

[4] M. Ishida, T. Yamaguchi, and M. Soma, �“A Method for
Testing Jitter Tolerance of SerDes Receivers Using
Random Jitter�”, DesignCon 2007

[5] Serial ATA International Organization: Serial ATA
Revision 2.5 Specification (�“Final Specification�”),
October 27, 2005

[6] Y. Fan, Y. Cai, Z. Zilic, �“A High Accuracy High
Throughput Jitter Test Solution on ATE for 3Gpbs and
6Gbps Serial-ATA�”, IEEE International Test
Conference, 2007

[7] Teradyne, Inc. http://www.teradyne.com
[8] Y. Fan, Y. Cai, L. Fang, A. Verma, B. Burcanowski, Z.

Zilic and S. Kumar, �“An Accelerated Jitter Tolerance
Test Technique on ATE fro 1.5GG/s and 3GB/s Serial-
ATA�”, IEEE International Test Conference ITC 2006.

[9] J. G. Proakis, Digital Communications, McGraw-Hill
High Education, 2001.

[10] Y. Cai, B. Laquai, and K. Luehman, �“Titter Testing for
Gigabit Serial Communication Transceivers�”, IEEE
Design & Test of Computers, Vol. 19, Issue 1, Jan, 2002

Authorized licensed use limited to: McGill University. Downloaded on November 27, 2009 at 00:47 from IEEE Xplore. Restrictions apply.

