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Abstract 

We witness a phenomenal increase in the use of high-
speed serial interfaces (HSSIs). Post-silicon validation and 
testing of HSSIs are critical to guarantee the design quality 
and the device quality.  Jitter tolerance at 10-12 Bit Error Rate 
(BER) is a key parameter that is very costly to qualify due to 
the long test time.  This paper considers an acceleration 
scheme to quantify post-silicon jitter tolerance. It can reduce 
the test time from hours to seconds in validation and to tens 
of milliseconds for compliance testing.  Experimental results 
at 3 Gigabit per second (Gbps) data rate demonstrate the 
accuracy of our technique in pico-second range. 
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1. Introduction 
The aggressive scaling in deep submicron technologies 

has enabled the System-on-Chip (SoC) integration of a 
microcontroller/DSP, ADC/DAC, memory blocks, power 
management unit, PLL and external interfaces. The 
staggering complexity makes it challenging to design fault-
free electronic products. As a consequence, close to 25% of 
all design resources at Intel are now spent on post-fabrication 
validation [1]. Furthermore, according to the data by Collett 
International, the timing, mixed-signal interfaces, clocking 
and crosstalk are among the prime failure reasons, each 
contributing 18% or more to failing the first silicon. HSSIs, 
which are interchangeably referred to as 
Serializer/Deserializer (SerDes), personify all such issues, 
and are hence critical to achieving the overall system quality.  

It is challenging and expensive to qualify the SerDes 
devices, especially one key parameter - jitter tolerance. Jitter 
is the deviation of a signal from its ideal timing. The timing 
deviation may cause bit errors. Numerous HSSI standards 
define jitter tolerance performance at the 10-12 BER level, 
which requires running at least 1013 bits. This requirement 
fundamentally limits test speed:  for instance, at 3Gbps data 
rate, it takes around one hour to run that many bits. With 
some emerging applications demanding 10-14 BER, direct 
measurement is even further from being practical. 

Because of the long test time, it is usually only possible to 
validate the jitter performance on a bench in limited 
combinations of Process, Voltage and Temperature (PVT).  
In production, it is only assumed that jitter specifications are 
�“guaranteed by design�”. Unfortunately, this assumption is not 
valid anymore as we keep advancing the semiconductor 
technology and increasing the data rate, which results in 
tightening the jitter budget. Devices could fail in real 
applications just because of their poor jitter tolerance 

performance. It is hence becoming imperative to perform 
jitter tolerance characterization thoroughly and implement 
jitter tolerance test in production [2][3][4]. This is the only 
way to ensure the design quality and device quality. 

In this paper, we present a scheme to accelerate post-
silicon qualification for SerDes devices. It drastically reduces 
jitter tolerance characterization time, and hence can improve 
design quality by validating the design at different PVT 
combinations.  The scheme also makes it possible to 
implement jitter tolerance test in production to guarantee the 
quality of each device. In the remainder of the paper, we give 
a brief introduction of the SerDes jitter specification 
qualification in Section 2. In Section 3, we present the jitter 
injection mechanism and test signal calibration results. 
Section 4 introduces the jitter extrapolation algorithm and 
Section 5 details how we accelerate jitter tolerance 
qualification.  
 

2. Background 
SerDes has been widely used in communication standards 

such as SATA, Fiber Channel and XAUI, either standalone 
or as a component of a SoC. Figure 1 shows the architecture 
of a typical SerDes device. The transmitter (Tx) takes parallel 
data, converts it into serial format, and then drives the serial 
data to the transmission media. The PLL generates an internal 
high-speed serial clock for the serializer by multiplying the 
reference clock. 

The receiver (Rx) accepts high speed serial data and 
restores it to the original parallel format. The Clock Data 
Recovery (CDR) circuitry generates a recovered clock from 
the received serial data, and then the recovered clock re-times 
the received serial data. The re-timed data is restored to 
parallel format by the deserializer. This transmission 
mechanism needs the encoding and decoding logic to 
manipulate the transmitted data transition density to make 
sure that the CDR circuit can function correctly. 

 

 
Figure 1: The architecture of a typical SerDes device 

 

By encoding the clock into the data stream, CDR circuitry 
guarantees that the clock and data are in phase when the jitter 
frequency is in the bandwidth of the CDR. The CDR, along 
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with other high-speed technologies, has pushed the serial data 
rate above 10Gbps. However, if there is high frequency jitter 
in the data stream, the recovered clock may not track the data 
and the jitter may cause bit errors.  

Jitter is composed of both deterministic and random 
contents.  Deterministic Jitter (DJ) includes Periodic Jitter 
(PJ), Duty Cycle Distortion (DCD) and Inter-Symbol 
Interference (ISI). Random Jitter (RJ) is usually characterized 
statistically by a Gaussian distribution. Two parameters that 
can quantitatively characterize RJ are the Root-Mean-Square 
(RMS) value and the peak-to-peak value. The peak-to-peak 
value is associated with a certain level of BER. Total Jitter 
(TJ) is hence related to BER: the TJ is different when defined 
at different BER levels. 

Most communication standards specify jitter in terms of 
DJ and TJ as separate specifications. For example, the 3Gbps 
SATA receiver should tolerate 0.60UI TJ at 10-12 BER level 
and should tolerate 0.42UI out-of-band DJ [5].  To guarantee 
the design quality, we need to validate and test whether 
silicon devices meet these specifications. While the details of 
the Tx testing on ATE are presented in [6], we concentrate on 
Rx jitter tolerance testing in this paper. The whole SerDes 
test solution is illustrated in Figure 2. Our Rx testing solution 
relies on an Arbitrary Waveform Generator (AWG), such as 
Teradyne AWG6000 [7].  
 

Figure 2: SerDes test solution on ATE 
 

To perform jitter tolerance testing, we need to stress the 
receiver using test signals with controllable amount of jitter, 
to be able to test it at high BER levels and then extrapolate to 
the low BER level. An early investigation in [8] presents the 
concept of jitter tolerance extrapolation based on experiments 
at 1.5Gpbs data. This paper refines the extrapolation 
algorithm, provides analytical model and verifies its 
application. More importantly, we propose systematic 
acceleration schemes for post silicon validation and 
production testing, including test signal setting, jitter 
specification translation, and test limits determination. We 
verify the schemes at 3Gpbs data down to 10-12 BER. 
 

3. Test signal generation �– jitter injection 
In our implementation, we inject jitter to the test signals 

by modulating ideal AWG binary signals with a user defined 
jitter profile. Our jitter injection involves the following four 
steps: 

(1) Create a digitized sinusoidal signal of proper amplitude 
and frequency representing the PJ to inject 

(2) Over-sample ideal binary data stream with sub-
picosecond resolution 

(3) Modulate data edges, converting jitter amplitude 
information to timing information by moving the data 
signal edge based on the jitter amplitude 

(4) Filter out components above the Nyquist frequency and 
decimate the waveform to get desired AWG samples 

 

On ATE, we calibrate the amount of injected jitter by 
connecting the AWG output to the input of a high bandwidth 
digitizer. The digitizer captures the AWG output and we then 
extract the jitter from the captured waveform [6]. To further 
verify our jitter injection scheme and to report a confident 
jitter tolerance number, we used a Wavecrest SIA-3000 to 
calibrate the jitter that we injected. Figure 3 shows the 
measured PJ and TJ values at different injected PJ levels on 
one tester. As can be seen, from 20ps to 200ps, the measured 
PJ correlates well to the injected PJ and there is a constant 
offset between the PJ and the measured TJ.  In this case, the 
offset is around 80ps. When the injected PJ is below 20ps, 
the TJ does not change much due to the noise floor of the 
AWG.  This does not impact us as we will show later that the 
test signals we need should have PJ values more than 100ps. 
  

 
Figure 3: 3Gbps Test signal calibration 

 

The constant offset between the injected PJ and the 
measured TJ is caused by the intrinsic RJ of the AWG, and 
DCD and ISI from the AWG and cables. The offset enables 
us to relate the PJ to TJ. Therefore, we can translate the TJ 
compliance test into PJ testing, where we can control the 
amount of PJ in the test signal. 
 

4. Post-silicon jitter tolerance extrapolation 
 

4.1 Jitter and BER 
Jitter can cause bit errors in serial communication when 

the recovered clock re-times the data signal as shown in 
Figure 1. Figure 4 illustrates the relationship between jitter 
and BER. Ideally, the data is always sampled in the mid-bit 
(sampling instance ts = UI/2 in Figure 4(a)). This is usually 
true if the jitter frequency is within the bandwidth of the 
CDR because the sampling clock is recovered from the data 
signal.  However, for out-of-band jitter, the sampling clock 
can not track the data any more and the jitter can cause bit 
errors. 
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Figure 4: Jitter and BER in the receiver 
 

Figure 4(b) shows an example of the jitter profile. The 
signal edge transition is disturbed by RJ. The RJ is assumed 
to be Gaussian. The Probability Density Function (PDF) of a 
zero-mean Gaussian variable is written by 
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where is the standard deviation. 
One important function used to characterize the Gaussian 

distribution is Q function, which represents the area under the 
tail of the Gaussian PDF. The Q function is widely used for 
computing the error probability in communication systems 
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where erfc( x ) denotes the complementary error function, 
defined as 
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As shown in Figure 4(b), the PDF of the left and right 
edges of the data bit in Figure 4(a) can be expressed by 
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Bit errors may occur when the left edge occurs after the ts 
(illustrated by back slash) or the right edge occurs before the 
ts (illustrated by forward slash). Assuming uniform bit 
distribution, i.e., a 50% chance of errors in these two cases, 
the BER can be expressed by 
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By substituting equations (1) and (2) to (3), we have: 
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By substituting  with the RMS value of the RJ, RJRMS., 
equation (4) becomes 
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Equation (5) directly links the jitter to BER. The BER and 
jitter relationship can further be transferred to BER and Q-
factor. As shown in Figure 4(c), the receiver works at the 
crossing points of the bathtub curves. Therefore, we have 
                   2/UIts                                                 (6) 
            RMSRJQDJUI *2                                     (7) 
where Q is )(xQ defined in equation (1) with BERx  [10]. 

By substituting st  and RMSRJ  in equation (5) according to 
equations (6) and (7), we have 

                )
2

(*5.0 QerfcBER                                   (8) 

or 
                )*2(*2 1 BERerfcQ                              (9) 

Equations (8) and (9) directly link BER and Q-factor. If 
we know one parameter, the other can be calculated 
accordingly. Our jitter tolerance extrapolation would need 
these two equations.  

In the above analysis, we ignore the DJ effects. This is 
reasonable since the bit errors are caused by RJ at low BER 
regions. Because the DJ is bounded, it only adds offsets to a 
bathtub curve; it does not change the shape of the lower part 
of the bathtub curve [10].  
 

4.2 Jitter tolerance extrapolation algorithm 
The goal of jitter tolerance extrapolation is to predict the 

jitter tolerance at low BER based on high BER region data. 
The jitter sources that stress the CDR can come from the 
AWG, connection cables and the CDR itself. Figure 5 
illustrates these jitter sources, where we use the following 
symbols to represent the different jitter sources: 

o PJINJECTED: the PJ injected in the AWG signals 
o DCDEXT: the DCD from the AWG and cables 
o ISIEXT: the ISI from the AWG and cables 
o RJEXT: intrinsic RJ of the AWG 
o DJCDR: intrinsic DJ of the device 
o RJCDR: intrinsic RJ of the device 
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Figure 5:  Jitter sources to the CDR 

 

Under the �“black box�” assumption, we have no 
knowledge about the DJCDR and RJCDR. However, we can 
assume that RJCDR is a constant for the same device with the 
same injected jitter frequency because the RJCDR results from 
the CDR response to the jitter frequency. We also assume 
that the RJEXT is a constant when we sweep through the 
different amounts of PJ at a fixed frequency. This is 
reasonable because the RJ in the AWG comes mostly from 
the sampling clock, which is constant when we change the 
programmed samples for PJ injection. It can also be proved 
by the jitter calibration result shown in Figure 3, where RJEXT 
is included in the constant offset between the PJ and TJ. 
Considering RJCDR and RJEXT are independent, if we denote 
the total RJ seen by the CDR with RJTOT, RJTOT is a constant 
and we have: 

            CDREXTTOT RJRJRJ                             (10) 
The ISI and DCD are assumed to be constant when the PJ 

is incremented. This is also a reasonable assumption, because 
they are mainly determined by the group delay caused by 
bandwidth limitation. It is also proved by the constant offset 
between the PJ and TJ shown in Figure 3. Of course, how the 
PJ combines with the ISI depends on the relative phase 
relationship, which is unknown inside the DUT. As all the DJ 
sources are uncorrelated, the total DJ seen by the CDR, 
DJTOT, can be expressed as: 
         CDREXTEXTINJECTEDTOT DJDCDISIPJDJ )(    (11) 

Under the Q-factor model at the bathtub crossing point 
(filling up 1UI), by plugging equations (10) and (11) to 
equation (7), we have 

       
TOTDELTAINJECTED RJQDJPJUI *2                   (12) 

where DJDELTA is a constant defined as 
        CDREXTEXTDELTA DJDCDISIDJ  

Rewriting equation (12) to solve Q and PJ, we have 
             SPJCQ INJECTED                                       (13) 
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Equation (13) demonstrates that the Q factor is a linear 
function of the injected PJ.  Plugging equation (13) into 
equation (8), we have: 

             )
2

*(*5.0 SPJCerfcBER INJECTED               (17) 

Equation (17) enables us to estimate BER according to the 
injected PJ in the test signal. We can extrapolate the PJ 
tolerance at low BER levels (such as 10-12) once we know the 
two constant values C and S, which can be obtained using 
higher BER data (such as 10-10 and higher).   
 

5. Accelerating jitter tolerance qualification 
 

5.1 Jitter tolerance characterization 
In design validation and production characterization, we 

need to get the jitter tolerance number at different PVT 
corners. Our scheme is to perform a jitter tolerance BER scan 
using test signals with different levels of injected PJ. High 
BER data is collected in the range of 10-6 to 10-10. Q-factor 
values at different BER levels are calculated according to 
equation (9).  Theoretically, we only need two data points to 
get the two constant values C and S in equation (13) 
according to 

21

21
PJPJ
QQC  

21

2112 **
PJPJ

PJQPJQS  

However, we need to catch a large number of bit errors when 
testing BER in order to get a repeatable result because of the 
randomness of the RJ. A better approach is to use more data 
points and perform linear regression fitting.  Table 1 lists one 
example of measured BER and calculated Q values at 
different PJ levels. Figure 6 is a linear regression fitting of 
the Q factor versus PJ. 
 
Table 1: High BER data for jitter tolerance extrapolation 

PJ(ps) 216 218 220 222 224 226 228 

BER 2.13
E-10 

4.37
E-10 

3.90
E-9 

2.43
E-8 

1.05
E-7 

7.06
E-7 

2.05
E-6 

Q 6.24 6.13 5.77 5.46 5.19 4.82 4.60 
 

 
Figure 6: Q factor vs PJ 

 

Based on the Q factor fitting result, we can now plot the 
BER curve as a function of the injected PJ according to 
equation (17), and thus predict the jitter tolerance at low BER 
levels. Figure 7 shows the BER curve based on the fitting 
result from the measurements in Table 1 (diamonds). It also 
shows low BER measurements for extrapolation accuracy 
verification (star points).  As we can see, at 10-12 BER there is 
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only 1ps discrepancy between the actually measured PJ 
tolerance and the extrapolated PJ tolerance based on the BER 
data above 10-10. We tried the procedure on different devices 
and the accuracy is within 2% while our solution can speed 
up the characterization >100.  

 
Figure 7: BER extrapolation 

 

The jitter tolerance result presented in Figure 7 is in terms 
of PJ. To include the ISI+DCD and RJ, we need to link this 
diagram with jitter injection calibration curves shown in 
Figure 3. The delta between the injected PJ and the actual TJ 
observed by the SIA-3000 is a constant around 80ps. For this 
particular device under test, the jitter (TJ) tolerance at 10-12 
BER is 292ps or 0.88UI while PJ is 212ps. 
 

5.2. Jitter tolerance testing in production 
If we directly apply the jitter tolerance characterization 

technique to production, the test time overhead is still a bit 
high because it involves BER to Q-factor translation, Q-
factor fitting and BER extrapolation down to 10-12 level.  It 
takes around one second, which is still too long for one 
parameter testing �– on average an SoC device may have 
hundreds of parameters to test. 

Considering production test is only a go/no-go judgment 
process, we do not need to know the exact value of the jitter 
tolerance for each device; we only need to know whether the 
jitter tolerance of a device is better than the jitter 
specification defined at 10-12 BER. Instead of performing the 
jitter tolerance extrapolation down to 10-12 BER and 
comparing it with the specification, we perform the jitter 
tolerance compliance test at a higher BER level. For example, 
we can do the test by qualifying 10-6 BER performance. We 
apply a test signal with a certain amount of injected PJ to the 
device: if the measured BER of the device is better than 10-6, 
it passes; otherwise, it fails.  For this approach, we need to 
solve two issues: 

o Translating the total jitter tolerance specification 
from 10-12 BER level to 10-6 BER level 

o Translating the TJ specification to injected PJ 
specification 

The proposed jitter tolerance extrapolation algorithm can 
transfer jitter tolerance specifications at different BER levels. 

Because the Q-factor values at 10-12 and 10-6 BER levels are 
known (7.0374 and 4.7534 respectively [9]), according to 
equation (14), the PJ tolerance difference between 10-12 and 
10-6 BER levels can be calculated by 

C
QQPJ )10()10( 612

1010 612  

which is 25ps in the above example. According to equation 
(15) and equation (10), the difference is determined by the RJ 
in the test signal and the intrinsic RJ of the device that 
slightly varies from device to device. For each new design, 
we need to perform the jitter tolerance extrapolation to 
characterize the PJ difference distribution. Then we use the 
worst case value (the minimum value) to set test limits for 
production.  

Next, we need to translate the SATA TJ specification into 
PJ specification because we can only control the amount of 
PJ in the test signal. The test limit we need to set in 
production should be based on the amount of the injected PJ. 
This translation is done according to the offset value between 
the measured TJ and the injected PJ as shown in Figure 3. To 
do this translation for production, we need to perform the test 
signal calibration at all the testers because the offset may 
vary from tester to tester. Figure 8 shows the offset at some 
testers. For these testers, it is valid to claim that the offset 
between the injected PJ and the actual TJ is at least 70ps.   

Based on this offset, we can translate the SATA TJ 
specification into the PJ tolerance requirement in this case. In 
SATA II, the TJ specification is 200ps at 10-12 BER level. 
We can guarantee the TJ specification by checking the PJ 
tolerance at 130ps: if a device can tolerate 130ps PJ at 10-12 
BER level, we can guarantee that the device meets the SATA 
jitter tolerance specification. Even though this might slightly 
overstress devices on some testers (such as Tester2 and 
Tester3), this is acceptable as long as it does not cause yield 
issues. 
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Figure 8: The offset between PJ and TJ at different testers 

 
According to the jitter specification translation result, the 

PJ difference between 10-12 and 10-6 BER levels in the 
example is 25ps. Because at 10-12 BER level, the PJ tolerance 
requirement is 130ps, the PJ tolerance limit should be set to 
155ps at 10-6 BER level. We can source a test signal with 
155ps injected PJ to the receiver and check 107 bits of 
recovered data. If no errors are detected, this device is 
classified as a good one; otherwise, it fails the jitter tolerance 
compliance test. 
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5.3. Discussions 
In the proposed acceleration scheme for jitter tolerance 

qualification, the injected jitter calibration and the jitter 
tolerance extrapolation are the two key techniques we 
employ. When applying the solution to production testing, 
we need to especially pay attention to them.  

We need to calibrate the test signals on all testers to make 
sure that the difference between injected PJ and measured TJ 
is bigger than the offset we used to derive the test limit, 
which is 70ps in the example. If it is below this, we need to 
tighten our test limit accordingly. In the same time, we also 
need to keep an eye on the possible yield loss because we 
overstress devices on some testers, such as on Tester2 we 
overstress the device by around 10ps. This should not cause 
issues because the design margin normally is big enough to 
accommodate it. Another source that provides extra margin 
for the test is that we classify devices with errors between 1 
and 10 out of 107 bits as bad devices. Actually, they can be 
classified as good ones as they meet 10-6 BER performance 
with the injected jitter. This gives us extra guard band.  

In addition, we need to do the jitter specification 
translation (from 10-12 to 10-6 BER levels) based on devices 
that can cover the product to be tested, such as devices from 
all process corners. Doing this from one device may not be 
enough. The good thing is that we only need to do this once 
for every new design.  

Even though the experiment is conducted on Teradyne 
AWG6000, the jitter tolerance extrapolation technique can be 
used on any platform that has jitter injection capability and 
that can perform BER testing. The technique can rapidly 
report the actual jitter tolerance value or qualify a jitter 
tolerance specification. 
 

6. Conclusions 
We have demonstrated an innovative method to make the 

time-consuming jitter tolerance test run faster by at least 100 
times. Experimental data collected at 10-12 BER demonstrates 
the accuracy of our technique in pico-second range. This 
method can drastically reduce the validation and test time. 
The reduced time-to-market and guaranteed performance 
form the foundation of a quality electronic design.   
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