
HARDWARE VERIFICATION BY UNIVERSAL TEST SET
SIMULATIONS, SAT AND BDDS

Katarzyna Radecka Zeljko Zilic
Concordia University McGill University

1455 de Maisonneuve W.
Montreal

QC H3G 1M8
Canada

3480 University
Montreal

QC H3A 2A7
Canada

kasiar@ece.concordia.edu zeljko@macs.ece.mcgill.ca

Abstract. In this paper we consider verification of combinational circuits by
test vector simulations. The simulation-based verification under the presence
of a fault model uses test pattern generation approach. We consider an implicit
fault model that can possibly overcome incompleteness of explicit fault models
considered so far. We show that the test vector generation can be enhanced by
techniques used in formal verifications: SAT- and BDD-based solutions can be
combined with the vector simulations. Our method can pass useful information
between these disparate approaches. Tradeoffs between the three schemes are
explored.

1 Introduction

Hardware implementation verification techniques try to assert the correctness of the circuit
implementation. Verification methods based on simulations are easiest to adopt by
engineers - they are shown to complement the formal verification [2], [7], usually relying
on the use of BDDs, satisfiability (SAT) and automatic test pattern generation (ATPG).
Underlying the simulation-based verification is a selection of a non-exhaustive test vector
set. To verify a circuit by subjecting it to a test set, a representative fault model should be
present. The goal is then to assert the absence of errors belonging to the fault model. In
contrast, formal methods such as equivalence checking assert the equality of functions,
which is equivalent to passing exhaustive tests.
 In this paper we propose a complete simulation-based scheme for verifying the
combinational netlist under an error fault model. Our scheme features novel use of
Arithmetic Transform (AT), that is implicit in word-level decision diagrams [13], used in
verification of arithmetic circuits. The transform properties guarantee the compact test
pattern set for many design errors [3], consisting of various structured replacements of
gates and wires in the netlist. A majority of these error classes is shown to have small AT
presentation [8], and the algorithm for vector generation in that case has been given. In this
work we apply these concepts towards verifying the explicit classes of gate and wire
replacement errors. The same approach is extendable to faults model in [3] and elsewhere.

 Our method uses in its initial stages AT-derived test vectors that easily detect design
errors of small AT forms. To deal with failures that are redundant or not detected by AT
vectors, we employ methods and data structures already used in formal verifications and
ATPG. Towards that goal, the critical issue of the identification of redundant gate
replacement errors is solved. We present an exact SAT solution to the problem, together
with the filter preprocessing scheme based on the subset of the test derived by AT (shaded
area in Figure 1). The second solution uses the approximate don't care (DC) information in
the network. Based on the results of DC approximations, various SAT and ATPG
simplifications are constructed in the steps to follow. We show that BDDs can be
approximated, and that passing information between the processing stages can speed up
SAT.

Figure 1: Verification by Simulations and SAT/BDD

1.1 Related Work

Since the underlying fault model differs significantly from the single stuck-at-value model,
the usual testing approaches are not adequate. In [1] authors considered simulation-based
verification that relies on a fault model including the gate and wire replacements. Authors
showed that a subset of these errors could be modeled by several single stuck-at-value (s-a-
v) faults, and convert each of the select replacement faults into several stuck-at faults, to
which they apply ATPG and redundancy identification. Related to the overall scheme is
simulation-based mutation testing [13], which is based on similar assumptions regarding
the error size, but does not eliminate redundant errors. The methods that inject the faults
have been recently used in verifying complex HW-SW systems, such as FPGA mapping on
modern FPGA architectures [11].
 The alternative approach, i.e., the formal verification, often suffers from the space
explosion in data structures such as BDDs. Combining formal and simulation-based
methods has been hampered by the divergence in data representations and algorithms used.
The concept of filters [7] was applied towards using disparate combinational verification
models, but no passing of information among the methods was facilitated. The use of s-a-v
ATPG and BDDs was considered in [5] to augment test vector set for verifying safety
properties. Another combination of these approaches, reported in [2], uses the identification
of internal equivalent points. Then, instead of verifying the whole circuit, these internal
points are checked. The method suffers from the false negative problem, and the BDDs are
used to deal with this issue

2 Vector Generation BY AT

Arithmetic Transform is the underlying representation explored in many of the word-level
decision diagrams used in formal verification by equivalence checking, as in [13]. Unlike
the previous work, we use the properties of AT in simulation-based verification. The
transform is defined over pseudo-Boolean functions,

!

f :B
n
"W , with n binary inputs and

one word-level output. These pseudo-Boolean functions actually represent the outputs of
multi-output Boolean functions by word-level (W) quantities (such as unsigned integers).
For example, an n-bit unsigned adder is treated as a pseudo-Boolean function with integer
output values in range [0, 2(n+1)-1]. The transform can be obtained by multiplying the word-
level output values with the transform matrix:

!

T
n

=
T
n"1 0

"T
n"1 T

n"1

$
%

&

'
(, T

0
=1, (1)

as a matrix-vector multiplication

!

AT(f) = T
n
" f . The resulting transform is an integer-

input polynomial with word-level coefficients:

!

AT(f (x
0
,x
1
Lxn"1)) = Ci0i1 ...in"1

in"1= 0

1

#
i0= 0

1

x
0

i0 Lxn"1
in"1 . (2)

The faulty f~ is represented as a sum of the correct output f and an error e, eff
~

+= .
Arithmetic Transform is linear, and satisfies the equation:

!

AT(˜ f) = AT(f + e) = AT(f) + AT(e). (3)

 The polynomial coefficients in the transform are referred to as the spectrum. Spectrum
has been used to discover a number of Boolean function properties in design, test and
verification [14]. The size of the error e is the number of spectral coefficients in AT(e).
 Verification by error modeling will use the test vectors to detect errors whose
Arithmetic Transform is of small size in terms of number of spectral coefficients. The test
generation scheme relies on the representation of pseudo-Boolean function

!

˜ f by a Boolean
lattice Bn. Boolean lattice structure orders all 2n input vectors by a partial relation
whereby a vector V >V’ if its nonzero entries are a superset of those in V’ (e.g., 1011 >
1010). Consider a 2-bit adder. Spectral coefficients CV are associated with each input vector
V, as shown in Figure 2. The four nonzero coefficients are highlighted, and the
corresponding points are referred to as a1, a0, b1 and b0, respectively. The ordering relation
naturally forms n+1 layers in Bn, as shown in Figure 2.
 The following theorem is proven in [8] in a manner similar for decoding Reed-Muller
error correcting codes, or test set generation by Reed-Muller transform [4]. The theorem
provides a test set among the vectors in a number of lattice layers that depends on the size t
of an error spectrum.
Theorem 1: All errors that result in up to t spectral coefficients can be identified by testing

!

V =
n

i

"

$
%

&
'

i= 0

log2 (t+1)()*1

+ vectors in

!

log
2
(t +1)" #$1 consecutive top layers of the Boolean lattice. ■

 Theorem 1 provides an upper bound on the number of vectors simulated to uniquely
identify this class of errors. In actual circuits, larger faults (with more spectral coefficients)
will be detected. We observed [8] that high fault detection of gate replacement design errors
and s-a-v faults is obtained with the constant number (up to 4) top lattice layers.

Figure 2: Lattice B4 – 2-bit Adder Representation

 The major property of AT test vectors, i.e., the detection of all faults of a small spectral
size, allows us to quickly obtain high coverage. Unlike tackling the problem from the
beginning with a deterministic scheme [1], it is beneficial to apply first AT vector
simulations. Deterministic approaches can be restrained only to the last phase of
verification to handle the errors that have not been detected.

3 Fault List Generation

To apply our vector generation to concrete design faults, we consider as candidate faults all
possible replacements of gates in the netlist by input-compatible gates from a synthesis
library. The replacements that preserve the required functionality are redundant
replacements. Since they seriously impact the verification time, they need to be removed
from the fault list. Redundancy identification is an NP-complete problem; exact methods
might often be impractical. Two schemes for redundant fault identification are considered.
The first roughly requires more time; the second usually demands more space. The second
solution uses approximate BDD constructions by don't care subsets for preprocessing and
for generating a range of approximate SAT formulations.

3.1 Redundancy Identification using SAT

Satisfiability formulation of testing problems has been elaborated in [6]. For each fault in a
circuit, a conjunctive normal form (CNF), i.e., product-of-sums is constructed. If there is no
solution, then the fault is redundant. The SAT formulation consists of several types of
clauses. Good circuit clauses describe the correct operation of all circuit nodes. Faulty
circuit clauses describe the effects of a fault on the downstream network nodes. Active
clauses describe the activation of a fault. Finally, the fault site and goal clauses describe
conditions for excitation and observation of the fault at primary outputs.

3.1.1 Exact Redundancy Identification

SAT formulation for faults, such as the replacement of a gate g with gate h, can be derived
as follows. To describe requirements for activating the fault, we consider the distinguishing
gate inputs, which produce

!

g " h . The fault will be activated only for those inputs, and its
polarity will not be known. We create an auxiliary node

!

l = g" h , and the fault location

clause will be asserted as: l = 1. While the fault site clauses are modified in this way, all
others remain the same as in the stuck-at ATPG SAT formulation.

3.1.2 Preprocessing

Since invoking SAT might be costly, preprocessing steps reducing the number of SAT
instances, are usually applied. Often, these are random simulations. In our case, vectors
belong to top lattice layers. A smaller number of these layers can be used to detect all faults
of size given by Theorem 1. Only if they fail, an exact SAT formulation will be invoked.
Additionally, unlike random simulations, our test vector generation scheme provides the
compact description of the failing vector set that can be passed to the SAT. As these stimuli
don't detect any faults, they can be used to speed up the SAT process, as unsatisfying
assignments.

3.2 Redundant Fault Approximations

We now outline our deterministic scheme that not only eliminates many SAT calls, but also
provides information for generating easier instances of the SAT problem. We initially
preprocess the replacement faults by using don't cares (DCs), and then apply a constrained
stuck-at fault redundancy identification for faults which are more likely to be redundant.
For all possible replacement faults, the DC-sets have to be obtained only once. They can be
available for free as a by-product of the synthesis process, and are represented by BDDs.
 Redundancies are caused by the DC conditions at nodes affected by faults. These are
either observability (ODCs) or controllability (CDC) conditions inhibiting the error
detection. By dealing explicitly with DC-sets, or their complements – care sets, the
following observation holds. Each replacement h that coincides with the original gate g on a
local care set, Carelocal, at a given node, creates a redundant fault. A detectable gate
replacement error can become redundant or hard to detect when a DC-set overlaps the
difference between the two sets.

3.2.1 Calculating DC Approximations

Calculating DC-sets in a network requires determining CDCs and ODCs. Of all DC
conditions ODCs are the most time- and space-consuming. The ODC sets are commonly
represented by BDDs associated with each node. A good approximation is presented by
Compatible Observability Don't Cares (CODCs) [12] that are obtained by a simple
backwards traversal of the network. At multiple fan-out nodes, CODC of the fan-out nodes
are intersected. Note that, by using DC subsets, it is guaranteed that no irredundant fault
will be declared as redundant one.

3.2.2 Using S-A-V Redundancy Identification

Since we use subsets of ODCs, not all redundant replacements will be detected by this
approach alone. We will reuse the DC information obtained in the first step (Section 33.2)
to efficiently detect more redundancies. Our approach to identifying gate replacement
errors extends the application of single stuck-at-value ATPG to redundant fault
identification. Among all the possible approaches, we use the satisfiability formulation of
the problem for its flexibility to deal with multiple fault models.

 The good candidates for further redundancies are the gate replacements that are close to
the original, measured in Hamming distance, i.e., the number of minterms in which the
functions, intersected by caresets, differ:

!

d((g
ON
"Carelocal),(h

ON
ICarelocal)) # $. (4)

 The integer ε can be varied depending on the accuracy desired. By considering only
distance one, i.e., ε = 1, we can guarantee that any such fault can be modeled by a single s-
a-v fault. Additionally, if the replacements are within distance 1, given in cubes, the stuck-
at fault redundancy identification can still be used if the replacement is monotonous, i.e., all
differing outputs are of one polarity. When

!

g
ON
"Carelocal # h

ON
"Carelocal , a fault can be

detected by extending the s-a-0 ATPG. For a s-a-1 fault, the sign “! ” is used instead.
 In general, if the original and replaced function differ in one cube, say in k literals, then
k 1-clauses will be added. Addition of each 1-clause amounts to assigning a value to a
variable throughout the CNF, i.e., reducing the search space by factor of 2, up to a total
reduction by a factor of 2k. Hence, the solution to this problem is significantly quicker to
find than for a single s-a-0 fault.

4 Experimental Results

Experiments on MCNC benchmarks and arithmetic circuits (adders, multipliers, ALUs and
dividers) synthesized into generic Synopsys gate library GTECH show high fault coverage
(> 96.7%) with test vectors obtained by AT decoding, using top 4 layers (O(n4) size). The
complete (100%) redundant fault identification was obtained using our method. We built
fault simulation and our redundant fault identification on UC Berkeley SIS program.
Experiments were run on an Apple PowerMac G2 with two 1.25GHz PowerPC processors
and 512MB of main memory, under MAC OS X v10.2 operating system.

 Table 1 shows the gate and wire replacement coverage for arithmetic circuits. The
column in each case refers to fault coverage, the number of irredundant faults simulated,
the total number of simulation runs and a number of vectors that suffice for the given
coverage. The last set of numbers is obtained by counting the number of distinct vectors

 Gate Replacements Wire Replacements Circuit Size Cov. Faults Sims Vec. Cov. Faults Sims Vec.

ALU

24

32

48

99.3

99.5

99.7

191

348

736

516505

1015996

1424568

80

84

87

 100

100

100

1570

2643

3231

912585

1618214

2103455

205

244

251

CLA

Divid.

11x6

17x8

33x16

100

100

100

153

247

579

8720

18834

37792

45

51

75

100

95.9

94.1

1012

2232

4121

1274

1683

10514

68

76

97

Array

Divid.

11x6

17x8

33x16

100

100

100

96

149

293

1654

2147

4738

17

18

20

100

100

100

825

1043

1964

753

958

1168

7

7

8

Table 1: Fault Coverage by DC Approximations

that for first time detect a fault. Note that this number could be reduced through standard
vector compaction methods.
 In Table 2 we show that high fault coverage of the MCNC benchmarks is obtained by
using the small error spectrum assumption in UTS test pattern generation. The table also
reports the time and space needed to construct BDDs (needed in one of our redundancy
identifications). This data is useful for comparing the cost of our method with equivalence
checking by BDDs. Columns “Redund. Id” indicate times required for and coverage with
our exact SAT-based redundancy identification. Finally, the last three columns report
number of all faults simulated, total number of simulation runs for coverage by exact
identification, as well as the total number of vectors that are sufficient for the given
coverage. Total time spent in these simulations depends in general on the circuit simulation
speed, but we notice that this task is amenable to massive parallelization, as both the
circuits and the vectors are known in advance. We conclude that while BDDs perform
worst with in space complexity, the time complexity of SAT and simulations is handled
easier by preprocessing.

5 Conclusions and Future Work

The design error faults, including gate replacements, are significantly different in nature
than stuck-at-faults. The stuck-at-fault ATPG methods cannot be directly applied.
Simulations with a set of vectors derived from AT spectral properties are complemented
with BDD and SAT approaches in order to refine the tests. The results from BDD-based
approximations and partial simulations can be successfully passed to speed up the SAT
procedures that are used as a last resort. Together, these methods present a credible
simulation-based verification that can easily be automated, parameterized by the error size,

 DC BDD Redund. Id Vectors Circuit size Time Red [s] Total [s] Cov. [%] Faults Sims Vec.
i1 180 0.05 0 0 94.4 18 3093 10

alu2 2187 0.40 0.14 3.27 96.2 26 812 15

alu4 2148 0.94 4.51 35.7 95.9 49 6075 30

9symm 1252 0.95 0.04 0.16 97.5 6 190 2

cordic 401 0.21 0.02 0.04 92.8 28 37417 19

C499 64547 5.80 0 0.59 100 162 92466 84

C432 173829 6.07 0.15 0.31 100 167 11750 40

C1355 176390 153.7 1.99 2.26 100 68 13428 22

C1908 443558 218.4 1.71 2.11 91.2 98 650879 29

C2670 4401323 217.8 1.76 4.16 98.5 330 10088 36

C6288 ! ! 35 55.9 100 705 66003 271

C880 30501 5.31 0.1 0.47 97.6 188 6005874 106

Table 2: Comparison of Exact, Approximate and Pre-processed Identifications

and performed by means of orthogonal, but cooperative verification methods. This
approach can be extended to other error models.

 As the proposed method uses data representation and algorithms widely used in formal
methods, the simulation approach can be readily applied in combination with equivalence
checking, for which we constructed a generalization of AT representation [8]. Further, as
the same representations possess properties useful in verifying datapaths within allowed
imprecision [9]. Further work on the combination of the formal and simulation-based
methods could extend the reach of the methods considered here.

References

[1] H. Al-Assad and J. P. Hayes, “Design Verification via Simulation and Automatic Test Pattern
Generation”, Intl. Conf. on Computer Aided Design, 1995, pp. 174-180.

[2] J. Burch and V. Singhal, “Tight Integration of Combinational Verification Methods”, Intl. Conf. on
Computer Aided Design, 1998, pp. 570-576.

[3] D. van Campenhout, H. Al-Assad, J.P. Hayes, T. Mudge, R. Brown, “High-Level Design Verification of
Microprocessors via Error Modeling”, ACM Trans. Design Automation of Electronic Systems, 1998, 3(4),
pp.581-599.

[4] T. Damarla, and M. Karpovsky, “Fault Detection in Combinational Networks by Reed-Muller
Transform”, IEEE Transactions on Computers, 38(6), pp. 788-797, Jun. 1989.

[5] M.K. Ganai, A. Aziz, and A. Kuehlman, ”Enhancing Simulation via BDDs and ATPG”, Proceedings of
DAC, 1999, pp. 297-301.

[6] T. Larrabee, “Test Pattern Generation using Boolean Satisfiability”, IEEE Trans. CAD of Integrat
Circuits and Systems, 1992, 11(1), pp. 4-15.

[7] R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J.A. Abraham, and D.S. Fussell, “An Efficient Filter-
Based Approach for Combinatorial Verification”, IEEE Trans. on CAD of Integrated Circuits and
Systems, 18(11), 1999, pp. 1542-1557.

[8] K. Radecka and Z. Zilic, “Using Arithmetic Transform for Verification of Datapath Circuits via Error
Modeling”, Proceedings of VLSI Test Symposium, VTS 2000, pp. 271-277.

[9] K. Radecka and Z. Zilic, “Arithmetic Transforms for Verifying Compositions of Sequential Datapaths”,
Proceedings of International Conference on Computer Design, ICCD 2001, pp. 348-353.

[10] K. Radecka and Z. Zilic, “Specifying and Verifying Imprecise Arithmetic Circuits by Arithmetic
Transforms”, International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
2002, pp. 83-86.

[11] B. Ratchev, M. Hutton and B. van Antwerpen, “Logic Synthesis and Mapping: Verifying the Correctness
of FPGA Logic Synthesis Algorithms”, Proceedings of ACM International Symposium on FPGAs, 2003,
pp. 127-135.

[12] H. Savoj and R. Brayton, “The Use of Observability and External Don’t Cares for the Simplification of
Multilevel Logic Networks”, In Proceedings of International Conference on Computer Aided Design,
1990, pp. 297-301.

[13] C. Scholl, B. Becker, and T.M. Weis, “ Word-level Decision Diagrams, WLCDs and Division”, In
Proceedings of International Conference on Computer Aided Design, 1998, pp. 672-677.

[14] M. A. Thornton, R. Drechsler and M. D. Miller, “Spectral Techniques in VLSI CAD”, Kluwer Academic
Press, 2002.

[15] P. Vado, Y. Savaria, Y Zoccarato, and C. Robach, “A Methodology for Validating Digital Circuits with
Mutation Testing”, Proceedings of ISCAS, 2000, pp. I-343-346.

