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Abstract. In this paper we consider verification of combinational circuits by 
test vector simulations.  The simulation-based verification under the presence 
of a fault model uses test pattern generation approach. We consider an implicit 
fault model that can possibly overcome incompleteness of explicit fault models 
considered so far. We show that the test vector generation can be enhanced by 
techniques used in formal verifications: SAT- and BDD-based solutions can be 
combined with the vector simulations. Our method can pass useful information 
between these disparate approaches. Tradeoffs between the three schemes are 
explored. 

1 Introduction 

Hardware implementation verification techniques try to assert the correctness of the circuit 
implementation. Verification methods based on simulations are easiest to adopt by 
engineers - they are shown to complement the formal verification [2], [7], usually relying 
on the use of BDDs, satisfiability (SAT) and automatic test pattern generation (ATPG). 
Underlying the simulation-based verification is a selection of a non-exhaustive test vector 
set. To verify a circuit by subjecting it to a test set, a representative fault model should be 
present. The goal is then to assert the absence of errors belonging to the fault model. In 
contrast, formal methods such as equivalence checking assert the equality of functions, 
which is equivalent to passing exhaustive tests.  
 In this paper we propose a complete simulation-based scheme for verifying the 
combinational netlist under an error fault model. Our scheme features novel use of 
Arithmetic Transform (AT), that is implicit in word-level decision diagrams [13], used in 
verification of arithmetic circuits. The transform properties guarantee the compact test 
pattern set for many design errors [3], consisting of various structured replacements of 
gates and wires in the netlist. A majority of these error classes is shown to have small AT 
presentation [8], and the algorithm for vector generation in that case has been given. In this 
work we apply these concepts towards verifying the explicit classes of gate and wire 
replacement errors. The same approach is extendable to faults model in [3] and elsewhere.  



 Our method uses in its initial stages AT-derived test vectors that easily detect design 
errors of small AT forms. To deal with failures that are redundant or not detected by AT 
vectors, we employ methods and data structures already used in formal verifications and 
ATPG. Towards that goal, the critical issue of the identification of redundant gate 
replacement errors is solved. We present an exact SAT solution to the problem, together 
with the filter preprocessing scheme based on the subset of the test derived by AT (shaded 
area in Figure 1). The second solution uses the approximate don't care (DC) information in 
the network. Based on the results of DC approximations, various SAT and ATPG 
simplifications are constructed in the steps to follow. We show that BDDs can be 
approximated, and that passing information between the processing stages can speed up 
SAT. 
 

 
Figure 1: Verification by Simulations and SAT/BDD 

1.1 Related Work 

Since the underlying fault model differs significantly from the single stuck-at-value model, 
the usual testing approaches are not adequate. In [1] authors considered simulation-based 
verification that relies on a fault model including the gate and wire replacements. Authors 
showed that a subset of these errors could be modeled by several single stuck-at-value (s-a-
v) faults, and convert each of the select replacement faults into several stuck-at faults, to 
which they apply ATPG and redundancy identification. Related to the overall scheme is 
simulation-based mutation testing [13], which is based on similar assumptions regarding 
the error size, but does not eliminate redundant errors. The methods that inject the faults 
have been recently used in verifying complex HW-SW systems, such as FPGA mapping on 
modern FPGA architectures [11]. 
 The alternative approach, i.e., the formal verification, often suffers from the space 
explosion in data structures such as BDDs. Combining formal and simulation-based 
methods has been hampered by the divergence in data representations and algorithms used. 
The concept of filters [7] was applied towards using disparate combinational verification 
models, but no passing of information among the methods was facilitated. The use of s-a-v 
ATPG and BDDs was considered in [5] to augment test vector set for verifying safety 
properties. Another combination of these approaches, reported in [2], uses the identification 
of internal equivalent points. Then, instead of verifying the whole circuit, these internal 
points are checked. The method suffers from the false negative problem, and the BDDs are 
used to deal with this issue 



2 Vector Generation BY AT 

Arithmetic Transform is the underlying representation explored in many of the word-level 
decision diagrams used in formal verification by equivalence checking, as in [13]. Unlike 
the previous work, we use the properties of AT in simulation-based verification. The 
transform is defined over pseudo-Boolean functions, 
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one word-level output. These pseudo-Boolean functions actually represent the outputs of 
multi-output Boolean functions by word-level (W) quantities (such as unsigned integers). 
For example, an n-bit unsigned adder is treated as a pseudo-Boolean function with integer 
output values in range [0, 2(n+1)-1]. The transform can be obtained by multiplying the word-
level output values with the transform matrix: 
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as a matrix-vector multiplication 
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input polynomial with word-level coefficients: 
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The faulty f~  is represented as a sum of the correct output f and an error e, eff
~

+= . 
Arithmetic Transform is linear, and satisfies the equation: 
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AT( ˜ f ) = AT( f + e) = AT( f ) + AT(e).                                     (3) 

 The polynomial coefficients in the transform are referred to as the spectrum. Spectrum 
has been used to discover a number of Boolean function properties in design, test and 
verification [14].  The size of the error e is the number of spectral coefficients in AT(e).  
 Verification by error modeling will use the test vectors to detect errors whose 
Arithmetic Transform is of small size in terms of number of spectral coefficients. The test 
generation scheme relies on the representation of pseudo-Boolean function 
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˜ f  by a Boolean 
lattice Bn.   Boolean lattice structure orders all 2n input vectors by a partial relation 
whereby a vector V >V’ if its nonzero entries are a superset of those in V’ (e.g., 1011 > 
1010). Consider a 2-bit adder. Spectral coefficients CV are associated with each input vector 
V, as shown in Figure 2. The four nonzero coefficients are highlighted, and the 
corresponding points are referred to as a1, a0, b1 and b0, respectively. The ordering relation 
naturally forms n+1 layers in Bn, as shown in Figure 2.  
 The following theorem is proven in [8] in a manner similar for decoding Reed-Muller 
error correcting codes, or test set generation by Reed-Muller transform [4]. The theorem 
provides a test set among the vectors in a number of lattice layers that depends on the size t 
of an error spectrum.  
Theorem 1:  All errors that result in up to t spectral coefficients can be identified by testing 
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 Theorem 1 provides an upper bound on the number of vectors simulated to uniquely 
identify this class of errors. In actual circuits, larger faults (with more spectral coefficients) 
will be detected. We observed [8] that high fault detection of gate replacement design errors 
and s-a-v faults is obtained with the constant number (up to 4) top lattice layers.  



 

Figure 2: Lattice B4 – 2-bit Adder Representation 

 The major property of AT test vectors, i.e., the detection of all faults of a small spectral 
size, allows us to quickly obtain high coverage.  Unlike tackling the problem from the 
beginning with a deterministic scheme [1], it is beneficial to apply first AT vector 
simulations. Deterministic approaches can be restrained only to the last phase of 
verification to handle the errors that have not been detected. 

3 Fault List Generation 

To apply our vector generation to concrete design faults, we consider as candidate faults all 
possible replacements of gates in the netlist by input-compatible gates from a synthesis 
library.  The replacements that preserve the required functionality are redundant 
replacements. Since they seriously impact the verification time, they need to be removed 
from the fault list. Redundancy identification is an NP-complete problem; exact methods 
might often be impractical. Two schemes for redundant fault identification are considered. 
The first roughly requires more time; the second usually demands more space.  The second 
solution uses approximate BDD constructions by don't care subsets for preprocessing and 
for generating a range of approximate SAT formulations.  

3.1 Redundancy Identification using SAT 

Satisfiability formulation of testing problems has been elaborated in [6]. For each fault in a 
circuit, a conjunctive normal form (CNF), i.e., product-of-sums is constructed. If there is no 
solution, then the fault is redundant.  The SAT formulation consists of several types of 
clauses. Good circuit clauses describe the correct operation of all circuit nodes. Faulty 
circuit clauses describe the effects of a fault on the downstream network nodes. Active 
clauses describe the activation of a fault. Finally, the fault site and goal clauses describe 
conditions for excitation and observation of the fault at primary outputs.  

3.1.1 Exact Redundancy Identification 

SAT formulation for faults, such as the replacement of a gate g with gate h, can be derived 
as follows. To describe requirements for activating the fault, we consider the distinguishing 
gate inputs, which produce 
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g " h . The fault will be activated only for those inputs, and its 
polarity will not be known. We create an auxiliary node 
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l = g" h , and the fault location 



clause will be asserted as: l = 1. While the fault site clauses are modified in this way, all 
others remain the same as in the stuck-at ATPG SAT formulation. 

3.1.2 Preprocessing 

Since invoking SAT might be costly, preprocessing steps reducing the number of SAT 
instances, are usually applied. Often, these are random simulations. In our case, vectors 
belong to top lattice layers. A smaller number of these layers can be used to detect all faults 
of size given by Theorem 1. Only if they fail, an exact SAT formulation will be invoked. 
Additionally, unlike random simulations, our test vector generation scheme provides the 
compact description of the failing vector set that can be passed to the SAT. As these stimuli 
don't detect any faults, they can be used to speed up the SAT process, as unsatisfying 
assignments. 

3.2 Redundant Fault Approximations  

We now outline our deterministic scheme that not only eliminates many SAT calls, but also 
provides information for generating easier instances of the SAT problem. We initially 
preprocess the replacement faults by using don't cares (DCs), and then apply a constrained 
stuck-at fault redundancy identification for faults which are more likely to be redundant. 
For all possible replacement faults, the DC-sets have to be obtained only once. They can be 
available for free as a by-product of the synthesis process, and are represented by BDDs.  
 Redundancies are caused by the DC conditions at nodes affected by faults. These are 
either observability  (ODCs) or controllability (CDC) conditions inhibiting the error 
detection. By dealing explicitly with DC-sets, or their complements – care sets, the 
following observation holds. Each replacement h that coincides with the original gate g on a 
local care set, Carelocal, at a given node, creates a redundant fault. A detectable gate 
replacement error can become redundant or hard to detect when a DC-set overlaps the 
difference between the two sets.  

3.2.1 Calculating DC Approximations 

Calculating DC-sets in a network requires determining CDCs and ODCs.  Of all DC 
conditions ODCs are the most time- and space-consuming. The ODC sets are commonly 
represented by BDDs associated with each node. A good approximation is presented by 
Compatible Observability Don't Cares (CODCs) [12] that are obtained by a simple 
backwards traversal of the network. At multiple fan-out nodes, CODC of the fan-out nodes 
are intersected. Note that, by using DC subsets, it is guaranteed that no irredundant fault 
will be declared as redundant one. 

3.2.2 Using S-A-V Redundancy Identification 

Since we use subsets of ODCs, not all redundant replacements will be detected by this 
approach alone. We will reuse the DC information obtained in the first step (Section 33.2) 
to efficiently detect more redundancies. Our approach to identifying gate replacement 
errors extends the application of single stuck-at-value ATPG to redundant fault 
identification. Among all the possible approaches, we use the satisfiability formulation of 
the problem for its flexibility to deal with multiple fault models.  



 The good candidates for further redundancies are the gate replacements that are close to 
the original, measured in Hamming distance, i.e., the number of minterms in which the 
functions, intersected by caresets, differ:  
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 The integer ε can be varied depending on the accuracy desired. By considering only 
distance one, i.e., ε = 1, we can guarantee that any such fault can be modeled by a single s-
a-v fault. Additionally, if the replacements are within distance 1, given in cubes, the stuck-
at fault redundancy identification can still be used if the replacement is monotonous, i.e., all 
differing outputs are of one polarity.  When 
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detected by extending the s-a-0 ATPG. For a s-a-1 fault, the sign “! ” is used instead. 
 In general, if the original and replaced function differ in one cube, say in k literals, then 
k 1-clauses will be added. Addition of each 1-clause amounts to assigning a value to a 
variable throughout the CNF, i.e., reducing the search space by factor of 2, up to a total 
reduction by a factor of 2k. Hence, the solution to this problem is significantly quicker to 
find than for a single s-a-0 fault. 

4 Experimental Results 

Experiments on MCNC benchmarks and arithmetic circuits (adders, multipliers, ALUs and 
dividers) synthesized into generic Synopsys gate library GTECH show high fault coverage 
(> 96.7%) with test vectors obtained by AT decoding, using top 4 layers (O(n4) size). The 
complete (100%) redundant fault identification was obtained using our method. We built 
fault simulation and our redundant fault identification on UC Berkeley SIS program. 
Experiments were run on an Apple PowerMac G2 with two 1.25GHz PowerPC processors 
and 512MB of main memory, under MAC OS X v10.2 operating system.    

 Table 1 shows the gate and wire replacement coverage for arithmetic circuits. The 
column in each case refers to fault coverage, the number of irredundant faults simulated, 
the total number of simulation runs and a number of vectors that suffice for the given 
coverage. The last set of numbers is obtained by counting the number of distinct vectors 
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Table 1: Fault Coverage by DC Approximations 

 

 
 



that for first time detect a fault. Note that this number could be reduced through standard 
vector compaction methods.   
 In Table 2 we show that high fault coverage of the MCNC benchmarks is obtained by 
using the small error spectrum assumption in UTS test pattern generation. The table also 
reports the time and space needed to construct BDDs (needed in one of our redundancy 
identifications). This data is useful for comparing the cost of our method with equivalence 
checking by BDDs.  Columns “Redund. Id” indicate times required for and coverage with 
our exact SAT-based redundancy identification. Finally, the last three columns report 
number of all faults simulated, total number of simulation runs for coverage by exact 
identification, as well as the total number of vectors that are sufficient for the given 
coverage. Total time spent in these simulations depends in general on the circuit simulation 
speed, but we notice that this task is amenable to massive parallelization, as both the 
circuits and the vectors are known in advance.  We conclude that while BDDs perform 
worst with in space complexity, the time complexity of SAT and simulations is handled 
easier by preprocessing. 

5  Conclusions and Future Work 

The design error faults, including gate replacements, are significantly different in nature 
than stuck-at-faults. The stuck-at-fault ATPG methods cannot be directly applied. 
Simulations with a set of vectors derived from AT spectral properties are complemented 
with BDD and SAT approaches in order to refine the tests. The results from BDD-based 
approximations and partial simulations can be successfully passed to speed up the SAT 
procedures that are used as a last resort. Together, these methods present a credible 
simulation-based verification that can easily be automated, parameterized by the error size, 

   DC BDD        Redund. Id       Vectors     Circuit size Time Red [s] Total [s] Cov. [%] Faults Sims Vec. 
i1 180 0.05 0 0 94.4 18 3093 10 

alu2 2187 0.40 0.14 3.27 96.2 26 812 15 

alu4 2148 0.94 4.51 35.7 95.9 49 6075 30 

9symm 1252 0.95 0.04 0.16 97.5 6 190 2 

cordic 401 0.21 0.02 0.04 92.8 28 37417 19 

C499 64547 5.80 0 0.59 100 162 92466 84 

C432 173829 6.07 0.15 0.31 100 167 11750 40 

C1355 176390 153.7 1.99 2.26 100 68 13428 22 

C1908 443558 218.4 1.71 2.11 91.2 98 650879 29 

C2670 4401323 217.8 1.76 4.16 98.5 330 10088 36 

C6288 !  !  35 55.9 100 705 66003 271 

C880 30501 5.31 0.1 0.47 97.6 188 6005874 106 

Table 2: Comparison of Exact, Approximate and Pre-processed Identifications 
 



and performed by means of orthogonal, but cooperative verification methods. This 
approach can be extended to other error models.  
 
 As the proposed method uses data representation and algorithms widely used in formal 
methods, the simulation approach can be readily applied in combination with equivalence 
checking, for which we constructed a generalization of AT representation [8]. Further, as 
the same representations possess properties useful in verifying datapaths within allowed 
imprecision [9]. Further work on the combination of the formal and simulation-based 
methods could extend the reach of the methods considered here.   

References 
 

[1] H. Al-Assad and J. P. Hayes, “Design Verification via Simulation and Automatic Test Pattern 
Generation”, Intl. Conf. on Computer Aided Design, 1995,  pp. 174-180. 

[2] J. Burch and V. Singhal, “Tight Integration of Combinational Verification Methods”, Intl. Conf. on 
Computer Aided Design, 1998, pp. 570-576. 

[3] D. van Campenhout, H. Al-Assad, J.P. Hayes, T. Mudge, R. Brown, “High-Level Design Verification of 
Microprocessors via Error Modeling”, ACM Trans. Design Automation of Electronic Systems, 1998, 3(4), 
pp.581-599. 

[4] T. Damarla, and M. Karpovsky, “Fault Detection in Combinational Networks by Reed-Muller 
Transform”, IEEE Transactions on Computers, 38(6), pp. 788-797, Jun. 1989. 

[5] M.K. Ganai, A. Aziz, and A. Kuehlman, ”Enhancing Simulation via BDDs and ATPG”, Proceedings of 
DAC, 1999, pp. 297-301. 

[6] T. Larrabee, “Test Pattern Generation using Boolean Satisfiability”, IEEE Trans. CAD of Integrat 
Circuits and Systems, 1992, 11(1), pp.  4-15. 

[7] R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J.A. Abraham, and D.S. Fussell, “An Efficient Filter-
Based Approach for Combinatorial Verification”, IEEE Trans. on CAD of Integrated Circuits and 
Systems, 18(11), 1999, pp. 1542-1557. 

[8] K. Radecka and Z. Zilic, “Using Arithmetic Transform for Verification of Datapath Circuits via Error 
Modeling”, Proceedings of VLSI Test Symposium, VTS 2000, pp. 271-277. 

[9] K. Radecka and Z. Zilic, “Arithmetic Transforms for Verifying Compositions of Sequential Datapaths”, 
Proceedings of International Conference on Computer Design, ICCD 2001, pp.  348-353. 

[10] K. Radecka and Z. Zilic, “Specifying and Verifying Imprecise Arithmetic Circuits by Arithmetic 
Transforms”, International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD 
2002, pp. 83-86. 

[11] B. Ratchev, M. Hutton and B. van Antwerpen, “Logic Synthesis and Mapping: Verifying the Correctness 
of FPGA Logic Synthesis Algorithms”, Proceedings of ACM International Symposium on FPGAs, 2003, 
pp. 127-135. 

[12] H. Savoj and R. Brayton, “The Use of Observability and External Don’t Cares for the Simplification of 
Multilevel Logic Networks”, In Proceedings of International Conference on Computer Aided Design, 
1990, pp. 297-301. 

[13] C. Scholl, B. Becker, and T.M. Weis, “ Word-level Decision Diagrams, WLCDs and Division”, In 
Proceedings of International Conference on Computer Aided Design, 1998, pp. 672-677. 

[14] M. A. Thornton, R. Drechsler and M. D. Miller, “Spectral Techniques in VLSI CAD”, Kluwer Academic 
Press, 2002.  

[15] P. Vado, Y. Savaria, Y Zoccarato, and C. Robach, “A Methodology for Validating Digital Circuits with 
Mutation Testing”, Proceedings of ISCAS,  2000, pp. I-343-346. 


