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Abstract 
Use of current-mode CMOS circuits for implementation 

of multiple-valued logic (MVL) functions has been consid- 
ered in a number of recent papers .  In this paper,  we  
present an application of these circuits in realization of 
Galoisfield operations. We also give a new algorithm for 
determination of polynomial representations for  arbitrary 
functions over a class of Galoisjelds implementable with 
presently available MVL circuits. 

1.0 Current-Mode MVL Functions 
Recent experience shows that current-mode circuits are 

attractive for implementation of MVL functions, particu- 
larly when the radix is greater than 3. Most of the circuits 
and synthesis techniques in the literature have been 
intended for the 4-valued environment [Z], [41, [5 ] .  Cur- 
rent-mode circuits offer several advantages, but they also 
have some disadvantages. Perhaps the most important of 
these are the ease of summation of signals and the diffi- 
culty in distribution of signals caused by the fanout being 
equal to one. In practice, it is useful to augment the cur- 
rent-mode circuits with some intermediate voltage-mode 
circuits, which often results in more effective designs. 
Figure 1 gives the basic blocks used in our design. All of 
these blocks have been used before [2], [4], [5 ] .  Here, we 
will only summarize their characteristics. 

Currents are summed by means of a simple wired con- 
nection. Current sources are realized as an N-type or a P- 
type transistor with the gate connected to a reference volt- 
age. The amount (value) of current is proportional to the 
ratio of W/L. 

Signal distribution can be performed using current m'r- 
rors, which can be of either N-type or P-type. We will use 
both types. The current produced at the output is deter- 
mined by the input current and the ratio between output 
and input W/L values. In addition to signal distribution, 
the current mirror will be used for multiplication with a 
constant and for sign reversal. 

FIGURE 1. Basic Current Mode Blocks 
- 
Name 

Sum 

Pa, 
Tmmwbn 

y = c  

x i f  x > O  
P=[ 0 if x <= 0 

A threshold detector block takes a multiple-valued 
input current signal and produces a voltage signal. The 
output signal is High if the input exceeds a predefined ref- 
erence value: otherwise the output signal is Low. Thresh- 
old detectors generate signals that can be used with normal 
binary logic gates and for control of pass-transistor net- 
works. 

A pass transistor is a voltage-controlled device, which 
acts as a switch, depending on the gate voltage. We will 
use both N and P-type pass transistors. 
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2.0 Galois Field Circuits 
Binary Galois field circuits have been investigated by 

many researchers. Much less work has been done on MVL 
versions of such circuits. We note the 12L implementations 
of 4-valued Galois field operations reported by Dao 181. 

This paper is primarily concerned with circuits operat- 
ing over Galois fields with four elements (GF4), because 
of the ease of implementation of 4-valued current-mode 
CMOS circuits. We will show that the more general class 
of Galois field circuits can be obtained using the basic 
blocks presented here. 

Afield [6] is a set with two operations that are closed 
with respect to that set. We will call them multiplication 
and addition. A certain number of axioms, ensuring the 
existence of neutral and inverse elements with respect to 
both operations, as well as commutativity and distributiv- 
ity of multiplication with respect to addition, define the 
structure of a field. 

FIGURE 2. GF4 Operations 

All fields containing a finite number of elements must 
have the number of elements equal to a prime number (p) 
or some power of it (p"). Such fields are known as Galois 
Belds. In the case of a field with a prime number of ele- 
ments, both operations are defined as usual modulo addi- 
tion and multiplication. In the other cases, the operations 
are more complex. They are defined with respect to some 
irreducible polynomial over a simpler field. This means 
that if we have a field with p n  elements, then the opera- 
tions are defined using some irreducible polynomial of 
degree n over the field with p elements. The usual notation 
for fields is GF(p), or GFp, for the prime cardinality case, 
and GF(p"), or GFp", for the general case. 

FIGURE 3.GF4 Addition Compared to Absolute Difference 

The simplest possible case is to have a two-element 
field. Then, the addition is defined as the logical XOR 
operation, while the multiplication is defined as the logical 
AND. For a 4-element field, GF4, the addition and multi- 
plication operations are defined in Figure 2. Subtraction is 

the same operation as the addition. This property is the 
consequence of the fact that the diagonal elements are zero 
( if a + a = 0, then a = -a)  and for such fields, we will say 
that they are of characteristic two. 

2.1 GF4 Adder 

FIGURE 4. GF4 Adder 

We will use the fact that GF4 is of characteristic two to 
derive a simple implementation of the addition circuit. 
Note that the absolute difference circuit will produce the 
output with diagonal elements equal to zero. We can see, 
from Figure 3, that the addition differs from the absolute 
difference in only two entries of the addition table. There- 
fore, an attractive realization of the addition operation is to 
use the absolute difference plus a correction circuit for the 
two entries outlined in bold in the figure. 

FIGURE 5. Absolute Difference Circuit 

The absolute difference circuit can be implemented 

IA-BI = r a m p ( A - B )  + r a m p ( B - A )  
using the following equation: 

where the rump operation follows naturally from the cur- 
rent mirror operation. A current mirror forwards the input 
current if it is greater than zero, otherwise a zero output is 
produced. The two differences required can be produced 
by reversing the sign (with a current mirror) of the subtra- 
hend and then by a simple wired-sum connection. Figure 5 
shows the realization of the absolute difference circuit. 
Note that the arrowheads are used to indicate the actual 
directions of current. 

The correction factor involves adding a current of value 
2 when the inputs (A, B) have the values (1,2) or (2, 1). A 
suitable correction circuit is given in Figure 6. 
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FIGURE 6. Correction Circuit 
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2.2 The GF4 Multiplier 
The multiplier circuit can be designed as shown in 

Figure 7. The product is zero whenever one or both inputs 
are zero. The pass transistor at the output performs this 
function. 

FIGURE 7. GF4 Multiplier 

The top block in Figure 7 can be obtained using an 
adder with a correction (bias) factor of -1 at the output. 
When this output is greater than 3, another correction fac- 
tor is switched on. This time, 3 is subtracted. Figure 8 
shows the corresponding circuit. 

The bottom block comprises two threshold detectors set 
up to detect zero, which control the output pass transistor. 

2.3 The GF16 Multiplier 
We can produce the GF16 multiplier using the four-val- 

ued primitives by representing an element of GF16 in form 
of an ordered couple of GF4 elements. Thus, every GF16 
element will be represented in the form: 

A = a l  + pa2 

where p is a root of an irreducible polynomial over GF4. 
One such polynomial in GF4 is 

f = x 2 + x + 2  

FIGURE 8. Implementation of the Top Block in Figure 7 

P vdd 

The addition is then performed simply by adding the 
respective components of the GF4 representation, i.e. if 
we have two GF16 numbers A and B, then the following 
holds 

A + B  = u 1 + u 2 +  ( b l + b 2 ) b  

FIGURE 9. GF16 Multiplier 

I I  I ,  

U 

In order to obtain the product of two numbers, we will 
multiply these two representations to obtain 

A x B  = ala2+ ( a l b 2 + a 2 b l ) ~ + b , b 2 ~ 2  

and then replace the squared term with the remainder of 
the polynomial found above, since p2 = p + 2. Thus, we 
can write the multiplication expression as: 

A x B  = a ,a2+2b ,b2+  ( a l b 2 + a 2 b l + b 1 b 2 ) ~  

on this expression, is shown in Figure 9. 

3.0 Circuit Performance 

The circuit for performing GF16 multiplication, based 

The described circuits have been simulated using 
HSPICE. The results are shown below. We have chosen 
the currents of 0.20.40 and 60 pA to represent logic val- 
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ues of 0, 1.2 and 3. The sizes of all transistors have been 
scaled with respect to the basic transistor size of L/W= 3/6 
Pm. 

Figure 10 gives the waveforms for the GF4 adder. This 
circuit shows some ringing in a case when the correction 
circuit is switched on and off, which should not cause 
undue problems if these circuits are used in synchronous 
designs. 

FIGURE 10. GF4 Adder - SPICE Simulation Results 
C U R R E N T  M O D E  CMOS E r 4  n o m n  
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FIGURE 11. GF4 Multiplier- SPICE Simulation Results 
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As we can see from the figure, the delays are the largest 
when going to or leaving zero. These delays are twice as 
large as the other delays. This delay occurs because of the 
"dead time" of the current mirror. Figure 11 gives the 
simulation results for GF4 Adder. Again, the transitions 

from and to zero have the biggest delays. The transistor 
parameters are given in Figure 12: 

FIGURE 12. Transistor Parameters 
~ ~~~ 

*PARAMETERS FORPMOS(M1) 
.MODEL M1 PMOS LEVEG3 V I 0 4 . 7 8 7  GAMMA-0.667 PHl4.7 EkIE-16 
+ PB=O.8 CGS0=3.2844E-10 CGDO=3.2844E-IO CGBO=l.SE-IO 
+ CJP4.1E-4 M J 4 5 4  CJSW=3.4E-10 MJSW4.30 JS=l.OE-4 
+ TOX=2.SE-S NSUB-Q.OE16 NFS=5.8601Ell TPG-+1 XJ-1.7403E-7 
+ LD=1.3609E-7 UOx137.0 VMAX-271%0 XQC-1.0 FCc0.S 
+ DELTA4 m A 4 . 6 2 5 7 E - 2  ETA4.729E-2 KAPPA=8.125 

* PARAMETERS FOR NMOS(M2) 
.MODEL M2 NMOS IEVEk3 VT04.736 GAMMA-0.366 PHI4.61 IS-1E-16 
+ PB4.8  CGS0=1.9734E-10 CGDO=1.9734E-10 CGBO=l.SE-IO 
+ 
+ 
+ 
+ DELTA=l.O THETA42123 ETA=3.741E-2 KAPPA4 

* 

CJ49E-4 MJ4.486 CISW=3.3E-10 MJSW4.33 JS-l.0E-4 
TOX=2SE-8 NSUB-Q.OE16 NFS=5.7651Ell TPG=-1 XJ-1.65E-7 
LD=2.6508&7 U 0 4 3 6 . 7  VMAX=229170 X Q G l . 0  FC4.5 

e 

4.0 Polynomial Expansion Over GF 

Any function can be represented as a polynomial over a 
suitable Galois field, which means that blocks presented 
here are sufficient for realizing any function. We will now 
present a new algorithm for determining the polynomial 
representation of functions over Galois fields. The algo- 
rithm is tailored for fields that can have feasible imple- 
mentation with presently available MVL circuits. 

Any function over Galois field,f: GFk + GFk, where 
k=p", any power of a primep, can be represented [3] in the 
form of a polynomial: 

k- 1 

F ( x )  = x Cixi (EQ 1) 

Benjahurit and Reed [ 11 proposed the use of Menger 
theorem [7] in order to determine the coefficients of the 
representing polynomial in the following form: 

i = O  

ci = c [ F ( O )  -F(g)Ig--' (EQ 2) 

With this method we have to make summations over all 
the elements for every coefficient of the polynomial. 

We have investigated if there is a computationally more 
efficient method for the fields that can be used in practice 
with circuits described in previous sections. These are the 
fields of size 2 ,3  and 4. 

4.1 Direct Method for Polynomial Determination 
Our approach is based on solving the system of linear 

equations directly and employing some algebraic proper- 
ties common to fields that we are considering in order to 
get a computationally more effective algorithm. 

Suppose that a given function has values Fo, F1, ..., F ,  
at points 0, 1, ..., t .  We want to have the function repre- 
sented as a polynomial with coefficients CO, C I ,  ..., C,. 

8 + 0  
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Then, for a polynomial that fits these points, we have the 
system of linear equations: 

CO + C , O +  C202 + ... + C,O' = F ,  

C,+C,1+C212+ ...+ Crlr  = F ,  

... 
C , + C , t + C 2 t 2 +  ... +C,t' = F ,  

Solving this system in a conventional way is inefficient 
in terms of the number of operations required, compared 
to the application of Menger's theorem. However, we can 
exploit the properties of the fields under consideration to 
reduce the total number of operations needed. 

Consider the following manipulation. It is obvious that 
coefficient CO is equal to the value of the function at point 
zero, Fo, from the first equation. Hence, we can subtract 
this equation from all the others, eliminating the coeffi- 
cient Co. After that, we can subtract any equation from all 
the others, to decrease the size of the problem. For exam- 
ple, after subtracting the equation defining FI-F0, the fol- 
lowing system is obtained: 

(2-1)C1+ (22-12)C2+. . .+ (2r-1')Cr = F 2 - F l  

( 3 - l ) C l +  (32-12)C2+. . .+ (3 '- lf)Ct = F 3 - F l  

... 
( l - l )Cl+ ( t 2 -  12)C2+ ... + ( t r -  l r )Cr  = F , - F ,  

Now, for any two elements a and 6 in Galois fields that 
we are considering, namely of sizes 2,3 and 4, the follow- 
ing is true: 

(a*b)"  = o " f b " , ( 0 < n < k - l )  

Using this fact, each equation F .  -F1 in the system can 
be divided by the term j-1, since (81') = (j-l? leading to 
the following system: 

F2 - F ,  
C 1 + ( 2 - 1 ) C 2 +  ...+ (2-1)'-1Ct = - 2-1 

F 3 - F 1  
C,+ (3-1)C2+ ...+ (3- l ) , - 'Cr  = - 3 - 1  

... 
Fr - ' 1  

C,+ ( r - 1 ) c 2 +  ...+ ( i - - l ) ' - lcr  = - 
By subtracting pairs of equations, a similar system of 

equations with a smaller number of unknowns is obtained. 
This procedure can be performed until there is only one 
unknown left. Then, it is straightforward to determine the 
rest of the unknowns. 

The computation can be performed in a way similar to 
the Newton method of finite differences. A set of formal 
differences will be formed, in order to keep track of the 

r -  1 

right hand side of the equations, by the following defini- 
tion: 

[ x  x.] = 
W j )  - F ( x , )  

' 1 j  

b ] x i x i + , . . - x i + j - , I  = 

1 1  

[ x , x i + , . . . x i + j  -11 - [ x p 2 x 3 . . . ~ j l  

' l i ( i + l )  ... ( i + j - l )  

where the set of denominators S is determined by the fol- 
lowing equations: 

Slj = j -  1 

' l i ( i + l )  ...( i + j - l )  - '1 ( i + l )  ( i + 2 )  ...( i + j - l )  -' 12 . . . j  
- 

The denominators are also used when calculating the 
coefficients Cl from the already known coefficients Cl+i,  
C1+2, ... C,, using the equation: 

C, = [ x l x  2 . . . x , ]  - S ; C l + 2 -  ... -S;-'C, (EQ3) 

where SI=S12..,r 
In the case of a completely specified function, i.e. the 

one given by k points (I = k - I ) ,  a further simplification is 
possible. First, from the cyclicity property, it follows that 
ak-'=l for each element a of the field. This means that the 
last column of the starting system will be eliminated when 
subtracting any two equations for the first time. In order to 
recover this coefficient, we will employ the Menger for- 
mula. Indeed. by putting i=k-1 in Equation 2, we will get 
immediately the expression for the coefficient Ck-1: 

Ck-, = - F o - F l - . . . - F k - l  (EQ 4) 

4 2  The Performance 
The total number of formal differences needed is (k- 

2)(k-1)/2. The total number of operations is the number of 
coefficients multiplied by 3, because we need to calculate 
the new divisor, the new difference in function values, and 
to divide these two numbers. So, to produce the difference 
table, we need 3/2k2-9/2k+3 operations. 

The remaining part of the algorithm will produce the 
coefficients of the polynomial using Equation 3. In order 
to do this we have to perform 

2+5+8+..+(2 +3(k-2)) =3/2(k-2)(k-3) + 2(k-2)=3/2P-I1/2k+S 

operations, since every new term will contribute three new 
operations, and in the beginning we need 2 operations for 
the first two coefficients. To determine the last coefficient 
we need k more operations, according to Equation 4. Add- 
ing all the operations, the total amounts to 3k2-9k+8 oper- 
ations. This is somewhat better in comparison to Menger 
method which can be shown to require 3k2-8k+6 finite 
field operations. We note that Wesselkamper [9] proposed 
the use of Newton's method; his approach is general and it 
requires 7/2$-11/2k+2 operations. 
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4.3 Functions of ' h o  Variables 
We will now describe how this algorithm can be 

extended to functions of two variablesf:GF2k +GFk. To 
solve this problem directly, the k2 equations have to be set 
up. The values of the function will be given by the matrix 
Fi$O<i j<k, and we will be looking for a set of coefficients 
Cii:O<ij<k of the multinomial representing the function: 

k - l t - 1  

F ( x l ,  x2) = c C j j x i 4  (EQ 5) 
i = o j = o  

First, let us consider the case when x2 is equal to zero. 
Then, we can set up a system of equations in which the set 
of FOO. Flo, ..., F(k-lM is given, and will be looking for a 
set of coefficients C,, C ~ O ,  ..., C(kJ)O, since all other coef- 
ficients Cii will be multiplied by zero and will not contrib- 
ute to the equation. This as the starting one-dimensional 
problem which we can solve using the algorithm above. 
Also, we can consider the symmetrical case, i.e. when xl is 
equal to zero and find a solution for the additional k-1 
coefficients, since the coefficient C ,  is already known. To 
solve the system for the remaining (k-1)* coefficients, a 
decomposition approach will be used. 

First, assign constant values I ,  2, ..., k-1 to x2 to obtain 
k-1 functions of xl :  

k - 1  F(x1 , i )  = D O i + D l , ~ l + . . . + D ( k _ l ) j ~ l  

and the original function is represented as a set of k-1 of 
functions of only one variable. The coefficients Dj, can be 
obtained by solving the k-1 systems given above, as the 
one-dimensional problem. The next step is to obtain the 
coefficients Cij from the values Dj,, which can be done 
from: 

According to this equation, the values of Di j  are 
obtained by the same transformation by which the values 
of the function in the one dimensional case are obtained 
from the coefficients of the polynomial. Therefore, the 
same inverse operation, i.e. our one-dimensional algo- 
rithm can be employed again. After solving the next k-1 
systems, all the coefficients of the multinomial will be 
known. The total number of executions of the one-dimen- 
sional algorithm, using this approach, is equal to 2k. 

It can be shown that this scheme can be employed in 
the general case of n-variable functions and that the num- 
ber of systems to solve is equal to n P .  

5.0 Concluding Remarks 

This paper has presented current-mode CMOS circuits 
that implement addition and multiplication in a Galois 
field with four elements. It has also presented a computa- 

tionally efficient method for determination of polynomial 
representations of arbitrary functions. While the method is 
given in terms of 2-variable synthesis, it can be general- 
ized to the n-dimensional case. The method is restricted to 
Galois fields of small size; but, this size corresponds to the 
cases that are interesting in practice, namely those imple- 
mentable with today's MVL technology. 
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