
Current-mode CMOS Galois Field Circuits

Log. Expression

f = X l + Q + ...+XI

Zeljko Zilic and Zvonko Vranesic

Symbol Circuil Realization

:s I" ;i- ."

Department of Electrical and Computer Engineering
University of Toron to

Abstract
Use of current-mode CMOS circuits for implementation

of multiple-valued logic (MVL) functions has been consid-
ered in a number of recent papers . In this paper, we
present an application of these circuits in realization of
Galoisfield operations. We also give a new algorithm for
determination of polynomial representations for arbitrary
functions over a class of Galoisjelds implementable with
presently available MVL circuits.

1.0 Current-Mode MVL Functions
Recent experience shows that current-mode circuits are

attractive for implementation of MVL functions, particu-
larly when the radix is greater than 3. Most of the circuits
and synthesis techniques in the literature have been
intended for the 4-valued environment [Z], [41, [5] . Cur-
rent-mode circuits offer several advantages, but they also
have some disadvantages. Perhaps the most important of
these are the ease of summation of signals and the diffi-
culty in distribution of signals caused by the fanout being
equal to one. In practice, it is useful to augment the cur-
rent-mode circuits with some intermediate voltage-mode
circuits, which often results in more effective designs.
Figure 1 gives the basic blocks used in our design. All of
these blocks have been used before [2], [4], [5] . Here, we
will only summarize their characteristics.

Currents are summed by means of a simple wired con-
nection. Current sources are realized as an N-type or a P-
type transistor with the gate connected to a reference volt-
age. The amount (value) of current is proportional to the
ratio of W/L.

Signal distribution can be performed using current m'r-
rors, which can be of either N-type or P-type. We will use
both types. The current produced at the output is deter-
mined by the input current and the ratio between output
and input W/L values. In addition to signal distribution,
the current mirror will be used for multiplication with a
constant and for sign reversal.

FIGURE 1. Basic Current Mode Blocks
-
Name

Sum

Pa,
Tmmwbn

y = c

x i f x > O
P=[0 if x <= 0

A threshold detector block takes a multiple-valued
input current signal and produces a voltage signal. The
output signal is High if the input exceeds a predefined ref-
erence value: otherwise the output signal is Low. Thresh-
old detectors generate signals that can be used with normal
binary logic gates and for control of pass-transistor net-
works.

A pass transistor is a voltage-controlled device, which
acts as a switch, depending on the gate voltage. We will
use both N and P-type pass transistors.

0195-6231(/93 $03.00 0 1993 IEEE
2%

2.0 Galois Field Circuits
Binary Galois field circuits have been investigated by

many researchers. Much less work has been done on MVL
versions of such circuits. We note the 12L implementations
of 4-valued Galois field operations reported by Dao 181.

This paper is primarily concerned with circuits operat-
ing over Galois fields with four elements (GF4), because
of the ease of implementation of 4-valued current-mode
CMOS circuits. We will show that the more general class
of Galois field circuits can be obtained using the basic
blocks presented here.

Afield [6] is a set with two operations that are closed
with respect to that set. We will call them multiplication
and addition. A certain number of axioms, ensuring the
existence of neutral and inverse elements with respect to
both operations, as well as commutativity and distributiv-
ity of multiplication with respect to addition, define the
structure of a field.

FIGURE 2. GF4 Operations

All fields containing a finite number of elements must
have the number of elements equal to a prime number (p)
or some power of it (p"). Such fields are known as Galois
Belds. In the case of a field with a prime number of ele-
ments, both operations are defined as usual modulo addi-
tion and multiplication. In the other cases, the operations
are more complex. They are defined with respect to some
irreducible polynomial over a simpler field. This means
that if we have a field with p n elements, then the opera-
tions are defined using some irreducible polynomial of
degree n over the field with p elements. The usual notation
for fields is GF(p), or GFp, for the prime cardinality case,
and GF(p"), or GFp", for the general case.

FIGURE 3.GF4 Addition Compared to Absolute Difference

The simplest possible case is to have a two-element
field. Then, the addition is defined as the logical XOR
operation, while the multiplication is defined as the logical
AND. For a 4-element field, GF4, the addition and multi-
plication operations are defined in Figure 2. Subtraction is

the same operation as the addition. This property is the
consequence of the fact that the diagonal elements are zero
(if a + a = 0, then a = -a) and for such fields, we will say
that they are of characteristic two.

2.1 GF4 Adder

FIGURE 4. GF4 Adder

We will use the fact that GF4 is of characteristic two to
derive a simple implementation of the addition circuit.
Note that the absolute difference circuit will produce the
output with diagonal elements equal to zero. We can see,
from Figure 3, that the addition differs from the absolute
difference in only two entries of the addition table. There-
fore, an attractive realization of the addition operation is to
use the absolute difference plus a correction circuit for the
two entries outlined in bold in the figure.

FIGURE 5. Absolute Difference Circuit

The absolute difference circuit can be implemented

IA-BI = r a m p (A - B) + r a m p (B - A)
using the following equation:

where the rump operation follows naturally from the cur-
rent mirror operation. A current mirror forwards the input
current if it is greater than zero, otherwise a zero output is
produced. The two differences required can be produced
by reversing the sign (with a current mirror) of the subtra-
hend and then by a simple wired-sum connection. Figure 5
shows the realization of the absolute difference circuit.
Note that the arrowheads are used to indicate the actual
directions of current.

The correction factor involves adding a current of value
2 when the inputs (A, B) have the values (1,2) or (2, 1). A
suitable correction circuit is given in Figure 6.

246

FIGURE 6. Correction Circuit

A

B

IA-BI
1

(A+B-1) mod 4 Z
+ (A+B-l)div4

3 +vdd

A+B1 - a t A+B
J

I Add2

2.2 The GF4 Multiplier
The multiplier circuit can be designed as shown in

Figure 7. The product is zero whenever one or both inputs
are zero. The pass transistor at the output performs this
function.

FIGURE 7. GF4 Multiplier

The top block in Figure 7 can be obtained using an
adder with a correction (bias) factor of -1 at the output.
When this output is greater than 3, another correction fac-
tor is switched on. This time, 3 is subtracted. Figure 8
shows the corresponding circuit.

The bottom block comprises two threshold detectors set
up to detect zero, which control the output pass transistor.

2.3 The GF16 Multiplier
We can produce the GF16 multiplier using the four-val-

ued primitives by representing an element of GF16 in form
of an ordered couple of GF4 elements. Thus, every GF16
element will be represented in the form:

A = a l + pa2

where p is a root of an irreducible polynomial over GF4.
One such polynomial in GF4 is

f = x 2 + x + 2

FIGURE 8. Implementation of the Top Block in Figure 7

P vdd

The addition is then performed simply by adding the
respective components of the GF4 representation, i.e. if
we have two GF16 numbers A and B, then the following
holds

A + B = u 1 + u 2 + (b l + b 2) b

FIGURE 9. GF16 Multiplier

I I I ,

U

In order to obtain the product of two numbers, we will
multiply these two representations to obtain

A x B = ala2+ (a l b 2 + a 2 b l) ~ + b , b 2 ~ 2

and then replace the squared term with the remainder of
the polynomial found above, since p2 = p + 2. Thus, we
can write the multiplication expression as:

A x B = a ,a2+2b ,b2+ (a l b 2 + a 2 b l + b 1 b 2) ~

on this expression, is shown in Figure 9.

3.0 Circuit Performance

The circuit for performing GF16 multiplication, based

The described circuits have been simulated using
HSPICE. The results are shown below. We have chosen
the currents of 0.20.40 and 60 pA to represent logic val-

247

ues of 0, 1.2 and 3. The sizes of all transistors have been
scaled with respect to the basic transistor size of L/W= 3/6
Pm.

Figure 10 gives the waveforms for the GF4 adder. This
circuit shows some ringing in a case when the correction
circuit is switched on and off, which should not cause
undue problems if these circuits are used in synchronous
designs.

FIGURE 10. GF4 Adder - SPICE Simulation Results
C U R R E N T M O D E CMOS E r 4 n o m n

1 - N O V S 2 l S l l S l 7

0 . 3 . 1 9 6

FIGURE 11. GF4 Multiplier- SPICE Simulation Results

SF 4 MULTIPLIER - cmosa
2'1-SEP92 2 2 : ~ S : 5 3

. - . -
.,..r..e..,..l.., . r . . l , . . ~ , . . + . r . . L . . ~ i

500.ON 1 . O U 1.5OU 2 . 0 U 2.5OU 3 . 0 U
I. T I M E C L l N l a . 1 0 6 1

As we can see from the figure, the delays are the largest
when going to or leaving zero. These delays are twice as
large as the other delays. This delay occurs because of the
"dead time" of the current mirror. Figure 11 gives the
simulation results for GF4 Adder. Again, the transitions

from and to zero have the biggest delays. The transistor
parameters are given in Figure 12:

FIGURE 12. Transistor Parameters
~ ~~~

*PARAMETERS FORPMOS(M1)
.MODEL M1 PMOS LEVEG3 V I 0 4 . 7 8 7 GAMMA-0.667 PHl4.7 EkIE-16
+ PB=O.8 CGS0=3.2844E-10 CGDO=3.2844E-IO CGBO=l.SE-IO
+ CJP4.1E-4 M J 4 5 4 CJSW=3.4E-10 MJSW4.30 JS=l.OE-4
+ TOX=2.SE-S NSUB-Q.OE16 NFS=5.8601Ell TPG-+1 XJ-1.7403E-7
+ LD=1.3609E-7 UOx137.0 VMAX-271%0 XQC-1.0 FCc0.S
+ DELTA4 m A 4 . 6 2 5 7 E - 2 ETA4.729E-2 KAPPA=8.125

* PARAMETERS FOR NMOS(M2)
.MODEL M2 NMOS IEVEk3 VT04.736 GAMMA-0.366 PHI4.61 IS-1E-16
+ PB4.8 CGS0=1.9734E-10 CGDO=1.9734E-10 CGBO=l.SE-IO
+
+
+
+ DELTA=l.O THETA42123 ETA=3.741E-2 KAPPA4

*

CJ49E-4 MJ4.486 CISW=3.3E-10 MJSW4.33 JS-l.0E-4
TOX=2SE-8 NSUB-Q.OE16 NFS=5.7651Ell TPG=-1 XJ-1.65E-7
LD=2.6508&7 U 0 4 3 6 . 7 VMAX=229170 X Q G l . 0 FC4.5

e

4.0 Polynomial Expansion Over GF

Any function can be represented as a polynomial over a
suitable Galois field, which means that blocks presented
here are sufficient for realizing any function. We will now
present a new algorithm for determining the polynomial
representation of functions over Galois fields. The algo-
rithm is tailored for fields that can have feasible imple-
mentation with presently available MVL circuits.

Any function over Galois field,f: GFk + GFk, where
k=p", any power of a primep, can be represented [3] in the
form of a polynomial:

k- 1

F (x) = x Cixi (EQ 1)

Benjahurit and Reed [11 proposed the use of Menger
theorem [7] in order to determine the coefficients of the
representing polynomial in the following form:

i = O

ci = c [F (O) -F(g)Ig--' (EQ 2)

With this method we have to make summations over all
the elements for every coefficient of the polynomial.

We have investigated if there is a computationally more
efficient method for the fields that can be used in practice
with circuits described in previous sections. These are the
fields of size 2 ,3 and 4.

4.1 Direct Method for Polynomial Determination
Our approach is based on solving the system of linear

equations directly and employing some algebraic proper-
ties common to fields that we are considering in order to
get a computationally more effective algorithm.

Suppose that a given function has values Fo, F1, ..., F ,
at points 0, 1, ..., t . We want to have the function repre-
sented as a polynomial with coefficients CO, C I , ..., C,.

8 + 0

248

Then, for a polynomial that fits these points, we have the
system of linear equations:

CO + C , O + C202 + ... + C,O' = F ,

C,+C,1+C212+ ...+ Crlr = F ,

...
C , + C , t + C 2 t 2 + ... +C,t' = F ,

Solving this system in a conventional way is inefficient
in terms of the number of operations required, compared
to the application of Menger's theorem. However, we can
exploit the properties of the fields under consideration to
reduce the total number of operations needed.

Consider the following manipulation. It is obvious that
coefficient CO is equal to the value of the function at point
zero, Fo, from the first equation. Hence, we can subtract
this equation from all the others, eliminating the coeffi-
cient Co. After that, we can subtract any equation from all
the others, to decrease the size of the problem. For exam-
ple, after subtracting the equation defining FI-F0, the fol-
lowing system is obtained:

(2-1)C1+ (22-12)C2+. . .+ (2r-1')Cr = F 2 - F l

(3 - l) C l + (32-12)C2+. . .+ (3 '- lf)Ct = F 3 - F l

...
(l - l)Cl+ (t 2 - 12)C2+ ... + (t r - l r)Cr = F , - F ,

Now, for any two elements a and 6 in Galois fields that
we are considering, namely of sizes 2,3 and 4, the follow-
ing is true:

(a*b)" = o " f b " , (0 < n < k - l)

Using this fact, each equation F . -F1 in the system can
be divided by the term j-1, since (81') = (j-l? leading to
the following system:

F2 - F ,
C 1 + (2 - 1) C 2 + ...+ (2-1)'-1Ct = - 2-1

F 3 - F 1
C,+ (3-1)C2+ ...+ (3- l) , - 'Cr = - 3 - 1

...
Fr - ' 1

C,+ (r - 1) c 2 + ...+ (i - - l) ' - lcr = -
By subtracting pairs of equations, a similar system of

equations with a smaller number of unknowns is obtained.
This procedure can be performed until there is only one
unknown left. Then, it is straightforward to determine the
rest of the unknowns.

The computation can be performed in a way similar to
the Newton method of finite differences. A set of formal
differences will be formed, in order to keep track of the

r - 1

right hand side of the equations, by the following defini-
tion:

[x x.] =
W j) - F (x ,)

' 1 j

b] x i x i + , . . - x i + j - , I =

1 1

[x , x i + , . . . x i + j -11 - [x p 2 x 3 . . . ~ j l

' l i (i + l) ... (i + j - l)

where the set of denominators S is determined by the fol-
lowing equations:

Slj = j - 1

' l i (i + l) ...(i + j - l) - '1 (i + l) (i + 2) ...(i + j - l) -' 12 . . . j
-

The denominators are also used when calculating the
coefficients Cl from the already known coefficients Cl+i,
C1+2, ... C,, using the equation:

C, = [x l x 2 . . . x ,] - S ; C l + 2 - ... -S;-'C, (EQ3)

where SI=S12..,r
In the case of a completely specified function, i.e. the

one given by k points (I = k - I) , a further simplification is
possible. First, from the cyclicity property, it follows that
ak-'=l for each element a of the field. This means that the
last column of the starting system will be eliminated when
subtracting any two equations for the first time. In order to
recover this coefficient, we will employ the Menger for-
mula. Indeed. by putting i=k-1 in Equation 2, we will get
immediately the expression for the coefficient Ck-1:

Ck-, = - F o - F l - . . . - F k - l (EQ 4)

4 2 The Performance
The total number of formal differences needed is (k-

2)(k-1)/2. The total number of operations is the number of
coefficients multiplied by 3, because we need to calculate
the new divisor, the new difference in function values, and
to divide these two numbers. So, to produce the difference
table, we need 3/2k2-9/2k+3 operations.

The remaining part of the algorithm will produce the
coefficients of the polynomial using Equation 3. In order
to do this we have to perform

2+5+8+..+(2 +3(k-2)) =3/2(k-2)(k-3) + 2(k-2)=3/2P-I1/2k+S

operations, since every new term will contribute three new
operations, and in the beginning we need 2 operations for
the first two coefficients. To determine the last coefficient
we need k more operations, according to Equation 4. Add-
ing all the operations, the total amounts to 3k2-9k+8 oper-
ations. This is somewhat better in comparison to Menger
method which can be shown to require 3k2-8k+6 finite
field operations. We note that Wesselkamper [9] proposed
the use of Newton's method; his approach is general and it
requires 7/2$-11/2k+2 operations.

249

4.3 Functions of ' h o Variables
We will now describe how this algorithm can be

extended to functions of two variablesf:GF2k +GFk. To
solve this problem directly, the k2 equations have to be set
up. The values of the function will be given by the matrix
Fi$O<i j<k, and we will be looking for a set of coefficients
Cii:O<ij<k of the multinomial representing the function:

k - l t - 1

F (x l , x2) = c C j j x i 4 (EQ 5)
i = o j = o

First, let us consider the case when x2 is equal to zero.
Then, we can set up a system of equations in which the set
of FOO. Flo, ..., F(k-lM is given, and will be looking for a
set of coefficients C,, C ~ O , ..., C(kJ)O, since all other coef-
ficients Cii will be multiplied by zero and will not contrib-
ute to the equation. This as the starting one-dimensional
problem which we can solve using the algorithm above.
Also, we can consider the symmetrical case, i.e. when xl is
equal to zero and find a solution for the additional k-1
coefficients, since the coefficient C , is already known. To
solve the system for the remaining (k-1)* coefficients, a
decomposition approach will be used.

First, assign constant values I , 2, ..., k-1 to x2 to obtain
k-1 functions of xl :

k - 1 F(x1 , i) = D O i + D l , ~ l + . . . + D (k _ l) j ~ l

and the original function is represented as a set of k-1 of
functions of only one variable. The coefficients Dj, can be
obtained by solving the k-1 systems given above, as the
one-dimensional problem. The next step is to obtain the
coefficients Cij from the values Dj,, which can be done
from:

According to this equation, the values of Di j are
obtained by the same transformation by which the values
of the function in the one dimensional case are obtained
from the coefficients of the polynomial. Therefore, the
same inverse operation, i.e. our one-dimensional algo-
rithm can be employed again. After solving the next k-1
systems, all the coefficients of the multinomial will be
known. The total number of executions of the one-dimen-
sional algorithm, using this approach, is equal to 2k.

It can be shown that this scheme can be employed in
the general case of n-variable functions and that the num-
ber of systems to solve is equal to n P .

5.0 Concluding Remarks

This paper has presented current-mode CMOS circuits
that implement addition and multiplication in a Galois
field with four elements. It has also presented a computa-

tionally efficient method for determination of polynomial
representations of arbitrary functions. While the method is
given in terms of 2-variable synthesis, it can be general-
ized to the n-dimensional case. The method is restricted to
Galois fields of small size; but, this size corresponds to the
cases that are interesting in practice, namely those imple-
mentable with today's MVL technology.

6.0 References

[lIBenjauthrit, B. and Reed, I. S . . Galois switching Funclions
and their Applications, JEEE Trans. on Computers, Vol. C-25

[2] Chang, Y. H. and Butler, J. T., The Design of Current Mode
CMOS Multiple-valued Circuits, Proceedings of the 21st
ISVML, pp. 130-138, May 1991.

[3] Davio, M., Deschamps, J-P. and Thayse, A. , Discrete and
Switching Functions, McGraw-Hill, Reading, Massachusetts,
1978.

[4] Ishizuka, O.,Takarabe, H. ,Tang, Z. and Matsutomo, H.. Syn-
thesis of Current-Mode Pass Transistor Networks, Proceed-
ings of the 21st ISMVL, pp. 139-146, May 1991.

[5] Lei, K. and Vranesic, Z., On the Synthesis of 4-Valued Current
Mode Circuits, Proceedings of the 21st ISMVL, pp. 147-155,
May 199 1.

[6] Lidl, R. and Niederreiter, H.. Finite Fields, Addison-Wesley,
Reading, Massachusetts, 1983.

[7] Menger, K. S . . A Transform for Logic Networks, IEEE Trans.
on Computers, Vol. C-18 No. 3, pp. 241-251. March, 1969.

[8] Dao, T. T., Muhiple-Valued IIL, Applicalions and Extensions,
Computer Science and Multiple-valued Logic, D. C. Rine, ed.,
pp. 449-501, North-Holland, 1984.

[9] Wesselkamper, T. C. , Divided Difserence M e h d for Galois
Switching Functions, IEEE Trans. on Computers, Vol. C-27
No. 3, pp. 232-238, Mar., 1978.

NO. 1. p ~ . 79-86, January 1976.

250

