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Debug enhancements in assertion-checker
generation

M. Boulé, J.-S. Chenard and Z. Zilic

Abstract: Although assertions are a great tool for aiding debugging in the design and implemen-
tation verification stages, their use in silicon debug has been limited so far. A set of techniques for
debugging with the assertions in either pre-silicon or post-silicon scenarios are discussed. Presented
are features such as assertion threading, activity monitors, assertion and cover counters and
completion mode assertions. The common goal of these checker enhancements is to provide
better and more diversified ways to achieve visibility within the assertion circuits, which, in
turn, lead to more efficient circuit debugging. Experimental results show that such modifications
can be done with modest checker hardware overhead.
1 Introduction

Techniques for post-fabrication debugging, known as
silicon debugging, are receiving much attention, as increas-
ing transistor counts and smaller process technologies make
it difficult to achieve correct silicon. Companies such as
DAFCA, for example, allow the addition of register transfer
level (RTL) silicon-debug instrumentation to the source
design, the status of which can be read back through the
Joint Test Action Group (JTAG) interface [1]. Examples
of useful debug instruments that are implemented in their
tools are: in-circuit trace buffers for capturing signals or
supplying vectors, signal probe multiplexers and logic ana-
lyser circuitry. To ensure flexibility in providing these post-
silicon debug instruments, they are implemented in small
blocks of added programmable logic gates. The debugging
instruments [1] and the checker enhancements presented in
this paper encompass a collection of techniques that share a
common goal, to help increase the efficiency of the debug-
ging process. The boldface numbers in the tables show the
best result for each test case. For FFs and LUTs, lower is
better; for speed (MHz), higher is better.
Verification aims at eliminating errors before tape-out, by

ensuring that a design follows its intended specification.
Assertion-based verification (ABV) is a relatively new
methodology that is becoming increasingly important [2].
Assertions are meant to express intended circuit functional-
ity in a formal language. The two most common assertion
languages are the property specification language (PSL)
and SystemVerilog assertions (SVA). Assertion failures
reveal design errors either through formal or simulation-
based verification, and are an important failure localisation
mechanism aiding the debugging process. Increasingly,
formal verification tools and simulators are able to interpret
assertions, which help pinpoint design errors before fabrica-
tion. Assertions can also be used in hardware emulation or
simulation accelerators; however, descriptions in high-level
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assertion languages are not easily converted into efficient
RTL descriptions suitable for emulation platforms, such
as FPGA-based emulators. To exploit the power of asser-
tions in hardware form, a checker generator [3] was
designed to create efficient circuit-level checkers from
assertion statements. These checkers monitor the device
under verification (DUV) for violations of assertions and
raise an output signal when a violation is observed.
Circuit-level assertion checkers can be used not only for

pre-fabrication verification, but also for post-fabrication
silicon debugging (Fig. 1). Assertion checkers can be purpo-
sely added to the synthesised design to increase debug visi-
bility during initial testing of the IC. Assertions compiled
with a checker generator can also be used as on-line circuits
for various in-field status monitoring purposes, as shown in
the right side of Fig. 1.
In the emerging design for debug (DFD) space, several

companies are promoting a range of solutions. Tools from
companies such as Novas now support advanced debugging
methods to help find the root cause(s) of errors by back-
tracing assertion failures in the RTL code [4]. Temento’s
DiaLite product accepts assertions and provides in-circuit
debugging features. DAFCA also offers this possibility,
and provides support for assertion checker synthesis and
use. However, as these tools are from commercial ventures,
papers seldom disclose their actual inner-workings.
Increasing and enhancing the visibility into the design’s

signals is also an important aspect in silicon debugging
and DFD [5]. In this paper, increasing visibility using
ABV techniques is explored. More specifically, this work
presents the techniques that enhance assertion checkers
with several debug features [6]: hardware coverage moni-
tors, activity tracers, assertion completion and assertion
threading. These enhancements improve the debugging
capabilities of the resulting checkers in all scenarios in
shown Fig. 1. In verification and silicon debugging, the
enhancements offer the means to help pinpoint the exact
cause of an assertion failure. In the on-line monitoring
scenario, the assertion completion mode and the activity
monitors can play a key role in creating checkers that
evaluate the quality of a circuit for in-field, real-time
diagnosis. All debugging enhancements are implemented
in our checker generator called MBAC, where they can be
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optionally activated. The added visibility into parts of the
assertion checker circuits, along with additional ways to
track assertion results, are the principal means by which we
propose to improve the assertion-based debugging process.
The paper is organised as follows. Background on asser-

tions and our checker generator is presented in Section 2.
The debug enhancements for assertion checkers are
described in Section 3. The effects of these modifications
to the checkers are evaluated in the experimental results
in Section 4.

2 Background

We now overview the features of PSL [7, 8] that, to a large
extent, also apply to SVA or other modern assertion
languages. PSL is a powerful language that consists of
several layers. The Boolean layer consists of the
expressions of the underlying HDL (we use the Verilog
‘flavor’ in this paper). The temporal layer defines
sequences, which are regular expressions over the
Boolean layer formulas. This allows the compact specifica-
tion of complex temporal chains of Boolean expressions.
Such statements rely on the clock signal to advance time,
and are placed between curly brackets. PSL syntax uses
the semicolon to specify the temporal concatenation of
two sub-sequences (clock cycle separator). Sequences
may be repeated with a Kleene star operator, either infi-
nitely ([*]) or with bounds ([*l:h]). Temporal sequences
may also be fused using the colon operator, which constitu-
tes an overlapped concatenation. Sequence intersection
such as length-matching (&&) and non-matching (&), as
well as disjunction (j), is also possible. Sequences also com-
prise additional sugaring operators, which are defined in [7].
The temporal layer also defines properties that add more

expressive power to sequences and Boolean expressions.

Fig. 1 Usage scenarios for hardware assertion checkers
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Here, simple temporal operators such as always or
never are used to enforce how a property or a sequence
should behave, respectively. Overlapped and non-
overlapped suffix implication (j–. and j¼., respect-
ively) can also be used to create a temporal implication
where the antecedent is a sequence, and the consequent is
a property. The eventually! operator creates a strong
property that triggers at the end of execution if its sequence
argument was not observed. Other properties such as abort,
next, until, and so on are also defined in [7]. Sequences and
Booleans can also be used directly as properties.
The two main directives in PSL’s verification layer are

assert and cover. In dynamic verification, the result of
the assert operator on a property is a pass/fail signal.
This signal is normally deasserted, and triggers each time
a violation is observed. The cover statement generates a
signal that only triggers at the end of execution if its
sequence argument never occurred (coverage failure).
A checker generator [3, 9] is a tool that generates monitor

circuits (also called checkers) from assertions. The gener-
ated checkers should be as small as possible, in order to
utilise the smallest amount of circuitry when the checkers
are destined for a hardware implementation. Internally,
the MBAC checker generator builds various automata for
properties [10] and sequences [11]. Automata for each
assertion are then transformed to RTL code [11] in a
manner similar to hardware pattern matching [12]. An
example of this is shown on the right-hand side of
Fig. 2a. An implementation of the debug enhancements pro-
posed in this paper builds on the latest version of our
checker generator.
An automaton is often depicted by a directed graph,

where vertices are states, and the conditions for transitions
among the states are inscribed on edges [13]. In our case,
the transition conditions constitute Boolean-layer
expressions. At each clock cycle, the automaton transitions
into a new set of active states, depending on the symbols
and the status of the values on their edges. When a final
state activates in an assertion automaton, a violation has
occurred. A property can be converted to an equivalent
finite automaton in an inductive manner [10] as follows.
First, terminal automata are built for the Boolean
expressions. Next, these automata are recursively combined
according to the operators used in a given property.
The debugging capabilities we introduce are in the asser-

tion domain, in which the assertion’s behaviour is further
explored to locate the source of the problem. Our approach
Fig. 2 Activity signals for property: always (fa;bgj¼.fc[* 0:1];dg) oseq corresponds to the right-side sequence, cseq to the left-side
sequence
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involves augmenting the checker generation algorithms to
instrument the checkers in ways that help to locate the
root causes of assertion and circuit failures. The following
example shows a simple assertion that might require a fair
amount of investigation to deduce the cause of a failure.
Example 1: A typical bus arbitration assertion. The
assertion below states that whenever the arbiter is ready
and receives a bus request, then the grant signal should be
low in that cycle (the temporal implication j–. is
non-overlapping). The grant should then be given within
at most five cycles; furthermore, the arbiter’s busy signal
must be true until the grant is given, when it must then be
low.

assert always{REQ&READY}j�.

{�GNT; {BUSY& �GNT}[�0:4];

GNT& �BUSY};

Knowing only that this assertion fails will not reveal the
exact cause, or even the sequence of events responsible for
the assertion failure. For example, if REQ, READY and
GNT are all asserted simultaneously, this will be a failure
as much as if the GNT was never asserted. If a tool can
provide the explicit knowledge about the antecedent’s
status (in this case ‘REQ & READY’), this avoids having
to create new signals in the debug environment for monitor-
ing antecedent signals manually. In our simple example, the
antecedent signal can be easily created manually; however,
PSL allows having a complex sequence as an antecedent,
which would then be difficult to re-create in the debug
environment.

3 Debug enhancements for assertion checkers

We now present debugging enhancements that can be
optionally added to the assertion checkers produced by
our checker generator. These enhancements increase the
visibility within assertion circuits, and also enhance the cov-
erage information provided by the checkers. Fig. 3 shows
how the checker additions intervene in the verification
methodology. The MBAC checker generator produces
assertion-monitoring circuits from PSL statements augmen-
ted with various debug-assist circuitry. Other forms of
debug information, such as signal dependencies, can also
be sent to the front-end applications. Since our techniques
are implemented at the RTL level within the checkers,
they can be used in concert with any other circuit debugging
tools.

Fig. 3 Hardware PSL checker with debugging enhancements
IET Comput. Digit. Tech., Vol. 1, No. 6, November 2007
3.1 Dependency graphs

When debugging failed assertions, it is useful to determine
quickly which signals and parameters can influence the
assertion output. In MBAC, all of the signal and parameter
dependencies are listed in annotations for each assertion
circuit. A dependency graph is constructed by the tool to
help pinpoint the cause of an error, or for automatic wave
script generation in an emulation environment. When an
assertion fails, the signals that are referenced in an assertion
can be automatically added to the wave window and/or
extracted from an emulator, in order to provide the necess-
ary visibility for debugging. Dependency graphs are par-
ticularly useful when complex assertions fail, especially
when an assertion references other user-declared sequences
and/or properties, as allowed by PSL [7]. In such cases,
assertion signal dependencies help point to the source of
the problem.

3.2 Signalling assertion completion

For a verification scenario to be meaningful, assertions must
be exercised: assertions that do not trigger because the test
vectors did not fully exercise them are not very useful for
verification or debug. In such cases, that is, when the asser-
tions are trivially true, the designers could be led to believe
that the property has been validated, and thus overlook the
true cause of a non-failure. On the contrary, assertions that
are extensively exercised but never trigger offers more
assurance that the design is operating as specified. The
dependency graphs from the previous section efficiently
determine which signals must be stimulated to exercise
properly an assertion that is found to be trivially true.
In MBAC, assertions can be alternatively compiled in a

completion mode, to indicate when assertions complete
successfully and are not trivially true. The completion
mode affects assertions that place obligations on certain
sub-expressions, such as the consequent of temporal impli-
cations for example. In temporal implications, for each
observed antecedent, the consequent must occur or else
the assertion will fail. As opposed to indicating the first
failure in each consequent, as is usually done, the com-
pletion mode assertion indicates the first success in the
consequent, for each activation coming from the antecedent.
The completion mode has no effect on assertions such as

‘assert never seq’, given that no obligations are placed on
any Boolean expressions. This assertion states that the
sequence argument seq should not be matched in any
cycle. Thus, every time the sequence is matched (i.e. is
detected as occurring), a violation occurs and the assertion
output triggers. The actual PSL syntactical elements
which are affected by the completion mode are sequences
and Boolean expressions when used directly in properties,
with the following exceptions: the argument of the never
operator and the antecedent of implications (suffix
implication and property implication).
Using terminology in [14], our technique identifies

interesting witnesses, that is, examples of where the
property was exercised. Antecedent non-occurrence – com-
monly referred to as vacuity – is the only one possible cause
for trivial validity. The knowledge that an assertion com-
pletes successfully can be useful when evaluating the cover-
age quality of a regression suite. Completion mode creates
behaviour analogous to the cover operator for sequences,
except it is at the property level. Completion mode can
also be referred to as ‘pass checking’, ‘success checking’
and ‘property coverage’.
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We now describe the completion algorithm and illustrate
it with an example. The completion mode transformation
algorithm first determinises the automaton such that each
activation is represented by only one active state. From
any given state, a deterministic automaton transitions into
at most one successor state. Determinising automata with
Boolean expressions on transitions is more involved than
in conventional automata [15]. The determinisation step is
required so that when the first completion is identified, no
other subsequent completions will be reported for the
same activation.
The second step in the completion mode algorithm is to

remove all outgoing edges of the final states, when appli-
cable (in Fig. 4, there were no such edges to remove).
Any unconnected states resulting from this step are
removed during automata minimisation. Both the failure
and the completion transformation algorithms take as
input the detection automaton that corresponds to the
sequence being handled. The completion-mode algorithm
can also be used to implement the SVA operator
first_match(), and is a dual of the FirstFail algorithm in
[11]. The FirstFail algorithm is normally applied to
Booleans and sequences that are used directly as properties.
In completion mode in the checker generator, all calls to the
FirstFail algorithm are replaced by calls to the FirstMatch
algorithm (also called the completion mode algorithm).
Assertion completion is best visualised using an example.

Example 2: Test assertion for assertion completion.

assert always({a}j¼. {{c[ �0:1];d}j{e}});

The assertion above is normally compiled as the automa-
ton in Fig. 5, where the final state is triggered when the
assertion fails. The completion mode automaton for this
example is shown in Fig. 4. The sequence of events a; c;
d, for example, will make the automaton in Fig. 4 trigger
(completion); however, the failure automaton will not
reach a final state given that the sequence conforms to the
specification indicated by the assertion. In the automata
graphs, the highlighted state s1 indicates the initial state,
which is the only active state when reset is released. The
PSL abort operator has the effect of resetting a portion of
the checker circuitry [10], and thus applies equally to
normal mode or completion mode.

3.3 Counting activity

MBAC includes options to create automatically counters on
assert and cover statements for counting activity.
Counting assertion failures is straightforward, as observed
in the top half of Fig. 6; however, counting the cover

Fig. 4 Completion automation for always (fagj¼.ffc[* 0:1];
dgjfegg)

Fig. 5 Normal automaton for always (fagj¼.ffc[* 0:1];dgjfegg)
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directive requires some modifications. In dynamic verifica-
tion, cover is a liveness property which triggers only at the
end of execution. In order to count occurrences for coverage
metrics, a plain matching (detection) automaton is built for
the sequence argument (In PSL, a property is not a valid
argument for the cover operator), and a counter is used
to count the number of times the sequence is matched.
The cover signal only triggers at the end of execution if
the counter is at zero, as shown in the lower half of
Fig. 6. If no counters are desired, a one-bit counter is
implicitly used. The counters are width parameterised, and
by threshold arithmetic do not roll-over when the
maximal count is reached. The counters are also initialised
by a reset of the assertion checker circuit.
Counters can be used with completion mode (Section 3.2)

to construct more detailed coverage metrics for a given
scenario. Knowing how many times an assertion completed
successfully can be just as useful as knowing how many
times an assertion failed. For example, if a pre-determined
number of a certain type of bus transaction is initiated,
the related assertion should see itself complete successfully
the same number of times. In general, by signalling success-
ful witnesses, completion mode provides an indication that
if an assertion never failed, it was not because of a lack of
proper stimulus.

3.4 Monitoring activity

Sequences are expressed internally as automata before
being used to construct an assertion automaton.
Monitoring the activity of a sequence is a quick way of
knowing whether the input stimulus is actually exercising
a portion of an assertion. Activity is defined as a disjunction
of all states in an automaton; thus anytime a state is active,
the automaton is active. A sequence can show internal
activity when undergoing a matching, even if its output
does not trigger (i.e. reach an accepting state).
Conversely, if a sequence output triggers, the automaton
representing it is guaranteed to show internal activity. The
dependency graph of an assertion can also be used to pin-
point the root cause of a suspiciously inactive sequence
during a verification scenario.
Using the appropriate compilation option, our tool further

generates activity signals for each sequence sub-circuit. The
only states in sequence automata that are excluded from
consideration for activity monitors are: the start state and
the final state when a sequence is the antecedent of the
j¼. operator. The reason for these exceptions is that
when a sequence automaton is kept isolated from the rest
of the assertion’s automaton, its initial state has a self
loop with the Boolean true, which does not represent mean-
ingful activity. When a sequence appears as the left side of a
non-overlapped suffix implication, it is rewritten to an over-
lapped implication by concatenating an extra ‘ftrueg’
sequence element to the end of the sequence [10], which
also does not represent meaningful activity. An example

Fig. 6 Counting assertions and covers
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of activity signals is visible in Fig. 2c for the following
assertion.

Example 3: Test assertion for activity signals.

assert always({a; b}j¼. {c[ � 0:1]; d});

In Fig. 2c, the activity signals for both sequences are
visible, along with the assertion signal (out_mbac), and
the assertion as interpreted by Modelsim (gold1).
Under normal conditions, each assertion is represented by

a single automaton in MBAC, before its transformation to
RTL. Fig. 2a shows how the example assertion would nor-
mally appear as a single automaton when activity monitors
are not desired. To implement activity monitors and the
assertion threading, discussed in Section 3.5, it is necessary
to isolate a sub-automaton so that it is not merged with the
remainder of the assertion’s automaton during automata
optimisations. The automata that are isolated correspond
to the sub-expressions that are being monitored and/or
threaded, which in our approach correspond to top-
level sequences or Boolean expressions appearing in
properties.
Monitoring activity signals eases debugging by improv-

ing visibility in assertion-circuit processing. For example,
an implication whose antecedent is never matched is said
to pass vacuously [14]. When monitoring antecedent
activity, a permanently inactive antecedent does indicate
vacuity, but this seldom occurs given that a single
Boolean condition can activate a state within the antece-
dent. An example to illustrate this is shown in Fig. 2b,
where state1 in the antecedent automaton is active when a
is true. For activity monitors to be the most useful, the
right side (consequent) needs to instead be monitored
because an inactive consequent means that the antecedent
was never fully detected (and thus never triggered the con-
sequent). If no activity was ever detected on the consequent

Fig. 7 Hardware assertion threading
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of a temporal implication, this indicates that the implication
is vacuously true: the antecedent never fully occurred and
thus never triggered the consequent. The fact that the ante-
cedent never fully occurred does not mean that there was no
activity within it; conversely, activity in the antecedent does
not mean that it fully occurred.

3.5 Hardware assertion threading

Assertion threading is a technique by which the checker
generator instantiates multiple copies of a sequence check-
ing circuit, and alternately activates these circuits. This
allows a violation condition to be separated from the other
concurrent activations in the assertion circuit, in order to
help visualise which exact start condition caused a failure.
In general, by using a single automaton-based recogniser,
all temporal checks become intertwined in the automaton
during processing. The advantage is that a single automaton
can catch all failures; however, the disadvantage is that
it becomes more difficult to correlate a given failure with
its input conditions. The assertion threading in effect
separates the concurrent activity to help identify the root
cause of the sequence of events leading to an assertion
failure. Threading applies to PSL sequences, which are
the typical means for specifying complex temporal chains
of events.
Fig. 7 illustrates the mechanisms used to implement

assertion threading. The hardware dispatcher redirects the
activation signal to the multiple sequence-checker units in
a round robin sequence. The tokens indicate the progress
through the sequence automata. In the figure, hardware
thread #2 has identified a failure. With this information,
we can trace back to the antecedent expression that initiated
the sequence checking in thread #2. An example will follow
illustrating how this method can be used in tracing back an
execution error in a CPU.
In assertion threading, entire failure-matching

sequence-automata are replicated. Since a single automaton
can detect all sequence failures, replicating the automaton
and sending tokens into different copies ensures that no
failure is missed even if the number of threads is below
the concurrency level of the monitored sequence. The dis-
patcher rotates a one-hot encoded register such that each
activation is sent to one of the hardware threads. If a
token enters a thread for which a previous token is still
being processed, identifying the precise cause of a failure
becomes more difficult. In such cases, increasing the
number of hardware threads can help to properly isolate a
sequence.
Threading also applies to the plain matching sequence

automata (as opposed to the failure matching automaton
discussed above). In such cases, the plain occurrence match-
ing automaton is threaded for increased causality visualisa-
tion. The nuance between plain matching and
failure-matching modes (called conditional and obligation
Fig. 8 Assertion for pipelined CPU write instruction (CPU pipeline example)
673



Fig. 9 Using assertion threading to quickly locate the cause of an instruction execution error in the CPU pipeline example
Table 1: Assertion-circuit resource usage in two MBAC
modes

Assertion Normal Assertion

completion

FF LUT MHz FF LUT MHz

assert always fa&bg j–. f�c;

fd&�cg[�0:4]; c& � dg;

(Example 1)

6 8 433 6 7 444

assert always (fag j¼.

ffc[�0:1];dgjfegg); (Example 2)

3 3 610 3 2 610

assert always (fa;bg j¼.

fc[�0:1];dg); (Example 3)

4 3 611 4 3 611

assert always fag j¼.

ff[�2];b;�cgjf[�2];�b;cgg;

(Example 4)a

6 3 564 6 3 564

assert always fag j¼. fb;c;d;eg;

(AMBA asr. [17])a
5 5 514 5 4 611

assert always fa;�ag j¼.

f(�a)[�0:15];ag abort b; (AMBA

asr. [7])a

18 17 611 18 23 312

assert always fa;bg j¼.

fc;ffd[�];eg[þ];fg && fg[�]gg

abort h; (PCI asr. [2])a

5 10 468 5 7 470

assert always fag j¼.

fe;d;fb;eg[�2:4];c;dg;

15 21 329 15 15 430

assert always fag j¼. fb;

fc[�0:2]gjfd[�0:2]g ; eg;

7 12 333 7 9 414

assert always fffb;c[�1:2];dg[þ]g:

fb;fe[2.]g;dgg j¼. next a;

8 7 473 8 7 473

assert always fag j¼.

fffc[�1:2];dg[þ]g &&

ffe[22:3]g;dgg;

16 38 304 16 31 386

assert always fag j¼.

fffb;c[�1:2];dg[þ]g &

fb;fe[22:3]g;dgg;

44 141 260 44 139 250

assert always fag j¼.

fffb;c[�1:2];dg[þ]g &&

fb;fe[2.2:3]g;dgg;

35 118 251 35 100 281

aSimplified Booleans
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modes in [11]) can be observed by comparing the automata
for both sequences appearing in the assertion in Fig. 2b.
In this example, the occurrence and failure modes corres-
pond to the left and right sides of the j¼. operator,
respectively.
To complete the threading, the sequence output is

defined as the disjunction of the threaded automata outputs.
Seen from the sub-circuit boundary, a multi-threaded
sub-circuit’s behaviour is identical to that of a non-threaded
sub-circuit. Threading applies to any PSL property in which
one or more sequences appear. Threading of a simple
Boolean expression used at the property level is obviously
not performed. A tradeoff is required between an accurate
location of the source of the failure and hardware resources,
as will be shown in Section 4.
An example scenario where assertion threading is useful

is in the verification of highly pipelined circuits such as a
CPU pipeline or a packet processor, where temporally
complex sequences are modelled by assertions. In such
cases, it is desirable to partition sequences into different
threads in order to separate a failure sequence from other
sequences. Once the sequence processing is temporally
isolated, the exact cause of the failure can be more easily
identified. The following case study shows how assertion
threading can be used to quickly identify incorrect instruc-
tion executions in a CPU.

3.5.1 Assertion threading: CPU execution pipeline
example: A simplified CPU execution pipeline, similar
to the DLX [16] RISC CPU with five levels of pipeline,
was coded in RTL and two classes of instructions are con-
sidered, namely memory writes and register writes. This
CPU is used to execute instructions that contain memory
and register manipulation. An error injection mechanism
is also incorporated into the instruction decoder, such that
errors can be inserted in the execution pipeline. Memory
writes are committed at the fourth level (MEM stage) in
the pipeline, and register writes are committed at the fifth
level (WB stage) in the pipeline. For a given WRITE
instruction, only a single destination is allowed by the
architecture (Memory or Register).
Example 4 shows the PSL code used to create an asser-

tion checker circuit for monitoring the memory write or
register write instructions. The sequences ‘Smemwr’ and
‘Sregwr’ are built to ensure that a write is either to the reg-
ister file or to external memory. In this CPU pipeline, those
temporal expressions represent the same ‘store’ instruction
IET Comput. Digit. Tech., Vol. 1, No. 6, November 2007



at two different pipeline stages. The sequence Swr_instr
models the instruction decoder detecting the presence of a
write instruction. The property Pcorrect_wr ensures that
this write instruction will either result in a memory write
or a register update (but never both).

Example 4: The assertion for a pipelined CPU write instruc-
tion in Fig. 8 is given to the MBAC Compiler along with the
CPU RTL in Verilog.
The resulting checker is instantiated in the CPU architec-

ture. The CPU along with its checker are exercised by a test-
bench running various verification scenarios.
Fig. 9 shows the resulting simulation trace. The depen-

dency graph is used to determine the list of signals that
relate to the assertion being debugged, and by extension
the signals that need to be logged in the wave window.
The AssertFailOut signal is asserted at a given time point,
indicating a violation in the correctness of the write instruc-
tion behaviour. In this example, the instruction was com-
mitted to both the memory and the register file, which is
impossible in this architecture. Tracing back through the
Thread-Results vector, we find that thread #2 has detected
the failure. Working back through the activations of this
thread, it can be observed that the instruction causing the
error is highlighted by the cursor in the figure. The assertion
threading helps to isolate the source of the faulty sequence,
and allows us to quickly determine which specific instruc-
tion was responsible for the assertion failure. In our
example, for the sake of simplicity, the CPU executes one
instruction per clock. In more complex problems, some
instructions could take a variable number of cycles to
execute; assertion threading would become an even more
important asset to help debug these types of circuits.

4 Experimental results

The effects of assertion threading, assertion completion and
activity monitors are explored by synthesising the assertion
circuits produced by our checker generator using ISE
8.1.03i from Xilinx, for a XC2V1500-6 FPGA. The depen-
dency graphs from Section 3.1 do not influence the circuits
generated by the checker generator, while the assertion and
coverage counters from Section 3.3 contribute a hardware
IET Comput. Digit. Tech., Vol. 1, No. 6, November 2007
overhead that is easily determined a priori. The number of
flip-flops (FF) and four-input lookup tables (LUT) required
by a circuit is of primary interest, given that assertion cir-
cuits are targeted towards hardware emulation and silicon
debug. Since speed may also be an issue, the maximum
operating frequency for the worst clk-to-clk path is
reported.
Some of the assertions used in this section are from [2]

and [17], while others were created during the development
of MBAC to exercise the checker generator as thoroughly as
possible. Typical assertions, such as most of the assertions
used for verifying bus protocols, span few clock cycles
and do not showcase the strength of our checker generator
because they are easily handled. In the AMBA, PCI and
CPU example assertions appearing in Tables 1–3,
complex Boolean layer expressions are replaced by simpli-
fied Boolean symbols. As witnessed in Example 4, full
assertions require much more space to write, and in their
original form they are not practical for inclusion in
Tables 1–3. Synthesising the full expressions does not
change the temporal complexity of the automata; synthesis-
ing assertions with simple Boolean expressions allows us to
better show the logic required for capturing the structure of
an assertion in circuit form. This is a common practice when
benchmarking checkers [10, 11, 18].
An upper bound on the area penalty of checkers in hard-

ware is obtained assuming that no sharing of common
circuit primitives takes place. Since the checkers monitor
only the internal circuit signals, the extra loading can at
worst add small delays, which can be kept low by following
standard synthesis techniques. For instance, for the signals
in the critical path that are monitored by an assertion,
small buffers can be inserted to minimise the loading of
the circuit under debug.

4.1 Assertion completion and activity monitoring

As described in Section 3.2, assertions can also be compiled
in completion mode as opposed to the typical failure mode.
Table 1 shows hardware metrics for a set of example asser-
tions compiled in normal mode and in completion mode.
From the table, it can be observed that a completion-mode
assertion utilises slightly less combinational logic (LUTs),
Table 2: Resource usage of assertion circuits and activity monitors

FoCs MBAC MBAC þ Act.Mon.

Assertion (assert x) FF LUT MHz FF LUT MHz FF LUT MHz

always fa&bg j–. f�c; fd&�cg[�0:4]; c&�dg; (Example 1) 6 10 341 6 8 433 6 11 429

always (fag j¼. ffc[�0:1];dgjfegg); (Example 2) 3 3 610 3 3 610 3 4 610

always (fa;bg j¼. fc[�0:1];dg); (Example 3) 4 3 564 4 3 611 4 5 564

always fag j¼. ff[�2];b; � cgjf[�2];�b;cgg; (Example 4)a 6 3 564 6 3 564 6 5 559

always fag j¼. fb;c;d;eg; (AMBA asr. [17])a 5 3 417 5 5 514 5 6 509

always fa;�ag j¼. f(�a)[�0:15];ag abort b; (AMBA [17])a N.O. 18 17 611 18 23 564

always fa;bg j¼. fc;ffd[�];eg[þ];fg && fg[�]gg abort h; [2]a N.O. 5 10 468 5 12 411

never fa;d;fb;ag[�2:4];c;dg; 25 23 564 12 11 564 12 15 559

always fag j¼. fe;d;fb;eg[�2:4];c;dg; N.O. 15 21 329 15 26 312

always fag j¼. fb; fc[�0:2]gjfd[�0:2]g ; eg; 7 11 333 7 12 333 7 14 331

never fffb;c[�1:2];dg[þ]g && fb;fe 2:3]g;dg g; 36 44 394 16 19 395 16 24 381

always fag j¼. fffc[�1:2];dg[þ]g && ffe[ 2 . 2:3]g;dgg; N.O. 16 38 304 17 40 293

always fag j¼. fffb;c[�1:2];dg[þ]g & fb;fe[ 2 . 2:3]g;dgg; N.O. 44 141 260 44 150 259

always fag j ¼ . fffb;c[�1:2];dg[þ]g && fb;fe[ 2 . 2:3]g;dgg; N.O. 35 118 251 35 128 243

N.O., no output
aSimplified Booleans
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Table 3: Area tradeoff metrics for assertion threading

None Two-way Four-way Eight-way

Assertion FF LUT MHz FF LUT MHz FF LUT MHz FF LUT MHz

A1 6 8 433 15 18 386 29 33 306 57 62 241

A2 12 11 564 25 23 564 49 46 433 97 91 408

A3 15 21 329 33 44 298 65 83 252 129 164 235

A4 16 19 395 33 39 395 65 77 395 129 160 318

A5 26 80 246 57 165 252 113 297 205 225 570 177

A6 35 118 251 73 235 239 145 430 213 289 881 186

A7 6 3 564 15 11 442 29 20 362 not required

A8 5 5 514 13 16 323 25 24 326 not required

A9 18 17 611 39 38 442 77 75 364 153 144 297

A10 5 10 468 13 23 311 25 39 278 49 67 235

A1: assert always fa&bg j–. f�c; fd&�cg[�0:4]; c&�dg; (Example 1)

A2: assert never fa;d;fb;ag[�2:4];c;dg;

A3: assert always fag j¼. fe;d;fb;eg[�2:4];c;dg;

A4: assert never f ffb;c[�1:2];dg[þ]g && fb;fe[ 2 . 2:3]g;dg g;

A5: assert always fag j¼. fffb;c[�1:2];dg[þ]g : fb;fe[2.]g;dgg;

A6: assert always fag j¼. f ffb;c[�1:2];dg[þ]g && fb;fe[2 . 2:3]g;dg g;

A7: assert always fag j¼. ff[�2];b;�cgjf[�2];�b;cgg; (Example 4)a

A8: assert always fag j¼. fb;c;d;eg; (AMBA asr. [17])a

A9: assert always fa;�ag j¼. f(�a)[�0:15];ag abort b; (AMBA asr. [17])a

A10: assert always fa;bg j¼. fc;ffd[�];eg[þ];fg && fg[�]gg abort h; (PCI asr. [2])a

aSimplified Booleans
and runs slightly faster than its normal-mode version (i.e.
regular failure matching).
The activity monitors introduced in Section 3.4 are used

to observe when sequences are undertaking a matching. An
activity signal is composed of the disjunction of state
signals from all of the states in a given automaton, as wit-
nessed in Fig. 2. Table 2 shows the resource usage of
example assertions with and without the addition of
sequence activity monitors. As can be noticed, the
maximum operating frequency is virtually not affected,
and in some cases, an additional FF is required. The effect
of the OR gate required for the state-signal disjunction is
visible in the LUT metric. Further benchmarking shows
the efficiency of our checker generator, compared to the
FoCs checker generator from IBM [9, 19].

4.2 Assertion threading

As explained in Section 3.5, assertion threading replicates
sequence circuits in order for the failure conditions to be
isolated from other activations. This was shown to ease
the debugging process considerably, particularly when tem-
porally complex assertions are used. Table 3 shows how the
resource utilisation scales as a function of the number of
hardware threads. The threaded assertion circuit used in
the example in Fig. 9, with full Boolean expressions, actu-
ally synthesises to 29 FFs, 21 LUTs, with a maximum fre-
quency of 362 MHz, which corresponds to virtually the
same metrics as the simplified version used in test case
A7 (four-way column).
Because an eight-way threading is only useful for

sequences that span at least eight clock cycles, the asser-
tions used must have a certain amount of temporal complex-
ity for the results to be meaningful. Since the assertion from
Example 4 (A7) and the AMBA assertion in A8 both
contain simple left-sides for j¼., along with right-side
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sequences that span four clock cycles, they do not benefit
from eight-way assertion threading. As we expected, the
experimental data show that the resource utilisation scales
linearly with the number of hardware threads.

5 Conclusion

In this paper we have presented techniques that facilitate
debugging within the assertion-based framework, either in
the emulation or in the silicon debug stages. By selecting
various features, debugging is enhanced by providing
better visibility, traceability and coverage metrics in the
assertion checkers generated by MBAC. While providing
an increased ability to determine the causes of errors, the
hardware overhead is modest. These improvements are par-
ticularly well suited for the complex temporal sequences of
modern assertion languages.
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