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Abstract

Arithmetic Transform (AT) has been known under var-
ious names, including Inverse Integer Reed-Muller (IRM)
transform. We outline the developments that place AT in the
center of very practical arithmetic circuit applications, and
explain the conditions for making the AT practical. We show
that AT allows the only known scheme of treating all the ap-
proximation and imprecision sources of arithmetic error in
the optimization, through an efficient static method. Finally,
the role of AT in the stochastic computing is highlighted.

1. Introduction

Arithmetic Transform (AT) has been known under nu-
merous names, including the Inverse Integer Reed-Muller
(IRM), ”probabilistic”, ”adding” and ”algebraic” transform.
It is an orthogonal expansion defined on pseudo-Boolean
functions, where the arguments (inputs) are Boolean n-
tuples, while the function value (output) can be over a range
of domains, such as integers, rational numbers or rings over
integers (i.e. modulo arithmetic). Then, the Reed-Muller
(RM) transform is a special case of AT, where the output
domain is integer ring Z2, i.e., integers modulo 2. Although
it is more suitable to associate AT with the inverse of RM,
the fact is that RM and its inverse are the identical transfor-
mations.

AT has been already considered for numerous applica-
tions in a number of domains. The applications elaborated
up to the end of 20th century are summarized thoroughly by
Falkowski [4] they include probabilistic analysis of switch-
ing activities, reliabilities in the networks, fault signatures
etc. In spite of the large body of literature on AT and its
uses, its use has been limited as either the applications were
computationally too demanding, or the means to obtain AT
were not practical for large functions.

In this paper, we show how AT can be useful for arith-
metic circuit verification and optimization, and explain the
conditions for making AT practical. A number of properties

of AT are shown that facilitate dealing with imprecise fixed-
point arithmetic circuits. The practical means are exposed
to construct and manipulate AT and the related represen-
tations, and the ways are shown towards AT usability into
the stochastic computing, believed to be of significance for
emerging nanoscale technologies.

2. Background

AT is defined as a transform over pseudo-Boolean func-
tions, f : Bn 7→ w, where it suffices that the output set w
is at Abelian group, i.e, a set with an operation of addition
and subtraction. The AT is a polynomial:

f =
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· · ·
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Hence, AT expresses a function using the set of linearly
independent functions defined as: xi0

0 x
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We say that the arithmetic spectrum is a set of coeffi-
cients ci0i1...in−1 , each of which multiplies an orthogonal
basis function xi0

0 x
i1
1 . . . x

in−1
n−1 . A fairly broad and useful

framework to consider is when w = R, i.e., the functions
over real numbers. Further cases, where the arithmetic is re-
stricted to integers, will be used as well. Basis functions can
be directly related to the discrete Fourier Transform, such
as those in Walsh-Hadamard Transform (WHT) [20, 23].
In the case of AT, the basis consists of monomials, and the
transform is simply treated as a polynomial.

An important observation is that AT allow the outputs to
be grouped into the word-level quantities. Then, the encod-
ing of word-level quantities determines the exact way the
calculation is done, i.e., the meaning of the operations ”+”
and ”−”, which we already indicated are all that is needed



Table 1. Common arithmetic valuations
Word Unsigned Sign-extended 2’s Complement

Integer
n−1∑
i=0

xi2i (1− 2xn−1)
n−1∑
i=0

xi2i
n−2∑
i=0

xi2i − xn−12n−1

Fractional
n−1∑
i=1

xi2−i (1− 2x0)
n−1∑
i=1

xi2−i −x0 +
n−2∑
i=1

xi2−i

Generalized Fixed-Point
n−1∑
i=1

xi2i−m (1− 2x0)
n−1∑
i=1

xi2i−m −x02m−n −
n−2∑
i=1

xi2i−m

in the calculation of an AT. In the remainder of this section,
AT will be defined constructively, via valuation function and
the methods of AT calculation.

Definition 1. The function valuation : Bn 7→ w is the
word-level value calculation undertaken according to the
encoding of arithmetic values.

Simply, valuations provide the ”numerical” value that a
Boolean vector takes for a given encoding. The valuations
for common encodings are summarized in Table 1. For a
given word-level value encoding of a Boolean vector, the
AT is equal to its valuation, which will be used to assist in
arriving at AT in various instances. The valuation function
can be easily expanded to describe more complex functions,
most notably the arithmetic ones, as shown next.

Example 1. Consider an unsigned 2-bit adder and a mul-
tiplier over word-level quantities a and b. Their valuation
for unsigned integer encoding, and hence, their ATs are:

Adder: a+ b (for 2-bit unsigned a,b)

valuation(a+ b) = valuation(a) + valuation(b) =
(a0 + a1 ∗ 2) + (b0 + b1 ∗ 2) = 2(a1 + b1) + (a0 + b0)

Multiplier: a ∗ b (for 2-bit unsigned a,b)

valuation(a ∗ b) = valuation(a) ∗ valuation(b) =
4a1b1 + 2(a0b1 + a1b0) + a0b0

2.1. Calculating AT coefficients

The practical uses of AT are impossible without the effi-
cient ways of obtaining it from the common circuit descrip-
tions. As apparent from the definition, the straightforward
method of obtaining the transform coefficient would be ex-
ponential in the number of variables in fact, the square of
the number of minterms (i.e., points) of a function.

Similarly to RM, there is a number of ways to obtain an
AT of a function. The following methods exist in practice:

1. Matrix transform: the coefficient vector is c = Tf ,
where T is the lower-triangular matrix that, relative to
the RM matrix, has every odd-indexed matrix entry be-
low the diagonal is multiplied by -1. Hence, T0 = 0
and

Tn =
[
Tn−1 0
−Tn−1 Tn−1

]
(2)

2. Fast transform that, similar to FFT, employs a butter-
fly diagram to speed up the multivariate AT through a
series of univariate real-valued Davio expansions

f = fx=0 + x(fx=1 − fx=0). (3)

3. Lattice-based (interpolation) construction [22] is
suitable for sparse, incompletely specified functions.
Figure 1 shows an instance of Boolean latticeB24 with
the AT of a multiplier from Example 1 inscribed next
to the shaded nodes. Coefficients are obtained by eval-
uating the function in layers 0 and 1 and applying
exhaustively the Davio expansion among the pairs of
points linked by an edge. In general, the AT of an n-bit
multiplier has O(n2) nonzero coefficients, all of them
in Layer 2, and the AT of an adder has O(n) non-zero
coefficients in Layer 1.
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Figure 1. Lattice-based transform of a 2-bit
multiplier: non-zero coefficients highlighted

4. Rewriting of arithmetic expressions that expands the
real-valued variables with their word-level quantities
via the valuation function. Expansion from Taylor Se-
ries is a specific instance in which arbitrary real-valued
functions can be expressed by AT.



5. Composition from blocks through mixed AT (MAT)
and MAT sequential (MATS) [24] extensions of AT.
MAT allows both bit- and word-level inputs, and can
be thought of as a hybrid between AT and Taylor se-
ries. Because it allows word-level inputs, the outputs
of AT or MAT can be directly MAT, to result in a com-
position of the transforms. MATS additionally allows
sequential elements, as well as the sequential unrolling
to convert to MAT and eventually AT. Efficient algo-
rithms for the composition were presented in [15].

6. Graph-based transforms construct directly graph-
based AT representations, such as *BMD [2]. As the
decision diagrams are well explained elsewhere, it is
only worth pointing out that they are the efficient di-
rected acyclic graph (DAG) representation of the full
binary tree-based Davio expansion from Eqn. 3.

Example 2. AT of the inverter f(x) = x′ is obtained by
multiplying the matrix T1 from Eqn. 2 and the vector of val-
ues [1 0]T using integer arithmetic. The resulting vector of
coefficients c = [1− 1]T encodes the function 1− x.

Similarly, the Davio expansion, Eqn. 3, as well as the
lattice traversal over B2, result in f = f0 + x(f1 − f0) =
1− x.

The matrix and even fast AT transforms are mostly im-
practical, but often offer the way to reason about transforms,
and relate to the body of other works in transforms.

3. AT and arithmetic functions

We summarize here the basic properties of AT that are
useful in arithmetic circuit optimizations. First, we present
the direct way in which the AT can be related to the infinite-
precision real-valued specifications. Next, we explain the
properties amenable to the efficient precision analysis, and
finally we show how a combination of these properties leads
to the ability to perform better precision analysis and opti-
mization than the known fixed-point methods, and the main-
stream floating-point Remez method.

3.1. Relation to real-valued specifications

Arithmetic circuits most commonly implement real-
valued specifications of functions that are in general mul-
tivariate, i.e., f : Rn 7→ R. We indicated in Sec. 2.1 that for
a number of real-valued specifications, including polynomi-
als and Taylor series, there is a direct and efficient construc-
tion of AT. In this section, we show the benefits of the con-
struction of the AT from real-valued specifications, such as
Taylor series, and present the details needed for efficiency
in algorithms.

For an infinitely differentiable real function f over inter-
val I around point X0, the infinite Taylor series converging
over I are:

f(X) =
∞∑

i=1

f (i)(X0)
i!

∗ (X −X0)i. (4)

In practical implementations, the series become trun-
cated to the first n + 1 terms, in which case the remainder
is provably bounded by an (n+ 1st) order derivative:

Rn(X) =
f (n+1)(ξ)
(n+ 1)!

∗ (X −X0)n+1 (5)

where ξ is a point in the given interval I .
The finite Taylor expansion is straightforwardly con-

verted to an AT. For an instance of m-bit fixed-point pre-
sentation the arithmetic rewrite scheme from Sec. 2.1 re-
places all instances of the real-valued X with the valuation
function over a m-tuple of bits. For instance, with unsigned
encoding, the replacement is:

X ←
m−1∑
j=0

xj2j

and the AT is obtained by expanding the (n+1)-term Taylor
polynomial (where without loss of generality X0 = 0 and
f0 = f(X0)):

f0 + f
′

0

(
m−1∑
i=0

xj2j

)
+ · · ·+ f

(n)
0

n!
∗

m−1∑
j=0

xj2j

n

The single most challenging issue in the conversion to
AT is that of the intermediate polynomial swell during the
transformation. The techniques for the efficient rewrite of
arithmetic expressions are well studied and elaborated in,
for instance, symbolic computing area, where such rewrites
are often met.

Having the efficient construction of AT from real-valued
specification, we can simply apply the precision analysis
from Sec. 3.2, which allows us to efficiently verify whether
a fixed-point implementation of a real-valued specification
achieves the required precision over the subset of the do-
main of the function that is of interest.

3.2. AT and arithmetic precision

Arithmetic circuits that implement algorithms conceived
on infinite-precision real-valued functions are bound to be
imprecise. There are two major causes for that. First, there
are approximations applied to the real-valued specification.



The second cause of the imprecision is based on a finite-
word implementation. For example, real numbers are real-
ized using finite-size words as fixed-point data representa-
tions.

The imprecision error is a distance between the speci-
fication and implementation, most commonly measured as
the maximal absolute difference between the two, i.e., their
distance in the uniform norm L∞. The error is commonly
expressed in the terms of the units in the last place (ULP),
i.e., relative to the length of the fixed-point implementation.

The precision analysis cannot be dealt with at the bit-
level, and the explicit representation of output word-level
values is required. Consider an example of arithmetic com-
putation where all output bits are incorrect, while the im-
precision can be made arbitrarily small by extending the
wordlength.

Example 3. Assume that the exact n-bit fractional result is

valueexact = 1.00 . . . 0,

while the approximation is

valueappr = 0.11 . . . 1.

While all bits are incorrect, the error is one ULP, which can
be arbitrarily small by increasing n.

Since AT represents the function output at a word level,
it can be used for reasoning directly about the imprecision.
On the other hand, keeping the input variables at a bit level
allows a convenient way to explore the domain of the func-
tion definition while searching for the maximal difference.
In other words, if there is a function implementation f that
includes an error e, then its AT is

valuation(f + e) = valuation(f) + valuation(e),

by linearity of AT. Furthermore, in order to compare the
arithmetic values for two functions, we just compute

valuation(f − g) = AT (f)−AT (g).

The maximum absolute value of the difference

||AT (f)−AT (g)||∞ = max
I
|f − g|

over the domain of the definition I will be an error between
the two. No bit-level representation can deal so succinctly
and directly with the imprecision in the implementation.

Expressing precision by AT. The AT, understood and
used as valuation function, offers a direct way to ex-
press the imprecision properties of the circuit. For the
same intended arithmetic function f , given two word-
level implementations with p and q bits denoted as fp

and fq , respectively, the two valuations will be denoted

as valuationp(f), valuationq(f). Further, the arithmetic
mismatch between the two will be:

valuationp(f)− valuationq(f) = AT (fp)−AT (fq)
= AT (fp − fq)

For a given reference implementation fref , the imprecision
due to the n-bit wordlength is then directly expressed as

AT (fref )−AT (fn).

Hence, the imprecision to the finite wordlength n is ex-
pressed in terms of maximum absolute distance in L∞ as

||AT (fref )−AT (fn)||∞ = ||AT (fref − fn)||∞. (6)

In consequence, to find the imprecision in the L∞ norm, it
suffices to search for a maximum absolute value that the AT
of a difference between the reference and the implementa-
tion functions take.

Furthermore, the other distance functions, like the sum
of squares (i.e., distance in L2 norm) could be equally ap-
plied as well. Since the maximum absolute value of the
imprecision is the common metric for usual arithmetic and
DSP implementations, in the rest of the paper, we assume
the L∞ norm and its induced distance.

3.3. Relating arithmetic circuit techniques

In practice, arithmetic and DSP circuit designers usu-
ally perform the individual approximation and wordlength
imprecision analyses sequentially, where each step usually
gives a pessimistic bound. As they assume that the over-
all imprecision error is a sum of error bounds obtained in
each step, this introduces further serious pessimism and
forces the designers to waste the circuit resources (and con-
sequently, speed and energy consumption). The more effi-
cient, state-of-art fixed-point and floating-point techniques
are outlined next.

Fixed-point analysis and optimization often rely on the dy-
namic (i.e. simulation-based) evaluation schemes [9, 31,
28]. Up to our best knowledge, all such schemes deal only
with the bit-width assignment, and the function approxima-
tion was not tackled in an integral manner. For instance,
Kim and Sung [9] develop a tool for the area optimization
via the word-length exploration through simulation, where
the word-length sensitivity is obtained by simulating a sig-
nal flow graph and the cost is assessed through the model of
the hardware.

Interval, affine and symbolic noise analysis Most often,
the error beyond the ULP is modeled by the interval anal-
ysis (IA), by which the error is assumed to be growing lin-
early with the size of the interval beyond the ULP, with the



worst case being half of the ULP. Nayak et al. [12] de-
velop a tool for Matlab specifications, while [5] use static
affine arithmetic (AA) modeling, but only for the word-
length determination, similar as Pu and Ha [17]. Affine
arithmetic assumes that the imprecision is a linear com-
bination of the sources of uncertainity, contributing to the
imprecision. While AA is relatively simple, it tends to be
overly pessimistic. A good comparison of IA, AA and the
Taylor series-based methods is performed in [13]. Just re-
cently, Ahmadi and Zwolinski [1] have introduced the sym-
bolic noise analysis, which assumes a probability distribu-
tion in representing an error over an interval, which is useful
in overcoming the pessimism of IA and AA, but relies on an
unknown error distribution.

Function approximations The work dealing with function
approximation, especially in conjunction with transcedental
functions, includes the the methods that use general poly-
nomial representations [10], as well as Taylor series-based
lookup table approximations [27]. In the latter, the detailed
analysis is performed on Taylor series truncation, while the
word-length is determined as a final step. Such schemes are
similar to the floating-point design, outlined next.

Floating-point circuit designers often rely on Remez algo-
rithm [11], which is a scheme for finding the best function
approximation in the uniform norm L∞ by a fixed-degree
polynomial. The Remez algorithm is preferred to Cheby-
shev approximations and other schemes. Since it essentially
addresses only the approximation component of the impre-
cision, which is an acceptable simplification in the case of
the floating point circuits, especially with large mantissa
and exponent. In other words, the classical polynomial ap-
proximation, such as Remez algorithm is not that useful for
fixed-point circuits.

Instead, by relying on the provable error bounds on Tay-
lor series, followed by the AT construction and error analy-
sis from Sec. 3.2 has a number of advantages, most notably
the uniform way of dealing with all sources of imprecision
and approximation. In essence, our construction is tighter
as it locates exactly the worst case imprecision, rather than
adding conservatively the error bounds. With AT, we can
also get tighter error bounds than with the interval and affine
analysis.

4. Arithmetic circuit applications

4.1. Verification of imprecise circuits

With the properties of AT outlined so far, we have all the
elements to present an elegant and efficient precision ver-
ification algorithm. All that is needed is to construct the
AT and evaluate whether the imprecision from Eqn. 6 is ac-
ceptable, i.e., smaler than a given bound ε. The problem is

specified as follows.

Problem 1 PRECISION VERIFICATION
Input: fref , fimpl, ε
Output: TRUE iff ||AT (fref )−AT (fimpl)||∞ < ε

This formulation is also practical if a reference fref by
itself is imprecise within a bound, say δ. For instance, the
transcendental functions can only have the approximate ref-
erence implementations, such as with Taylor series. Then,
we can apply the triangle inequality

||AT (fabs)−AT (fimpl)||∞ ≤ ||AT (fabs)−AT (fref )||∞
+||AT (fref )−AT (fimpl)||∞

among the absolutely precise fabs, the reference and the
implementation, to guarantee that |ε + δ| is an acceptable
imprecision.

A very important fact is that AT allows us to devise a
completely static verification scheme that does not require
any circuit simulation (i.e., dynamic verification) towards
establishing the correctness of the circuit under precision
constraints. For that, a branch-and-bound method was pre-
sented in [21] that finds whether the worst case imprecision
of a fixed-point implementation is smaller than the allowed
imprecision. The exact branch-and-bound search for the
maximal imprecision (hence, the distance inL∞) is reduced
to a search for a maximal value that an AT polynomial takes,
as per Eqn. 6. The algorithm explores the assignments of
variables in an implementation AT, by means of a tree-like
traversal. In fact, the classical traversal is shortened when
the bounding techniques is developed that allows us to aban-
don the inutile subtrees.

To devise and efficient search tailored for AT represen-
tation, such static verification scheme rely on the further
useful properties of AT polynomials, explained in more de-
tail next. First, we recall that for any efficient branch-and-
bound search, one needs

• easily computable bounds to terminate early the search
that will not contribute to the solution,

• the heuristic guidance functions that help with the per-
formance and

• the easily identifiable special cases where a solution is
known in advance, without performing a search.

In the case of the precision verification, to apply each of
these three techniques to the AT polynomial maximal abso-
lute value search, we outline three further easily obtainable
algebraic properties of AT.

Bounds on AT polynomials The key observation leading
to the bounding stage in branch-and-bound search are based



on the easy lower and upper bounds, lb and ub that an AT
can take. Since the AT coefficients are multiplied by 1 or 0,
the extreme cases occur when only the coefficients in one
polarity have a non-zero multiplier. Then, an upper bound
is attained for all positive coefficients, denoted c > 0

ub = c00...0 +
∑
c>0

ci1i2...in
, lb = c00...0 +

∑
c<0

ci1i2...in
.

One can further notice that

lb+ ub = f00...0 + f11...1,

i.e., one bound can be derived from the other by sampling
the function at only two points, when variables are all 0 or
all 1.

Most positive variables for search ordering heuristic
(splitting variable) To increase the chance of early termi-
nations due to a too small upper bound on achievable value,
it is desired that the early stages of the search produce as
high value of AT as possible. For that, for each variable
xi, we examine the coefficients c∗i∗ that multiply the AT
terms with variable xi being present. Without performing a
more detailed search for this heuristic step, one can identify
the variable mpv with the highest absolute value sum of the
coefficients c∗mpv∗

mpv = i s.t.|
∑

c∗i∗| → max.

While this selection clearly ignores the role that the assign-
ments of the other variables take, as a heuristic guidance, it
suffices, and can be considered as the best candidate leading
to the sought maximal value. In the case of a tie between
the two variables, the second order statistics are applied. In
this case, we note that the lower bound provides an esti-
mate ”from below”, as opposed to the initial estimate from
above. The lower bound will provide additional informa-
tion and will help to narrow down the uncertainty inherent
in such heuristic guidance.

Unate functions for easy solutions Other properties of AT
lead to speedup of the search algorithm by preprocessing
and handling of special cases. If at any stage a function is
positive (negative) unate, i.e., monotonously growing (de-
creasing) in any variable, then the variable is safely assigned
1(0) in the search for the maximum. Unateness in a variable
is another property that is easily computed on an AT: it suf-
fices to check whether the coefficients c∗i∗ multiplying all
occurences of the variable i are in one polarity. The prepro-
cessing step for an unate variable i is then denoted as

∀i c∗i∗ ≥ 0⇒ xi ← 1

∀i c∗i∗ < 0⇒ xi ← 0.

In every step of the search algorithm, the preprocessing is
applied to assign the variables by checking unateness. Fur-
thermore, an assignment of a variable due to unateness can
possibly result in other variables becoming unate, so the
preprocessing needs to be applied in a fixpoint manner, until
there is no change in unateness.

Algorithm 2 outlines the precision search. The recur-
sively called procedure MAX ABS explores the search tree.
A subtree corresponding to an assignment of a variable to 1
or 0 is examined if the upper bound ub is not smaller than
an already obtained best value. When all variables are tra-
versed, the maximal absolute value for that variable assign-
ment is compared against the best one obtained so far. The
searches are backtracked when the ub for the subtree is too
small relative to the best currently obtained value.

Algorithm 2 PRECISION (f, ε)
1: ub = c00...0 +

∑
c>0

ci1i2...in
; lb = f00...0 + f11...1 − ub

2: CurrentBest = lb;Current = ub;
3: return(MAX ABS (AT (f), Current) < ε)
4: MAX ABS (AT (f), Current)
5: {
6: FIXPOINT(PREPROCESSUNATEVARS(AT))
7: if UnassignedV ars then
8: x = MostPositiveV ar;
9: if ub(AT (fx=1) > CurrentBest then

10: Current = MAX ABS (AT (fx=1), Current)
11: end if
12: if ub(AT (fx=0) > CurrentBest then
13: Current = MAX ABS (AT (fx=0), Current)
14: end if
15: else
16: Current = AT ;
17: CurrentBest = |max(Current, CurrentBest)|
18: return CurrentBest
19: end if
20: }

The description of the verification presented here is com-
plemented with the implementation details of the efficient
algorithm presented in [16].

4.2. Component matching

Another application where AT can play useful role is that
of finding the most suitable library components for impre-
cise arithmetic, and here we demonstrate how the above
body of techniques can be adjusted to deal with this prob-
lem. The component matching has surfaced as a problem
in conjunction with IP library reuse. The work such as [29]
has attempted to use real-valued polynomials to deal with
the matching of real-valued functions. A significant limita-
tion of that approach is that the known apparatus for such



polynomial model manipulation is limited to polynomials
in one variable, and the work [29] is applicable fully only to
univariate polynomials.

With AT, being multivariate to start with, the transi-
tion to multivariate real-valued polynomial specifications is
straightforward. Further, the search for a suitable library
component from a given library lib is reduced to the prob-
lem PRECISION VERIFICATION, applied sequentially to all
the elements of lib.

The problem is concisely defined as that of finding a pre-
cise enough library cell element for a given arithmetic func-
tion.

Problem 3 PRECISE COMPONENT MATCHING
Input: fref , lib, ε

Goal: ||AT (fref )−AT (fimpl)||∞ < ε
Output: fimpl ∈ lib

4.3. Optimization of fixed-point arithmetic

We show next how AT plays a role as a very practical
mechanism for optimizing the fixed-point implementations
of real-valued specifications. Starting from a polynomial
or Taylor series description, the algorithm automatically se-
lects the multiple approximation and imprecision parame-
ters by a scheme that is essentially branch-and-bound, with
a number of optimizations specific to this case.

While this approach could be applied to a variety of real-
valued representations, we present the main ideas applied to
the case of finite Taylor expansion. The optimization prob-
lem is defined as that of finding the parameters such as the
number of Taylor terms, n, and the wordlength m of the
input representation, such that the cost is miminal.

Problem 4 TAYLOR PRECISION OPTIMIZATION
Input: fref , ε

Goal: min terms(AT (fn,m))
Goal: ||AT (fref )−AT (fn,m)||∞ < ε

Output: m, n

Before proceeding with elaborating the automated preci-
sion optimization, we first present few additional properties
of AT that make it suitable for this application. First, the
AT is shown as usable as an technology-independent area
cost function measure, and then the properties suitable for
the search heuristic order.

AT as a cost function We want to accurately predict the
area of an arithmetic circuit within the optimization pro-
cedure, such that the method can be again be completely
static, rather than involving simulations and technology

mapping. In considering the pre-mapping, technology-
independent area cost estimate suitable for arithmetic opti-
mization, we want the cost function that is simple, yet accu-
rate in terms of relative comparison among the alternatives.
In the case of Taylor functions with parameters n and m,
the area cost is clearly exhibiting a monotonous growth rel-
ative to both. More input bits m implies wider datapaths
and arithmetic operators whose cost grows at least linearly
in m. On the other hand, with more Taylor coefficients, the
input argument X gets raised to a larger exponent and, as
there is O(n) terms in the Taylor series summation, with at
least O(n) operations for each terms, the growth in n is at
least quadratic, so the cost grows higher in n.

Consider now the number of AT terms of an expanded
nth order Taylor polynomial over m-bit fixed point num-
bers as a cost function in the optimization procedure. By
enumeration, it can be shown that the number of AT terms
is then equal to

cost = terms(AT (fn,m)) =
n∑

i=1

(
m

i

)
In this case, the cost function exhibits the same monotonic-
ity in the two variables. By using this cost function, we will
effectively be searching for a minimal size AT polynomial
implementing a function within a given precision.

Search guidance - sensitivity Similar to the previous in-
stance of branch-and-bound, providing a search heuristic is
a significant way to speed up the algorithm. In this case, we
can apply the domain-specific knowledge about the sensi-
tivity of a function relative to the change in either n or m.

Sensitivity of function f with respect to variable x is de-
fined as a derivative of a function df

dx , and as such is used
in a wide range of continuous function optimizations. Here,
variables n and m are discrete, and need to be mapped to
continuous variables that they present.

In the case of m, the wordlength, an increase of one bit
results in the added shift of half a unit in last place, ulp.

∆X = 2−(m+1).

Then, the influence of the wordlength change to the function
is

∆f =
df

dX
∆X =

df

dX
2−(m+1).

Furthermore, by recalling that the first Taylor term is a
derivative at the expansion point X0, the sensitivity is cal-
culated as an m+ 1-fold shift of the first coefficient. Since
this is true only around X0, a more accurate sensitivity is
obtained by differentiating the function. AT can be used
here as well, to easily differentiate the given function. By
finding the maximal value over the interval, as in the preci-
sion search, the worst case influence of the variable change
is obtained.



In the case of sensitivity to n, we can apply the error
bound from Eqn. 5. When a new n is to be selected in
the search, the difference between the two remainder func-
tions, bounding approximation error, can be easily com-
puted. Further, when going, say, from n to n + 1 terms,
the function difference is

∆f = Taylorn+1(f)− Taylorn(f) +Rn(f)−Rn+1(f)

The algorithm takes into account in an unified way all the
approximation and imprecision sources. For simplicity, it
is instructive to think of it as an optimization algorithm
for real-valued specifications given by Taylor series, where
only the parameters n and m are to be chosen. The pseudo-
code is given in Algorithm 5. It starts with the number of
terms given by Eqn. 5 and then explores m and n according
to the sensitivity.

Algorithm 5 OPTIMIZE (f, ε)
1: lb = MINTAYLORTERMS
2: CurrentBest = lb;Current = ub;
3: MIN AREA (AT (f), Current)
4: {
5: if UnexploredPosibilities then
6: direction = FINDMOSTSENSITIVEVAR
7: if (direction ==m) then
8: Current = MIN AREA (AT (fm), Current)
9: else

10: Current = MIN AREA (AT (fn), Current)
11: end if
12: else
13: Current = AT ;
14: CurrentBest = |min(Current, CurrentBest)|
15: return CurrentBest
16: end if
17: }

Example 4. Consider sin(x) with ε = 0.0002. By Eqn. 5,
the initial n is 4. To satisfy the error bound the initial m is
set to 14, so the starting node is (4, 14), Figure 2. The algo-
rithm then adds one Taylor term and explores the decrease
in m, to reach node (5, 13). By applying sensitivity, the
value of m can be decreased twice, to reach (5, 11), which,
upon closer examination, is beyond the error bound ε. The
algorithm then backtracks to (5, 12) and finds that (6, 11)
also satisfies the bound. All other nodes exceed the bound,
and the search stops.

4.4. Performance of AT precision tasks

While we find no other method that treats all the ap-
proximation and imprecision sources, the presented meth-
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Figure 2. Optimization of sin function

Table 2. FPGA area comparison with [14]
Case Bits Time [14] Area [14] Time Area

B-spline 8 0.12 1368 0.07 1132

16 0.19 2188 0.15 2056

DCT 8 0.89 3598 0.08 857

16 0.51 5069 0.17 1481

Deg-4 8 1.9 803 0.96 763

Poly 16 2.0 1921 1.55 1208

ods compare well to the best and most comprehensive mod-
ern methods [14], which by itself improves over the work by
the same group of authors. Table 2 shows the FPGA map-
ping results, done with our fixed-point optimization on the
same FPGAs and the tools as [14]. The experiments were
run on a 2.4GHz Celeron PC with 512MB of main memory.

5. AT and reliable nanoscale computing

We present in this section a few areas where AT can be
applied to timely problems, such as resilience to errors with
emerging nanoscale integration technologies. An interest-
ing proposal combines the benefits of the traditional uses
of the AT for reliable computing with the arithmetic circuit
treatment as in the previous sections.

The arithmetic circuits, as considered in previous sec-
tions, could be assisted with different number encodings,
such as a well-explored trigonometric CORDIC scheme,
suited for avoiding hardware multipliers. In recent years,
several authors [18, 30] have revisited the stochastic encod-
ing [7], by which the arithmetic quantities are expressed as
pseudo-random series of ones and zeros, where the encoded
value corresponds to the probability of ones. Stochastic cir-
cuits are now interesting because they can tolerate better the
errors arising with emerging technologies: in a fault model
of a random bit flip, any such error is smaller than or equiv-



alent to an ULP, i.e., an error in a least significant bit.

5.1. AT and reliability analysis

Numerous authors (see [4, 32] for a more detailed ac-
count) have used AT in reliability and testing studies. While
others have applied AT to the reliability analysis [26] and
the manufacturing fault testing signatures [8], we have fo-
cused on verification by testing methods, by schemes such
as mutation testing [23]. As for our most valuable lesson,
seeing that the spectrum of common design errors are rel-
atively small, which leads to the use of techniques such as
polynomial interpolation for error correcting codes, to ex-
tend the known interpolation decoding for RM codes [25].
Such techniques are capable of bringing fast a set of test
vectors that guarantee high coverage of injected faults.

5.2. AT application to stochastic computing

We show now that AT is a natural description for op-
erations over stochastic computing number representations.
In stochastic computing, the real-valued quantities, normal-
ized in absolute value by one, are represented by a stream of
pseudo-random bits, where the encoded quantity V is equal
to the probability of one for the stream. There are only a
few basic circuit blocks for this logic, which nevertheless
are sufficient, i.e., complete in the sense of generating a
real-valued function.

The operations possible with stochastic logic are:

• Multiplication. For two input streams, A and B, the
output O is a bitwise multiplication of the two. For
every time instance i,

Oi = Ai ∗Bi

and the corresponding signal probabilities are pO =
pA∗pB . It is easy to observe that a single 2-input AND
gate suffices to perform this operation.

• Scaled Addition. Here, two input streams, A and B,
are selected according to the probability that a third
input stream x takes 0 or 1, respectively. Then, in every
time instance i, the output Oi is

Oi = xi ∗Ai + (1− xi)Bi

with the corresponding bit probability values calcu-
lated likewise as p0 = pxPA = (1− px)pB .

Even more importantly to us, the scaled addition is the
basic building block for AT, i.e., a real-valued Davio expan-
sion. By rewriting the scaled addition definition, we obtain:

Oi = xi ∗Ai + (1− xi)Bi = Bi + xi(Ai −Bi)

which is exactly as the definition of the expansion for AT
in Eqn. 3, with the two cofactors being functions A and B,
and the splitting variable x.

5.3. Constructing stochastic circuits by AT

It was noted earlier [19] that a stochastic logic computes
a multivariate polynomial in a serial manner, but we are not
aware that the link between stochastic computing and AT
has been made earlier. The polynomial expressing the sig-
nal probability is

pf =
1∑

i0=0

1∑
i1=0

· · ·
1∑

in−1=0

αi0i1...in−1p
i0
x0
pi1

x1
. . . pin−1

xn−1
(7)

Furthermore, by considering a single time instance, where
probability px is replaced by variable x in Eqn. 7, the ob-
tained expression takes the exact form as the AT definition
in 1.

More important issue is that of converting between AT
and a stochastic computing circuits and formulas. Rely-
ing on the basic primitives in stochastic computing, the two
rules are applied

Stochastic circuit to AT. The operation of obtaining the
AT definition for a given stochastic circuit topology is per-
formed by the following two rules, applied in the topologi-
cal order over the network.

1. Each AND gate in stochastic circuit is represented as a
product of the two input ATs

2. Each scaled addition (mux) gate is a Davio Expansion,
with the control variable to mux being the expansion
variable in AT.

AT to stochastic circuit. The operation is performed ex-
actly opposite to the previous case. Please notice that in this
case, it is advantageous to use the decision diagram-based
expressions, because the factorizations and decompositions
were already performed, to result in more efficient circuits.

6. Conclusions and future directions

Arithmetic Transform is a natural match for reasoning
about, verifying and optimizing fixed-point arithmetic cir-
cuits. We have presented the basic methods behind several
practical applications of AT in fixed-point verification and
synthesis, as well as in the stochastic logic circuitry. Our
emphasis was on discerning the basic algebraic properties
of AT that become useful in a variety of ways, rather than
the algorithm implementation efficiency. Among the points
completely omitted are the graph-based representations of
AT and derived forms, as well the real-valued specifications,
such as Taylor Expansion Diagrams [3, 6].

In future, the AT-based methods could be extended to
deal with the overflow/underflow cases, as well as towards
providing assistance in the debug of arithmetic circuits, i.e.,



finding the root cause in the case of failures associated with
arithmetic circuits.
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