
Cache Line Reservation: Exploring a Scheme
for Cache-Friendly Object Allocation

Ivan Bilicki

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

October 2009

A thesis submitted to McGill University in partial fulfilment of the requirements for the
degree of Master of Engineering.

c© 2009 Ivan Bilicki

2009/10/31

i

Abstract

This thesis presents a novel idea for object allocation, cache line reservation (CLR), whose

goal is to reduce data cache misses. Certain objects are allocated from “reserved” cache

lines, so that they do not evict other objects that will be needed later. We discuss what

kinds of allocations can benefit from CLR, as well as sources of overhead. Prototypes using

CLR were implemented in the IBM R©J9 JavaTMvirtual machine (JVM) and its Testarossa

just-in-time (JIT) compiler. A performance study of our prototypes was conducted using

various benchmarks. CLR can offer a benefit in specialized microbenchmarks when allo-

cating long-lived objects that are accessed in infrequent bursts. In other benchmarks such

as SPECjbb2005 and SPECjvm2008, we show that CLR can reduce cache misses when al-

locating a large number of short-lived objects, but not provide a performance improvement

due to the introduced overhead. We measure and quantify this overhead in the current

implementation and suggest areas for future development. CLR is not limited to Java

applications, so other static and dynamic compilers could benefit from it in the future.

ii

Résumé

Cette thèse présente une nouvelle idée pour l’attribution d’objet, réservation de ligne

d’antémémoire (RLA), dont le but est de réduire les échecs d’accès à l’antémémoire.

Certains objets sont alloués à partir d’une antémémoire de réserve, de manière à éviter

l’éviction d’autres objets ultérieurement requis. Nous discutons les types d’allocation qui

peuvent bénéficier de RLA, ainsi que les sources de coûts indirects. Les prototypes que

nous avons développé qui font usage de RLA furent créés utilisant la machine virtuelle

IBM R©J9 JavaTMet son compilateur juste-a-temps Testarossa. Une étude de performance

de nos prototypes fut conduite avec plusieurs tests de performance. RLA peut offrir

un bénéfice pour des microtests de performance spécialisés dans les cas où des objets

de longue vie sont lus en rafales infréquentes. Dans d’autres tests que SPECjbb2005 et

SPECjvm2008, nous démontrons que RLA peut réduire les échecs d’accès a l’antémémoire

dans les cas d’allocation d’un grand nombre d’objets de court temps de vie, mais n’offre

pas d’amélioration de la performance vue l’introduction de coûts indirects. Nous mesurons

et quantifions ces coûts dans notre implémentation courante et suggérons des domaines de

développement futurs. RLA n’est pas limité aux applications Java, ce qui permet à d’autres

compilateurs statiques comme dynamiques d’en tirer profit dans l’avenir.

iii

Acknowledgements

I would like to thank the following people that made this thesis possible. My supervisor,

Željko Žilić for his advice and guidance throughout my Masters program, and for giving

me the independence to work on research that I find interesting. Managers at IBM, Marcel

Mitran and Emilia Tung, for allowing me to use IBM resources for my research. Vijay

Sundaresan, Nikola Grčevski and Daryl Maier for providing me with the initial CLR idea,

and offering regular advice about the technical aspects of the project, and being always

available for questions. Yan Luo, for answering numerous questions about the workings of

the J9 JVM. Ankit Asthana, Joran Siu, Ted Herman, Andrew Mehes, Bryan Chan (and

others) for helping me understand the Testarossa JIT better. My McGill colleagues and

lab mates, Nathaniel Azuelos for translating the abstract to French and Bojan Mihajlović

for offering advice on writing this thesis. My friend Goran Obradović, for helping out

with the testing the proof-of-concept program. I am also grateful to Natural Sciences and

Engineering Research Council for providing me with financial assistance.

On a personal level, I would like to thank Jelena Petronjev, for her long online chats that

made sitting in front of a computer for hours enjoyable, Nevena Francetić, for giving me

encouragement (and food) at various stages, my cousin, Maja Božicki, for being present in

my life and giving me numerous advice, and everyone in my “extended family” (you know

who you are). Finally, I would like to thank my parents. They are the reason that I exist.

In particular, I will always value my mother’s dedication and ambition that helped me get

where I am today.

iv

Contents

1 Introduction 1

1.1 Java and Object Locality . 4

1.2 CPU Caches . 7

1.3 Dynamic Memory Allocation . 11

1.3.1 Manual Memory Management . 12

1.3.2 Automatic Memory Management (Garbage Collection) 13

2 Related Work 15

2.1 Hardware Approaches of Improving Cache Performance 16

2.1.1 Reducing Cache Miss Penalty . 16

2.1.2 Changing Cache Parameters . 17

2.1.3 Non-Standard Cache Topologies . 18

2.1.4 Hardware Prefetching . 18

2.1.5 Scratchpad Memory . 19

2.2 Software Approaches of Improving Cache Performance 20

2.2.1 Code Reordering . 20

2.2.2 Software Prefetching . 21

2.2.3 Loop Transformations . 21

2.2.4 Improving Object Locality in Memory 22

2.2.5 Thread Local Heaps . 23

2.2.6 Our approach: Cache Line Reservation 24

3 Cache Line Reservation 26

3.1 Description of CLR . 27

3.1.1 Choosing the number of cache lines to reserve 37

Contents v

3.1.2 Alteration to pre-fetch strategy . 37

3.1.3 Interaction with garbage collection 38

3.1.4 Multiple levels of cache . 39

3.1.5 Multiple allocation sites per section 39

3.2 Criteria for selecting objects . 40

3.2.1 Frequently Instantiated Types . 40

3.2.2 Frequently Executed Allocation Site 40

3.2.3 Objects that are unlikely to co-exist 40

3.2.4 Objects accessed in infrequent bursts 41

3.2.5 Mostly Written Objects . 41

3.2.6 Objects in Different Threads . 41

3.3 Limitations of CLR . 41

3.3.1 Cancellation policy . 43

4 Implementation Details 45

4.1 The TR JIT Compiler and J9 Java Virtual Machine 45

4.1.1 The J9 JVM . 45

4.1.2 Testarossa JIT . 47

4.2 Other Tools Used . 49

4.2.1 WinDbg Debugger . 49

4.2.2 IBM Heap Analyser . 49

4.2.3 IBM Garbage Collection and Memory Visualizer 49

4.2.4 AMD CodeAnalyst . 49

4.3 Prototypes Developed . 50

4.3.1 Prototype 1 - “Weak” CLR Reservation 50

4.3.2 Prototype 2 - “Strong” CLR Reservation 53

4.3.3 Prototype 3 - “Strong” CLR Reservation and Non-Reservation . . . 55

4.3.4 Other modifications . 55

5 Experimental Results 57

5.1 Experimental Setup . 57

5.2 Proof of Concept . 58

5.3 Custom Benchmarks . 61

Contents vi

5.4 SPECjvm2008 . 64

5.5 SPECjbb2005 . 67

5.5.1 populateXML . 67

5.6 Measuring Overhead . 73

5.6.1 Allocation Overhead . 73

5.6.2 Compilation Overhead . 75

5.6.3 New TLH Request Overhead . 76

5.6.4 Garbage Collection Overhead . 77

6 Discussion 79

6.1 Where CLR offers a benefit (long-lived objects) 79

6.2 Where CLR overhead is too high (short-lived objects) 80

6.3 CLR for Other Architectures . 81

6.4 CLR for Other Programming Languages 83

6.5 Future Directions . 84

7 Conclusion 85

A Proof Of Concept C Programs 87

References 89

vii

List of Figures

1.1 2-way set associative cache) . 9

1.2 How an address (0x820A5BB6) is decoded for a 2-way set associative cache

(512Kb total size, 64-byte line) . 10

3.1 An overview of CLR . 28

3.2 CLR pointer structure and initialization 32

3.3 How an object is allocated that cannot fit in the current unreserved section 35

4.1 An overview of the J9 JVM and JRE . 46

4.2 An overview of Testarossa JIT compiler . 48

4.3 Allocation in the weak CLR prototype . 52

4.4 Reserved allocation in the strong CLR prototype 54

4.5 Non-reserved allocation in Prototype 3 . 56

5.1 Access pattern in the proof-of-concept C program 60

viii

List of Tables

5.1 C program proof-of-concept results (smaller time is better) 60

5.2 Custom linked list benchmark performance (smaller time is better) 62

5.3 Cache profile of the RNN read/write run on the custom linked list benchmark

(score is shown in Table 5.2, more executed instructions is better) 63

5.4 Scores on SPECjvm2008 using prototype 1 (bigger score is better) 64

5.6 Scores on SPECjvm2008 when reserving specific objects (bigger is better) . 66

5.7 Diagnostic benchmarks for calculating overhead in populateXML (bigger

score is better) . 69

5.8 Cache profiles of SPECjbb2005 when reserving Strings in populateXML (big-

ger score is better) . 69

5.9 Cache profiles of SPECjbb2005 when reserving larger Strings in popula-

teXML (bigger score is better) . 70

5.10 Investigating the effect of different GC policies and heap sizes in SPECjbb2005

(bigger score is better) . 71

5.11 Cache profiles and scores of SPECjbb2005 where populateXML traverses a

single linked list instead of allocating Strings (bigger score is better) 72

5.12 Allocation overhead when reserving Strings in populateXML 75

5.13 Compilation overhead when reserving Strings in populateXML 76

5.14 TLH request overhead when reserving Strings in populateXML 77

5.15 GC overhead when reserving Strings in populateXML 78

6.1 Proof-of-concept C program results on different CPUs (smaller time is better) 82

ix

List of Listings

1.1 Simple Point Class in Java . 4

1.2 Simple Rectangle Class in Java . 5

1.3 Creating Many Zero-lifetime Strings . 7

1.4 Memory allocation program in C++ (output produced: “Statically allocated

string. 5 6 7”) . 11

3.1 Allocating an object in a traditional way (pseudocode) 30

3.2 Initializing the allocation pointers (pseudocode) 31

3.3 Unreserved allocation (pseudocode) . 32

3.4 Fixing the allocation pointers after cache pollution (pseudocode) 34

3.5 Reserved allocation (pseudocode) . 36

A.1 Proof-of-concept program without CLR (2-way cache R/W) 87

A.2 Proof-of-concept program without CLR (2-way cache R/W) 88

x

List of Acronyms

CLR Cache Line Reservation

JIT Just-in-time Compiler

(J)VM (Java) Virtual Machine

TLH Thread Local Heap

GC Garbage Collection

CPU Central Processing Unit

L1 cache Level 1 CPU cache memory

RAM Random Access (Main) memory

chunk cache size/associativity

1

Chapter 1

Introduction

The Java programming language offers the flexibility required for implementing large and

complex programs, and the object-oriented nature of the language allows programmers to

abstract functionality into classes and packages. It is common in programming models such

as this to instantiate an object and invoke one or more methods on the object in order to

perform even a relatively simple computational task. Thus, in order to complete complex

transactions, modern server/middleware applications typically end up creating a very large

number of objects, many of which are only used for a short duration. Studies have shown

that a significant number of objects die young [1], or even instantly [2]; these are referred

to as short-lived and zero-lifetime objects. With all these objects being allocated, efficient

memory management is essential.

Locality of reference states that computer programs usually repeatedly access data re-

lated either spatially or temporally. If the program accesses a certain memory location

M, it can be expected that it would access some other memory location close to memory

location M soon (spacial locality). There is usually also a strong likelihood that if a certain

memory location is accessed once, it might be accessed again several times in a relatively

short duration (temporal locality). A good overview of caches, locality, and other concepts

presented in this thesis is provided in [3].

A CPU cache is used by the processor to reduce the average time to access main memory

(RAM). The cache is a smaller, faster memory that stores copies of the data from the most

frequently used main memory locations. When the processor needs to read or write a

location in main memory, it first checks whether that memory location is in the cache.

2009/10/31

1 Introduction 2

This is accomplished by comparing the address of the memory location to all the locations

in the cache that might contain that address. If the processor finds that the memory

location is in the cache, this is referred to as a cache hit ; and if it does not find it in the

cache, it is called a cache miss. In the case of a cache hit, the processor immediately reads

or writes the data in the cache line. If a program behaves in accordance with the locality

of reference principle, most memory accesses would be to cached memory locations, and

the average latency of memory accesses would be closer to the cache latency than to the

latency of main memory.

Addresses in both kinds of memory (main and cache) can be considered to be divided

into cache lines. A cache line refers to a contiguous range of addresses where the size of this

range varies on different computer architectures (e.g. from 8 bytes to 512 bytes). The size

of the cache line is generally larger than the size of the usual access requested by a CPU

instruction, which ranges from 1 to 64 bytes. When a memory access is to a location that

is not found in the cache, the entire cache line that the location belongs to is read from

main memory and brought to the cache memory. The prior data that was in the cache

line is evicted from the cache, so future accesses to that data would have to access main

memory.

The cache line replacement policy decides where in the cache a copy of a particular

entry of main memory will go. If the replacement policy is free to choose any entry in the

cache to hold the copy, the cache is called fully associative. At the other extreme, if each

entry in main memory can go in just one place in the cache, the cache is direct mapped.

Many caches implement a compromise, and are described as set associative. So, N-way set

associative means that any particular location in main memory can be cached in either of

N entries in the cache memory. The simplest and most commonly used scheme to decide

the mapping of a memory location to cache location(s) is to use the least significant bits

of the memory location’s address as the index for the cache memory, and to have N entries

for each cache location.

The CPU of a modern computer typically caches at least three kinds of information:

instructions, data, and physical-to-virtual address translations. In this thesis, we are con-

cerned only with data caching. Java objects and arrays are allocated in the region of

(RAM) memory called the heap. When these objects are created or accessed, load and

store instructions reference memory addresses where they are located, and these addresses

are brought into the data cache. A load or a store instruction is also called a data access.

1 Introduction 3

A data access will produce either a cache hit or a cache miss.

In programs that create a large number of objects (working set), performance can

be highly dependent on the cost of accessing memory. Modern Java Virtual Machines

(JVMs) employ sophisticated memory allocation and management techniques to increase

data locality by laying out objects in memory such that cache misses are reduced (i.e., data

being accessed is available in cache memory most of the time). Memory allocation is usually

performed by the native code generated on the fly by JIT compilers, whereas memory

management is handled by the garbage collector (GC). The GC is a form of automatic

memory management where the programmer is responsible for indicating when the objects

that require memory on the heap are created, but not for freeing up that memory. When

heap memory becomes low, the GC determines which objects are unreachable (and hence

dead) and reclaims their memory.

This thesis proposes a novel object memory allocation scheme, cache line reservation

(CLR)1, which ensures that a selected allocation is performed at a memory location chosen

such that this location would be mapped to a specific cache line. This means that all of

the selected allocations map only to a certain portion of the cache ”reserved” for those

allocations. The criteria for selecting allocations as well as the amount of cache memory

to reserve for those allocations could vary (especially depending on the architecture), and

we discuss some of them. If the selected allocations are objects that are unlikely to be

referenced within a short duration of each other, then it is likely that there would have

been a cache miss when these objects are accessed, regardless of the allocation scheme.

Therefore, we can improve cache utilization for other (unselected) objects by selecting and

allocating these objects such that when the expected cache miss occurs, they evict only

other selected objects from the cache.

Part of the work presented in this thesis has been used for [4], which is to be published

in Centre for Advanced Studies Conference (CASCON) 2009.

The general idea of CLR is shown to be possible with a simple C proof-of-concept pro-

gram. A prototype using CLR has been developed using the IBM J9 JVM and Testarossa

JIT compiler. We present results on custom benchmarks as well as SPECjbb2005 and

SPECjvm2008 benchmarks. The thesis concludes with a discussion of the limitations of

the current implementation and ideas for future development.

1Patent pending (IBM R©Canada Ltd)

1 Introduction 4

1.1 Java and Object Locality

Java is an Object Oriented programming language. It uses the object-oriented paradigm

that uses objects to group logical constructs together. It allows us to code in discrete

units of programming logic, which make the code more readable and structured. Object-

oriented languages also utilize other concepts such as polymorphism, encapsulation and

inheritance. An “object” is an abstract concept used as a tool for programming. An object

can have its own data in in it (whether it is primitive data types or other objects) as well

as its own functions (methods). Upon defining an object, we create instances of them.

In addition, there is a certain hierarchy associated with objects, so they can have parent

and child objects. An example of object-oriented programming would be having an object

representing a point in a coordinate system, and another object representing a rectangle.

Examples of these implemented in Java are given in Listings 1.1 and 1.2.

Listing 1.1 Simple Point Class in Java

public class Point

{

private int valueX = 0;

private int valueY = 0;

public Point(int x, int y)

{

valueX = x;

valueY = y;

}

public int setX(int x)

{

valueX = x;

}

public int setY(int y)

{

valueY = y;

}

public int getX(int x, int y)

{

return valueX;

}

public int getY(int x, int y)

1 Introduction 5

{

return valueY;

}

}

The Point object (in Java, object definitions are called classes) is nothing more than

a container for two int primitive data types. It has getter and setter methods, setX and

getX for valueX and setY and getY for valueY. These are typical in objects. Often, they

are called to perform simple tasks. For example, if we wanted to increase the X coordinate

of point A by 10, we can achieve that with the following code: A.setX(A.getX()+10);.

For this simple task, we had to make a call to a function, and then update its valueX

field (class variable). If we now have another object such as the Rectangle object shown in

Listing 1.2, that uses the Point object, we have even more calls. If we wanted to “move” an

instance of a Rectangle object by calling the moveTo method, we would have to call moveTo,

and then setX and setY. Every time a call is made, we have to push the arguments onto

the stack and make a jump, and then pop the results off the stack (or adjust the stack

pointer).

If the method calls are virtual, this can introduce even more overhead. Virtual methods

occur when it is ambiguous which method to call in a hierarchy tree, because of overloading

(another Object Oriented concept). For example, let us say that we have a parent class

Cat and a child class Lion. We also have a method called setFurColour in both classes.

If we now call the setFurColour method on a Cat pointer, we do not know before run-

time which setFurColour method to call: the generic one in the Cat class, or Lion’s own

implementation. This will depend on the type of object that we encounter. What ends

up happening is that a virtual function table is set up for each class. It contains a table

of pointers where all the methods for that class are located in memory. The location of

this virtual function table can be stored in a hidden static field in the class definition when

the JVM loads it. When a call to walk is compiled, we have to go to the class definition

(whether it is a Cat or a Lion), and look up the location of its virtual function table. If the

size of the class instance occupies more than one cache line (more accurately if the space

between the class definition field and the field we want to access using the getter or setter

method is bigger than one cache line), then this introduces more cache pressure, as we have

to bring in more than one cache line to change only one field.

1 Introduction 6

Listing 1.2 Simple Rectangle Class in Java

public class Rectangle

{

private int width = 0;

private int height = 0;

private Point origin;

public Rectangle(Point p, int w, int h)

{

origin = p;

width = w;

height = h;

}

public void moveTo(int x, int y)

{

origin.setX(x);

origin.setY(y);

}

public int area()

{

return width * height;

}

}

Why one might then use getter and setter methods? The motivation is modularity and

data hiding. We could have used a Point class with two public fields, public int valueX

and public int valueY. Then, we could edit their value using nameOfInstance.valueX =

newValue; and nameOfInstance.valueY = newValue;. However, if we wanted to change

the internal implementation of the Point class in the future, we would have to change

all calls to its fields. It is much easier to make the outside world not know about the

implementation of the object, and just have public methods that modify what is on the

inside.

These issues are present in all object oriented languages. This is why object local-

ity is important in general. In addition, the Java programming language makes things

even more difficult. Java has a lot of immutable objects. Immutable objects are objects

that cannot be changed after construction. Examples of these classes are String, Inte-

ger, Long, Float and Double. What ends up happening is that the JVM allocates a lot

1 Introduction 7

of short-lived, immutable objects. Even a simple “Hello World” program exposes this:

System.out.println(‘‘Hello World!’’);. The String containing the characters “Hello

World” will create a String object that will die right after creation. By dying, we mean

that it will never be referenced again. Nothing will contain its reference. When GC occurs,

the memory used up by this String will be reclaimed. Why this could become a problem is

made obvious in Listing 1.3. We are simply printing out the value of an integer primitive

data type 100 times. This will create 100 different instances of the String object, which

will die instantly. More practically, each time we try to “modify” any of these immutable

objects, we are really killing the old instance and creating a new instance (e.g. converting

a string to lower case by calling the toLowerCase method). However, the JVM does not

know that the space occupied by them is available until after the GC.

Listing 1.3 Creating Many Zero-lifetime Strings

public static void main(String args [])

{

for(int i = 0; i <100; i++}

System.out.println("Value of i: " + i);

}

To conclude this section, object oriented languages use objects as containers for storing

data. This increases the memory space requirement for this data than would be needed if

primitive data types were used (or structs in C). In addition, getter and setter methods

can increase the overhead of updating this data due to calls and virtual functions. Lastly,

Java in particular has many immutable objects that die young and increase memory usage.

This is why it is important to develop techniques to minimize memory and cache pressure.

1.2 CPU Caches

The central processing unit (CPU) resides on a chip, and performs all the machine instruc-

tions that have been compiled by compilers from programs written in high-level languages.

Each CPU has its own instruction set that it can perform. These instructions fall into

three categories:

• Arithmetic instructions

• Memory (data) accesses

1 Introduction 8

• Control instructions (jumps and branches)

Arithmetic instructions operate on registers, and use the arithmetic logic unit (ALU) in

the CPU. For example, the contents of two registers could be added and stored in a third

register. Registers are small (typically 64 bits for a 64-bit architecture), fast storage spaces.

For example, the AMD Opteron processors have 22 registers. Memory access instructions

load data from main memory (RAM) into registers, or they store data from registers to

main memory (RAM). As arguments, they take a memory address and a register number.

Control instructions change the flow of the program (i.e. which instruction is executed

next), and will change the flow unconditionally (jump instructions) or based on some

condition (branch instructions).

The problem with memory access instructions is that they are several orders of magni-

tude slower than other instructions. This is because the latency of RAM memory is much

bigger than access time of registers (because registers are close to the CPU). The reason for

this is that RAM memory has a large relative storage capacity (on the order of gigabytes),

and there is always a compromise between the size of memory and how close it can be

to the CPU. Cache memory is located close to the CPU, and has a capacity on the order

of hundreds of kilobytes. It is used as a fast temporary storage buffer for data that is

needed by memory access instructions. The principle of temporal data locality states if a

memory address A has been accessed, it will be needed again sooner rather than later. The

principle of spatial data locality states that if a memory address A has been accessed, the

next memory address that will be needed, B will be located closer to A rather than further

away. Caches are designed to exploit these principles.

Cache memory size is usually in the range from hundreds of kilobytes to a few megabytes.

The smallest unit of granularity of a cache is called a cache line. It is typically from 1 to

64 bytes. When an address A is required by a data instruction, on first access, it will be

loaded from the RAM. A copy of the data will be copied into the cache. The whole cache

line containing the address will be brought in from RAM. If the same data is required by a

subsequent instruction, this time, it will not be brought back all the way from the RAM,

but from the (much faster) cache memory (this is how caches address temporal locality).

In addition, if another data reference is encountered close to the previous one, the data will

be available in the cache since the whole cache line has been brought in (this is how caches

address spatial locality).

1 Introduction 9

Fig. 1.1 2-way set associative cache)

Apart from being arranged in cache lines, the cache can have sets associated with them.

Each set has one or more lines in it. If a cache has one line in each set, it is called a directly

mapped cache. If a cache has 2 lines in each cache, it is called a 2-way set associative

cache (shown in Figure 1.1), and we say that it has an associativity of 2. When the CPU

encounters an address pointing to data to put in the cache, it first selects the set where the

data should be placed. Then, within the set, one line is removed (evicted) and replaced

with the line that contains the data that we need. Please see Figure 1.2 for a representation

of how a data address is used to determine where the data is placed in the cache. Going

from the least significant bits, the line offset determines where within a line the data will be

found. Next is the index, and it determines which set the address maps to. All addresses

with the same index will be mapped to the same set. The most significant bits of the

address form the tag, which has no say in where the data is being placed in the cache.

When a data instruction is encountered, the CPU looks at its operand in the form of an

address, specifically the index. Based on the index, it finds the set to which it maps to,

and then it compares the tag of the address to each line in that set, to determine if the line

containing the data is there already. If it is not, it fetches it from the RAM. The line that is

replaced within a set when a cache miss occurs is determined by the cache line replacement

policy. For example, the least recently used(LRU) policy is common. A good overview of

all these cache concepts is given in [3].

Cache misses occur when the CPU encounters a memory access instruction, but the

data is not found in the cache. There are 3 types of misses:

1 Introduction 10

Fig. 1.2 How an address (0x820A5BB6) is decoded for a 2-way set associa-
tive cache (512Kb total size, 64-byte line)

• Compulsory misses are misses that occur when a data reference is encountered for

the first time. These misses are unavoidable, as the data has to be brought back from

RAM the first time it is needed.

• Capacity misses are misses that occur due to the finite size of the cache. No matter

what the cache associativity is, some misses occur due to the cache being smaller

than main memory. These misses are also unavoidable given a fixed size of the cache.

• Conflict misses are misses that could have been avoided given a certain cache size.

These are the misses that we are trying to reduce in this thesis. They come in two

flavours: mapping misses and replacement misses. Mapping misses come from the

fact that each cache has a certain associativity, and cannot be avoided. Replacement

misses could have been avoided if another cache line replacement policy had been

chosen, and the data was not evicted as early.

One more concept that is to be introduced is the fact that often, CPUs have another

cache memory for code (in addition to data). In addition to needing data from RAM

memory to execute data instructions, the CPU also has to fetch from RAM all instructions

to be executed. The instruction cache stores these instructions. Of course, a single cache

can be used for both data and instructions, but this can create an unnecessary bottleneck.

In modern CPUs, we do not just have one level of cache memory, but two or even three.

For example, the latest AMD Opteron processor at the time of writing (Istanbul), has 6MB

of level 3 (L3) cache, 512KB of level 2 (L2) cache and 2*64KB of level 1 (L1) cache (data

and instruction).

It is very important to minimize cache misses. The latency of CPU registers is around

0.25ns, CPU cache around 1ns and of RAM memory around 100ns [3]. This means that

1 Introduction 11

the penalty of waiting for data after a cache miss might be hundreds of CPU cycles long.

As you see, there is a large difference in the speed of CPU and RAM memory. This is

known as the memory wall. The rate of improvement of CPU memory speed (on-chip

cache and registers) from 1986 to 2000 has been 55%, while only being 10% for off-chip

memory (RAM) [5]. As a result, it is becoming increasingly important to use the cache in

the most efficient ways possible.

1.3 Dynamic Memory Allocation

Memory management is the process of giving memory to a program when it requests it.

Different languages manage memory in different ways. For example, in C++, memory can

be allocated statically, automatically, or dynamically. Have a look at Listing 1.4. The

string pointed to by s is allocated statically at compile time. It will be put in the program

binary, and read-only memory. Trying to change the string will result in a segmentation

fault. The variable autoInt of type int will be (most likely) allocated on the stack during

runtime. A stack is a region of memory used by the program to store information in a LIFO

(last in first out) manner. Its main use is to store return addresses of functions, as well as

local variables (like autoInt). We say that these variables are allocated automatically. For

the instance of myObject and the array myArr, memory has been allocated dynamically.

By using the new keyword, we told the compiler to allocate, at runtime, enough memory

to store one instance of the myObject object. Similarly, the function malloc returns a

pointer to a free chunk of memory (memory reserved for use by the program). It is how

this memory is to be deallocated (recycled) that varies the most between programming

language implementations. The two main methods are using manual memory management

or automatic memory management.

Listing 1.4 Memory allocation program in C++ (output produced: “Stati-

cally allocated string. 5 6 7”)

#include <malloc.h>

#include <stdio.h>

class myObject

{

int value;

public:

myObject(int a)

1 Introduction 12

{

value = a;

}

int getVal ()

{

return value;

}

};

void main()

{

char *s = "Statically allocated string.";

int autoInt = 5;

myObject * id = new myObject(autoInt +1);

int * myArr = (int*) malloc (6* sizeof(int));

myArr [3] = 7;

printf("%s %d %d %d\n", s, autoInt , id ->getVal (), myArr [3]);

delete id;

free(myArray);

}

Object oriented languages create a lot of objects, as mentioned earlier. The reason

why we are interested in memory management is because when they are accessed (e.g. if

an object field needs to be updated), memory locations that contain the object will be

needed and brought into the data cache. Better dynamic memory management can mean a

decrease in cache misses. The region of RAM that is used for dynamic allocation is called

the heap.

1.3.1 Manual Memory Management

Manual memory management is when a programming language requires that the program-

mer explicitly specifies when to recycle memory. Examples of such languages are C, C++,

COBOL and Pascal. In Listing 2.4, this is achieved by using the delete keyword and the

free function. We can think of the delete keyword as the opposite of the new allocator.

When delete is called on id, its (default) destructor is called, and the memory that was

used to store it is freed up (put back into the free memory pool so that it is available for

allocation). The free function similarly recycles memory and undoes what malloc has

done.

1 Introduction 13

Manual memory management puts a lot of strain on the programmer because memory

bookkeeping is required, and bugs are common. For example, the programmer must not

forget to recycle the memory. Otherwise, memory leaks can be produced. Also, if a reference

to an object that used to exist survives past memory deallocation of that object, then we

can have a dead pointer. Trying to read that memory location in the future, thinking that

it contains an instance of the object will result in a segmentation fault (if we are lucky) or

us reading nonsense without knowing it.

1.3.2 Automatic Memory Management (Garbage Collection)

Instead of relying on the programmer to know when it is appropriate to free memory,

languages that use automatic memory management do it automatically. Examples are Java,

Perl and C#. The programmer allocates objects, but does not deallocate them. When the

heap fills up, a garbage collection(GC) occurs that recycles the memory occupied by any

dead objects. A dead object is an object that cannot be accessed in any way (typically

through a reference). After GC, the heap has available space again and the program can

continue.

The simplest way to perform a GC would be to start from the root set and look for

references of objects (this is called a mark-and-sweep GC scheme). The root set consists of

things like the global and static variables and all addresses that are currently in the registers

and the stack. The assumption is that any living object can be reached by starting from

the root set. When we encounter a variable in the root set, we have to ask ourselves these

questions: is it a reference(pointer)? If so, does it point to an object? If so, we mark the

object as live. Then, we have to look at the fields of this object, and repeat the same

process recursively. Then, the heap is sequentially walked by the GC, and the linked list

of free pointers is rebuilt, because we know which objects are alive and which are dead.

The mark-and-sweep GC scheme is simple to implement, but it has disadvantages. It

leads to fragmentation of the heap over time. This can be fixed by compaction. More

importantly, it makes the whole program stop during GC. More advanced, concurrent GC

schemes have been developed, which perform GC in parallel with the running application.

Another widespread GC scheme is a generational garbage collector. In it, the heap is

divided in two parts: the nursery and tenured space. New objects are allocated to the

nursery. When 50% of the nursery fills up, a GC is performed on the nursery only. Objects

1 Introduction 14

that are alive are copied from one half of the nursery to the other. Objects in the nursery

that survive enough collections are moved to tenured space. When tenured space fills up, a

global GC occurs. The advantages of generational GC are that it improves object locality

on the heap (this helps with page faults), less spent time per collection (for each local GC

that occurs, the tenured objects are not looked at, and rightly so, because there is a high

likelihood that they will not be collected), and less heap fragmentation (copying objects

from one side of the tenured space to the other defragments the heap).

15

Chapter 2

Related Work

Cache misses and caches in general have been thoroughly described in [3]. In addition

to what was presented in Chapter 1, it provides cache miss statistics for different cache

associativities and block replacement policies. It also describes in more detail how caches

operate. On a write, caches can either write the data only to the cache (write back) or

both to the cache and to main memory (write through). When a write miss occurs, the

line is usually brought into the cache (write allocate), but some caches only modify the line

in memory once they have found it (no-write allocate) without bringing the line into the

cache. Details of why cache misses occur (compulsory, capacity and conflict misses) have

also been explained.

A further understanding of conflict misses has been presented in [6]. In the context of

loops, these misses occur when the reuse of data has been disrupted. There can either be

self-dependence reuse (one reference accesses the same address in another loop iteration)

or group-dependence reuse (multiple references access the same address in different loop

iterations). A distinction is also made between temporal reuse (when the exact same

address is needed) and spatial reuse (when an address in the same cache line is needed).

Conflict (interference) misses make program execution time unpredictable and they are

hard to analyze. Some analytical methods for estimating interference cache misses as well

as execution time have been presented in [7]. In this chapter, we explore different software

and hardware approaches that can be used to reduce cache misses and optimize cache

performance in general.

2009/10/31

2 Related Work 16

2.1 Hardware Approaches of Improving Cache Performance

2.1.1 Reducing Cache Miss Penalty

Although we have focused more on reducing the actual number of cache misses, cache

performance can be improved by reducing the cache miss penalty as well [3] (i.e. how

expensive a cache miss is). The first technique that has already been mentioned before is

to use multilevel caches. On what would be a L1 cache miss, we fetch the data from the L2

cache, not RAM memory. Pulido [8] has performed some analysis on Spice and SPEC’92

benchmarks. They found that on Spice, a 1KB L1 cache results in a cache miss ratio of

19% for the L1 cache. When a L2 cache was introduced, of size 4KB, it resulted in a L2

cache miss ratio of about 10%, which brought the global cache miss rate to 2%. The global

cache miss rate is the product of L1 cahce miss rate and L2 cache miss rate. Pulido [8] also

shows measurements that indicate that it is benefitial to have a separate cache for data

and instructions.

Another technique to reduce the cache miss penalty is to not wait for the whole line to

be brought in the cache before the CPU uses it [3]. When a read miss occurs, as soon as

the word is found in the RAM, it can be sent straight to the CPU (before it propagates

to the L1 cache). This is called the critical word first strategy. An alternative is to start

reading the words in the line in order, but as soon as the requested word is available in

L1 cache, the CPU can continue execution (without waiting for the rest of the line to be

brought in). This is known as an early restart strategy.

Victim caches can be introduced in CPUs to further reduce the miss penalty [9]. A

victim cache is a small unit of cache that is not connected to main memory. When a

cache line is evicted from the L1 cache, it is copied to the victim cache (it can have several

entries). On a cache miss, when a cache line is not found in the L1 cache, the victim cache

is checked in case it contains the line. If it does, we do not have to fetch it from main

memory (or the higher level of cache).

A technique widely used in modern CPUs to reduce the stall time after a write is to have

a write buffer. On a write instruction (for write-through caches), the data to be updated in

memory is placed in a buffer. The CPU can then continue execution, and the memory will

be updated by the contents of the buffer at its own pace. Of course, now on a read miss,

the write buffer has to be checked because it might contain the updated data (as opposed

to main memory having it). The efficiency of write buffers can be improved by each entry

2 Related Work 17

having multiple words, so if there is another write instruction close to a word already in

the write buffer, it can be combined in the same buffer entry, instead of creating a new one.

2.1.2 Changing Cache Parameters

Cache parameters in terms of total size, line size and associativity can be changed to see

how they affect cache misses. For a fixed cache size and a given application, there is an

optimum associativity and line size. This is typically investigated by collecting different

program traces, and then running them through a cache simulator. As caches have many

parameters, the design space is quite large, and it is important to either reduce it, or develop

simulators that are fast [10]. A smaller miss ratio does not always mean an improvement

in performance. If we increase the line size, although the miss ratio might decrease, the

traffic to memory might increase, and the overall performance could be worse [11]. In this

thesis, we use execution time as a measure of performance, so this will not be an issue.

Kim [1] has analyzed cache performance on the SPECjvm98 benchmarks in Java using

a Jtrace as the tracing tool. They found that garbage collection negatively impacts cache

performance and that longer-lived objects are important to cache performance because they

determine the size of the working set. In terms of cache parameters, going beyond 2-way

associativity improves SPECjvm98 performance only marginally.

Caches in embedded systems can be designed using this technique, where another goal is

also low power consumption [12]. Embedded systems typically run very specific applications

that do not change. In addition, the hardware is customizable. That is why it makes sense

to investigate different cache parameters tailored to the applications. There exist both

exact cache models for simulation and approximate ones.

Work presented in [13] uses a forest algorithm that is used to explore a wide design

space in terms of cache size, associativity and line size. If we have two caches that have

the same associativity and line size, but one is twice the size of the other, then if a cache

hit occurs in the smaller cache, we know that it will also occur in the larger cache. Also, if

a cache miss occurs for a certain cache size and associativity, then for another cache with

the same set size (total size divided by associativity), a cache miss will also occur, if its

associativity is larger than that of the original cache. These concepts are used to reuse

calculations along the design space and obtain exact cache miss profiles for various cache

configurations with only one sweep of a program trace. They also provide a model for

2 Related Work 18

estimating actual execution time and energy consumption.

2.1.3 Non-Standard Cache Topologies

In addition to the general cache model, other different hardware improvements have been

tested. For example, way prediction improves the time it takes to find the line within a set

(in associative caches) [14]. It stores the index of the last used line within the set to predict

the next usage. If it predicts right, the latency of finding a line within a set is reduced.

Pseudoassociative caches behave as a direct mapped cache on a hit [15]. But, on a miss,

another set is checked for the data (this set can be calculated using a simple hash function).

Another similar concept is having a skewed cache, which does not have a fixed associativity.

For example, in a skewed cache with two lines per set, the first line can be direct mapped,

but the second line can be mapped using a hash function as done by Seznec [16]. They

show that a 2-way skewed cache can exhibit a similar hit ratio as a 4-way associative cache,

for cache sizes in the range between 4KB and 8KB.

There has also been work involving non-trivial line replacement policies. Subramanian

[17] has managed to develop a hardware scheme where the line replacement policy can

change, based on the application (between LRU, LFU, FIFO and Random). They add

two extra hardware elements: a per-set miss history buffer and a parallel tag array for

different policies that tracks what sets would be in the cache, if alternate policies were

used. When a set needs to be replaced, the policy is chosen based on the history buffer and

the corresponding tag array according to the policy that would have a smaller miss rate

for that set.

2.1.4 Hardware Prefetching

Prefetching is the act of loading cache memory with lines before they are needed. It

is extensively used for instruction caches due to the sequential nature of execution [18].

When only the next (instruction) line is considered for prefetching, this is called one block

lookahead. A prefetch algorithm can degrade performance due to the increased memory

bandwidth and because prefetching might unnecessarily evict another line from the cache

that will be needed later. Still, more sophisticated instruction prefetch schemes exist. It is

typical to use the branch predictor to predict what code segment comes next. I-cheng [19]

found that branch prediction prefetching can achieve higher performance than a standalone

2 Related Work 19

cache 4 times the size, for the benchmarks that they examined.

Data cache prefetching is also possible. Baer [20] uses a reference prediction table and

a look-ahead program counter together with a branch prediction table. The look-ahead

program counter looks at the instructions ahead of the real program counter, and when it

encounters a memory access, the reference prediction table is checked whether it contains

the address of the operand from previous executions. If it does, we know which address

to prefetch. The branch prediction table is used to predict the value of the look-ahead

program counter. It was shown that this scheme is very effective for reducing data cache

misses in scientific programs.

Hardware prefetching is advantageous over software prefetching in the sense that it

can use the dynamic nature of code during runtime as well as not having any instruction

overhead [21]. However, it is difficult to detect complex access patterns in the cases where

the compiler cannot detect them in the first place. In addition, hardware prefetching

algorithms are wired in hardware, and cannot be tailored to a specific application (or a

number of processors).

2.1.5 Scratchpad Memory

Scratchpad memory is a piece of on-chip memory similar to L1 cache, however, the address

space of scratchpad memory is different than that of main memory. Therefore, data in

scratchpad memory is not present in main memory, and its access time is guaranteed to

be on the order of L1 cache. It can be useful for storing, for example, temporary results of

calculations or as a CPU stack. The Cell processor uses a similar concept with its SPEs

(Synergistic Processing Elements) having their own “local store” memories [22]. The SPEs

address their own local memory for instructions and data, and only access system memory

through asynchronous DMA operations.

Loop and data transformations can be applied by the compiler if scratchpad memory

is available [23, 24]. The compiler inserts instructions so that portions of arrays required

by the current computation are fetched from the off-chip memory to scratchpad memory

(instead of the cache). As this introduces memory bandwidth overhead, this data needs to

be sufficiently reused for a benefit to occur.

Scratchpad memory can also be suitable for allocation of short-lived Java objects [25].

Since they die soon after creation, they will not be written to main memory as they would

2 Related Work 20

be if they were allocated to the L1 cache. This saves the GC time because it does not need

to reclaim the memory from the heap (which is in main memory). In addition, the heap is

not filled up as quickly. Objects that are longer-lived but are accessed frequently can also

benefit from being allocated to scratchpad memory: a process known as pretenuring [26].

By being allocated to the scratchpad, they never evict other lines from the cache, while

themselves being always available. Work in [27] performed a static analysis of the objects

found in SPECjvm98, and allocated the ones that were referenced the most to scratchpad

memory. They found an overall reduction in cache misses and power consumption.

The disadvantage of scratchpad memory is that the size of the scratchpad is needed to

be known during compilation, and can be quite variable. As a result, scratchpad memory

is mostly used in embedded systems and game consoles (e.g. Sony’s Playstation 1 uses a

MIPS R3000 CPU with a 1KB of scratchpad memory instead of L1 data cache [28]).

2.2 Software Approaches of Improving Cache Performance

2.2.1 Code Reordering

To improve instruction cache performance, there has been a significant amount of work

in the area of code/procedure reordering [29–33]. The idea is to place frequently-used

procedures next to each other so that they do not map to the same part of the cache and

conflict with each other. Graph colouring algorithms can be used to decide where exactly

to place them. Line colouring can also be used to organize arrays in data caches, as opposed

to code in instruction caches [34]. Apart from reducing instruction cache misses, the aim

of code reordering is also to improve branch prediction [35], which has a direct impact on

performance.

Code reordering uses expensive algorithms, and is used in static compilers, but it is also

possible to use it dynamically, as shown in [36]. They found that the code tiling algorithm

produces a performance improvement, unlike the popular Pettis-Hansen algorithm [37].

The main sources of overhead are the generation of the dynamic call graph, and the gener-

ation of code layout. Work in [38] uses a compromise: a mostly correct control flow graph

is generated statically, while the rest of the calculations is finished during runtime. Their

aim is to parallelize code, another use of code reordering. The flow graph that is gener-

ated statically contains single-entry, multiple exit regions and identifies regions of code for

2 Related Work 21

potential parallelization. This allows for low overhead during runtime.

Huang et al. [39] have managed to implement dynamic code reordering in Jikes RVJ [40],

by using three stages: interprocedular method separation (separates hot methods from cold

methods), intraprocedular code splitting (separates the hot blocks from cold blocks in hot

methods) and code padding (pads the hot blocks to avoid cache overlap when going from

one hot block to another).

2.2.2 Software Prefetching

Software prefetching is a technique where the compiler inserts extra prefetch instructions

in compiled code [41]. A prefetch instruction brings data to the cache similar to a load or

a store, but it does not do anything with it. A prefetch instruction can further be classified

into a register prefetch and cache prefetch, depending on whether it loads the data to a

register, or just the cache. A prefetch instruction can be faulting or nonfaulting. If a

nonfaulting prefetch instruction is to cause a page fault, it is treated as a no-op.

A simple algorithm is presented in [42] where a prefetch instruction is inserted in inner

loops, one iteration ahead. They further go on to recognize that the most overhead is

created when data that is already in the cache is prefetched. This can be eliminated by

calculating overflow iterations, the maximum number of iterations a loop can contain before

it cannot hold its data in the cache and cause cache misses. If the number iterations of a

loop is smaller than its overflow iteration number, then that prefetch can be eliminated.

Work in [43] uses a special cache, fetchbuffer, to help with software prefetching. It

stores fetched data and reduce conflicts with the conventional cache. They also prefetch

instructions further than one loop iteration ahead, and this distance is based on cache

and loop parameters. Prefetching is possible in non-loop environments as well, but the

irregular access patterns are difficult to predict [44]. Most prefetching schemes concentrate

on memory accesses in loops and arrays, but it is also possible to use prefetching with

pointers [45], which is useful for recursive data structures and object-oriented programming

in general.

2.2.3 Loop Transformations

In the area of scientific computing, where a lot of computations on large amounts of data

are performed, cache performance of specific frequently-executed loops is important. Loop

2 Related Work 22

interchange can help with nested loops [46]. If the inner loop has a larger data range than

the outer loop, then simply exchanging the nesting of the loops can improve data locality

if the arrays do not fit in the cache.

Loop blocking or tiling is an optimization where data in loops is thought of as being

made up of blocks, where one block can fit in one cache [6, 42, 47, 48]. For example, a

large matrix multiplication (of size N by N) can be broken down to operate on several

submatrices. If we are trying to perform the multiplication of matrices A and B, and store

the result in C, then this is done by a series of independent multiplications of elements from

A and B and adding them into elements of C. Instead of having an iteration space of N by N,

which might not fit into the cache, we can break up the multiplication to smaller chunks,

or tiles. This will increase the loop condition overhead, but will improve data locality and

reduce cache misses. The challenge is to recognize opportunities for tiling at compile time

and determine the correct tile size. Coleman [49] presents an algorithm that chooses an

appropriate tile size, based on the problem size, cache size and line size in a direct-mapped

cache. Padding can be used to make the data size align to cache line boundaries (or page

boundaries [50]). Work in [51] presents some heuristics that can be used for automatic

array variable padding.

There are other various techniques, such as fission [52], fusion [53, 54], and outer loop

unrolling. What becomes difficult is to select which one of these to use for which specific

loop and cache configuration, as the wrong transformation can degrade performance. Wolf

et al. [55] developed an algorithm that searches for the optimal set of transformations, while

concentrating to minimize the number of introduced loops, and taking care that variables

in the loops are register allocatable. Buffer allocation is another loop optimization that

can be used to reduce the size of a temporary array inside a loop [54].

2.2.4 Improving Object Locality in Memory

It has been recognized that object locality in the heap is important for program execution

[56]. The whole heap can be partitioned into multiple sections, where each heap is used for

some selected objects. Hirzel [57] uses the connectivity of objects to predict object lifetimes

(with the aim of helping us figure out where to put these objects in the heap). Lattner

and Adve [58] describe their Automatic Pool Allocation algorithm, whereby they analyze

pointer based structures (e.g. a tree structure) and put each of its data instances into a

2 Related Work 23

different pool of the heap, or all of its instances into a single pool, depending on usage.

The heap is now contained of many pools, whose memory allocation and deletion needs to

be managed by the program, and each static pointer is mapped to the pool it points to.

Several programs in C++ have shown a performance improvement.

Object layout can be optimized during garbage collection. The goal is to ensure that

objects accessed within a short duration of each other are laid out as close as possible in the

heap. Work in [59] presents two interesting tools: ccmorph and ccmalloc. ccmorph uses

clustering and colouring algorithms to restructure data structures such as trees to be more

cache friendly. ccmalloc allocates space on the heap similar to malloc, but it takes as an

argument a pointer to another structure that is likely to be the parent object accessing to

the area of the heap being reserved. ccmalloc attempts to put these objects together. A

similar process can be used with garbage collection [60]. When the generational garbage

collector is copying objects from one part of the nursery to the other, it does it in a way

so that objects with high temporal affinity are placed next to each other. For example,

Wilson et al. [61] have developed their own algorithm, hierarchical decomposition, that can

be used by the copying collector to traverse objects (and copy them close to each other).

It lead to a significant reduction in page faults.

Although traditionally, garbage collected languages are thought of as having poor cache

performance [62], there has been work indicating otherwise [63,64]. Work in [65] presents a

GC scheme where objects are classified into two types: profilic(frequently allocated/short-

lived) and non-profilic(infrequently allocated/long-lived). Each of the two types are allo-

cated to a separate area of the heap, and collections are performed independently on the

two areas. They found that the the time spent in GC can be reduced by up to 15%, and

the heap requirements can be reduced by up to 16%, compared to the generational garbage

collection.

2.2.5 Thread Local Heaps

Another way to improve object locality and reduce the overhead of object allocation is

to use a thread-local-heap (TLH). However, this approach primarily aims at eliminating

the need for synchronization at every allocation in the presence of multiple threads. This

scheme has been thoroughly described in [66]. In Java, we can have local objects or global

objects, from the thread perspective. Local objects can only be accessed by the thread that

2 Related Work 24

created them, whereas global objects can be accessed by multiple threads. We can assign

a section of the heap for every thread to allocate objects in. These areas become TLHs. If

we know that all objects in a TLH are local, then we can do a local GC on that area of the

heap independently from other threads, instead of doing a global collection and stopping all

threads. To allocate objects to the TLH, small TLH caches are used. For example, in [66],

the TLH cache is at least 384 bytes, whereas the whole TLH is on the order of megabytes.

When the cache runs out of space, a new cache is obtained from within the TLH. If there

is no space for a new cache, a new TLH can be obtained from the global free list, or a local

collection can be initiated. If the object is too large for allocation from the TLH cache, it

is allocated from a special large heap area.

Some objects in Java are global by definition, such as Thread and ThreadGroups objects,

but it is usually not known a priori what objects will be global. All objects start out as

being local. Whenever there is an update to a field of an object that is a reference,

write barriers are inserted which check whether this reference now points to another object

outside the TLH. If it does, the object that it points to is not local any more, and it is

marked as being global. Work presented in [66] develops a memory manager that improves

the traditional TLH scheme by dynamically monitoring what objects become global based

on the allocation site, and instead of putting them in the TLH, another area for global

allocations is used. In addition, a static profiling tool was developed which can identify

that an object is mostly global, and then the object’s bytecode is modified to indicate

this. On compilation, the special bytecodes are identified, and these objects are directly

allocated into the global areas. The main benefit comes from reduced GC times (by 50%)

and GC pauses (by a factor of 3 to 4). Indirectly, it also likely improves data locality,

but specific measurements were not performed, as reduction of cache misses was not the

main goal. The IBM J9 JVM that we used in this thesis also uses TLHs. In the work

presented in the thesis, we modify how objects are allocated from within the TLH caches

in order to directly reduce CPU cache misses. Unless otherwise stated, the term TLH will

be analogous to TLH cache.

2.2.6 Our approach: Cache Line Reservation

Our scheme differs from prior work in that it uses the mapping/associativity of the cache

memory to influence memory allocation with the goal of improving performance by im-

2 Related Work 25

proving locality. To our knowledge, there is no prior work that mentions this approach of

object allocation.

However, timing attacks using cache latency are well-known in cryptography, for exam-

ple to acquire AES (Advanced Encryption Standard) keys [67,68]. As Percival [69] noticed,

a Pentium 4 CPU with HyperThreading offers a security vulnerability, because both of the

two threads share cache memory. Two processes can communicate in the following way:

both processes can allocate arrays that they can access. If sending a 1, the first process can

continuously read its whole array (which can be 25% of the cache size) and hence ensure

that 25% of the lines are always present in the L1 cache. The second process can read its

whole array (which occupies 100% of the cache) and measure the time this takes. When

sending a 0, the first process will not be reading its array. Hence, the difference between a

1 and a 0 will be detectable by the second process, and the two processes can communicate.

This idea can be extended to allow a spy process to eavesdrop on an AES key.

26

Chapter 3

Cache Line Reservation

This chapter presents the cache line reservation (CLR) concept, which is the main con-

tribution of this thesis. A simple object allocation scheme used conventionally by JIT

compilers is based on each thread allocating objects using thread-local heaps (TLH). As

mentioned in Section 2.2.5, a TLH is a contiguous chunk of memory of a size controlled

by the JIT. A typical implementation of a TLH has two pointers that are of interest to

us: an allocation pointer, which we will call tlhAlloc, and a pointer marking the end of the

TLH pointer, which we will call tlhTop. Strictly speaking, the TLH can be a larger area

of heap memory and the pointers in question just point to the TLH allocation cache, but

from now on, this cache will be referred to as TLH. Even if the TLH approach is not used

(e.g. in static compilers), tlhAlloc and tlhTop can be analogous to the allocation pointers

in the current free space buffer, indicating its beginning and end. No matter what the

implementation is, when an object or an array of primitives need to be allocated, tlhAlloc

is incremented by the size of the object, and the object header and fields are inserted in

that space. If tlhAlloc is to overshoot tlhTop, a request for a new TLH is made, and the

object is allocated from the new TLH.

In the new allocation scheme we present in this thesis, CLR, the idea is to divide each

TLH into an unreserved section and one (or many) reserved sections. Selected allocations

are performed only in designated reserved sections whereas all other allocations are done in

the unreserved section(s). Figure 3.1 demonstrates a high-level overview of CLR in Java.

We have a class myReservedObj, and a method myMethod. In myMethod, we are creating a

new instance of myReservedObj, that we wish to allocate into one of the reserved sections.

2009/10/31

3 Cache Line Reservation 27

When the address for allocation is chosen for where the instance will be allocated, we choose

one from RAM memory in such a way so that it maps to a specific cache line (in this case,

the first 4 lines in the L1 cache). Which line will be used in L1 cache can be determined

by looking at the least significant bits of the allocation address (see Figure 1.2). Therefore,

we guarantee that only specific cache lines will be evicted from the cache on allocation,

as well as whenever the object is accessed in the future. In the right circumstances, this

should decrease cache misses.

3.1 Description of CLR

We now define the CLR concept in more general terms. The size of the unreserved section

and each reserved section within a TLH depends on the size and mapping of the cache on

the computer that the program is being executed on and the proportion of the cache that

is to be reserved for the selected allocations. We begin by defining the following:

cacheSize total size of the cache

associativity the associativity of the L1 cache

lineSize the size of one line in the cache

reservedSections the number of reserved regions in the L1

cache

chunkSize cacheSize/associativity

tlhSizeMin the minimum size of a new TLH allocation

buffer

sectionProportion[reservedSections] the proportion of each section

tlhAlloc[reservedSections+1] an array of allocation pointers

tlhTop[reservedSections+1] an array of allocation buffer tops

tlhHighestAllocIndex an index of the highest tlhAlloc entry

tlhStart a pointer that points to the start of the

whole TLH

tlhEnd a pointer that points to the end of the

whole TLH

3 Cache Line Reservation 28

Fig. 3.1 An overview of CLR

3 Cache Line Reservation 29

Out of these parameters, cacheSize, associativity, lineSize and chunkSize are predefined for

a given hardware platform. Each TLH should be conceptually viewed as being partitioned

into smaller chunks. Each such chunk has the property that accessing a given memory

location within the chunk would not evict any other memory location within the same

chunk from the cache. In other words, each chunk can fit exactly within the cache and

different memory locations within the chunk are mapped to different memory locations on

the cache. Reservation is done by selecting specific memory locations within chunks such

that those memory locations always map to the same cache line(s) on the computer. For

caches which have an associativity of 1, the chunk size is equal to the total cache size. As

the associativity increases, the chunk size decreases. The maximum number of sections a

TLH may be subdivided into is fixed at some small quantity reservedSections. This number

could change throughout the lifetime of an application. The unreserved section and all the

reserved sections form one chunk (see Figure 3.2). The proportion in which these sections

are split up between each chunk are stored in the sectionProportion array. The elements

of this array add up to 1:

sectionProportion[0] + sectionProportion[1] + sectionProportion[2] + ... +

sectionProportion[reservedSections] = 1

This array has reservedSections+1 elements, one more than the number of reserved

sections, because location at index 0 will store the data for the unreserved section. For

example, if we have 2 reserved sections, sectionProportions[0] could be 0.5 (50%),

sectionProportions[1] could be 0.2(20%) and sectionProportions[2] could be 0.3

(30%). The cache lines contained in each reserved section are consecutive, and its propor-

tion could be 0 (if that section is not currently used). The elements in sectionProportions

array could be changed at runtime. If we define the total number of cache lines contained

in one chunk as:

numLinesChunk = chunkSize/lineSize

we can say that we have numLines available to distribute our sections in. The number

of consecutive lines (rounded to the nearest integer) in a section n is given by:

3 Cache Line Reservation 30

linesInSection[n] = sectionProportion[n]*numLinesChunk

Then, we can calculate the size of each section n within one chunk:

reservedChunkSize[n] = linesInSection[n]*chunkSize

Of course, the whole TLH is likely to contain more than one chunk, given by:

(tlhEnd tlhStart)/chunkSize = numChunksTLH

The traditional way (without CLR) to allocate objects would be to simply increment the

tlhAlloc pointer by the size of the object. Listing 3.1 shows a function for allocating the

object without CLR. It returns the pointer to the address of where the beginning of the

object is. Then, another function can be called on that pointer to initialize the object

header. If the TLH is too small to satisfy the request, a new TLH is obtained. If the

object size, objectSize is larger than the minimum size of a new TLH, then the object is

allocated in another way. These objects are generally too large for CLR allocation anyway.

It only makes sense to allocate an object in a reserved area if at least one such object can

fit in the reserved section within one chunk (reservedChunkSize[n]).

Listing 3.1 Allocating an object in a traditional way (pseudocode)

void * startOfObject allocateNoCLR(void * tlhAlloc , void * tlhEnd , int

objectSize)

{

startAllocation:

if (tlhAlloc + objectSize <= tlhEnd)

{

startOfObject = tlhAlloc;

tlhAlloc = tlhAlloc + objectSize;

return startOfObject;

}

else

{

if (objectSize <= tlhSizeMin)

{

requestNewTLH ();

goto startAllocation;

3 Cache Line Reservation 31

}

else

return allocateFromLargeHeapSpace(objectSize);

}

}

The allocation incorporating the CLR scheme is more complicated. For each section

within a TLH, we must keep track of where the next allocation should occur (represented

by tlhAlloc[n]). Apart from keeping these running pointers to decide where to do the

next allocation, we also need to keep track of the end of each section (represented by

tlhTop[n]) currently being allocated to. We will assume that within one chunk, the first

section is the unreserved section (n=0), and that all subsequent sections (n>0) are reserved

sections. Before allocations begin, each time we get a new TLH, we need to initialize these

pointers, based on the beginning and end of the TLH (tlhStart and tlhEnd). Listing 3.2

shows pseudocode for the initialization. We are assuming that the TLH is bigger than at

least one chunk (numChunksTLH > 1). But, the TLH does not have to begin on a chunk

boundary.

Listing 3.2 Initializing the allocation pointers (pseudocode)

void initializePointers(void * tlhStart , void * tlhEnd)

{

void * currentPointer;

int_32t currentSize;

//go to the beginning of the current chunk

currentPointer = tlhStart AND (NOT(chunkSize - 1));

tlhHighestAllocIndex = reservedSections;

for i = 0 to reservedSections

{

if (tlhStart < currentPointer)

tlhAlloc[i] = currentPointer;

else

{

tlhAlloc[i] = currentPointer + chunkSize

tlhHighestAllocIndex = i;

}

currentSize = ((int) sectionProportion[i]* numLinesChunk) *

chunkSize

tlhTop[i] = tlhAlloc[i] + currentSize;

3 Cache Line Reservation 32

currentPointer += currentSize;

}

}

The initialization function takes tlhStart and goes to the beginning of the chunk that

it is in. Then, it pretends that that is the beginning of the TLH, and assigns the allocation

pointers according to the sizes in the sectionProportion array. In the beginning, these

allocation pointers will be below tlhStart, because we went back to the beginning of the

chunk. In that case, chunkSize is added to the allocation pointer, to bump it back into the

TLH. Similarly, the tlhTop array has been initialized. Figure 3.2 illustrates an example

TLH and how its pointers look after allocation.

Fig. 3.2 CLR pointer structure and initialization

There might be some space loss between the tlhStart pointer and the beginning of

the next section. This can be avoided by checking what section tlhStart is in and setting

that section’s allocation pointer to tlhStart. The tlhHighestAllocIndex is set to be the

index of the section whose tlhAlloc pointer is the highest. Knowing what entry in the

tlhAlloc array is the highest will be useful for cache pollution. Cache pollution occurs

when we cannot allocate the whole object in its designated area (whether it is reserved or

non-reserved). This could be because the object is too big, or for other implementation

reasons. Now we present the function for allocating non-reserved objects of size objectSize

in Listing 3.3.

3 Cache Line Reservation 33

Listing 3.3 Unreserved allocation (pseudocode)

void * startOfObject allocateNonReserved(int objectSize)

{

unreservedAllocation:

if (unreservedTlhAlloc + objectSize <= tlhTop [0])

{

startOfObject = tlhTop [0];

tlhTop [0] += objectSize;

return startOfObject;

}

if (objectSize < sectionProportion [0]* chunkSize)

{

// the object can fit in one section , but there is no space

if ((tlhAlloc [0] AND (NOT(chunkSize - 1)) + chunkSize < tlhEnd)

{

//jump to new tlhTop [0] pointer in the next chunk

tlhAlloc [0] = tlhAlloc [0] AND (NOT(chunkSize - 1) + chunkSize;

tlhTop [0] = tlhAlloc [0] + ((int) sectionProportion [0]* numLinesChunk

) * chunkSize;

// check that we did not overshoot tlhEnd

if (tlhTop [0] > tlhEnd)

tlhTop [0] = tlhEnd;

goto unreservedAllocation;

}

else

{

//no space in the TLH

requestNewTLH ();

initializePointers(tlhStart , tlhEnd);

goto unreservedAllocation;

}

}

if (objectSize > tlhSizeMin)

{

// object size too big for TLH

return allocateFromLargeHeapSpace(objectSize);

}

// object can fit in the TLH , but not in the unreserved section

// allocate with cache pollution over the reserved sections

3 Cache Line Reservation 34

if (tlhAlloc[tlhHighestAllocIndex] + objectSize > tlhEnd)

{

// There is enough space in the current TLH

startOfObject = tlhAlloc[tlhHighestAllocIndex];

tlhAlloc[tlhHighestAllocIndex] += objectSize;

// Adjust the TLH pointers of all reserved sections that

//may now be covered by this polluting allocation.

fixPointers(tlhAlloc[tlhHighestAllocIndex], tlhEnd);

return startOfObject;

}

else

{

//Get a new TLH and allocate the object

requestNewTLH ();

startOfObject = tlhAlloc;

// Initialize the CLR pointers

fixPointers(startOfObject+objectSize , tlhEnd);

return startOfObject;

}

}

The allocateNonReserved function first looks at whether it can simply increment the

pointer for the non-reserved section. This will happen most of the time. However, if the

object cannot fit in the current non-reserved section, it tries to update the pointer to the

next chunk and then allocate it from there. If there is no more space in the TLH, a new

TLH request is made, before trying to allocate the object again. If the object is larger than

the minimum size of a new TLH, then the object is allocated from the large heap space. If

the object is larger than the non-reserved section size, but smaller than the minimum TLH

size, then cache pollution occurs. We cannot just use the tlhAlloc[0] pointer to allocate

such an object, because the object could end up overlapping with another (reserved) object

in the next section. Instead, we allocate it from the section which has the highest tlhAlloc

pointer, by using tlhHighestAllocIndex. This will not interfere with any objects because

there are no objects between that pointer and the end of the TLH. However, now when

other sections try to update their tlhAlloc pointers, they might update it in the middle

of this large object. That is why a new function has to be called, fixPointers, which is

shown in Listing 3.4.

3 Cache Line Reservation 35

Listing 3.4 Fixing the allocation pointers after cache pollution (pseudocode)

void fixPointers(void * fixStart , void * tlhEnd)

{

initializePointers(fixStart , tlhEnd);

for i = 0 to reservedSections

{

if (tlhAlloc[i] < tlhEnd)

tlhAlloc[i] = tlhEnd;

if (tlhTop[i] < tlhEnd)

tlhTop[i] = tlhEnd;

}

}

The fixPointers function calls initializePointers to initialize the pointers as be-

fore, but it pretends that fixStart is the beginning of the TLH. As a result, some pointers

will overshoot the end of the real TLH, and if that happens, it simply sets those pointers

to be tlhEnd. No harm is done as on next allocation from these sections, it will be found

that there is no space in the TLH, and a new TLH will be requested. Figure 3.3 illustrates

what happens when we encounter an object larger than the unreserved section. We have

no choice but to pollute the cache, but the TLH pointers are re-initialized so that future

allocations can continue as usual.

Fig. 3.3 How an object is allocated that cannot fit in the current unreserved
section

3 Cache Line Reservation 36

Listing 3.5 presents pseudocode for a reserved object of size objectSize, in section

sectionNum.

Listing 3.5 Reserved allocation (pseudocode)

void * startOfObject allocateReserved(int objectSize , int sectionNum)

{

reservedAllocation:

if (reservedTlhAlloc[sectionIndex] + objectSize <= tlhTop[sectionNum])

{

startOfObject = tlhTop[sectionNum];

tlhTop[sectionNum] += objectSize;

return startOfObject;

}

if (objectSize < sectionProportion[sectionNum]* chunkSize)

{

// the object can fit in the section , but there is no space

if ((tlhAlloc[sectionNum] AND (NOT(chunkSize - 1)) + chunkSize <

tlhEnd)

{

//jump to new tlhTop[sectionNum] pointer in the next chunk

tlhAlloc[sectionNum] = tlhAlloc[sectionNum] AND (NOT(chunkSize - 1)

+ chunkSize;

tlhTop[sectionNum] = tlhAlloc[sectionNum] + ((int)

sectionProportion[sectionNum]* numLinesChunk) * chunkSize;

// check that we did not overshoot tlhEnd

if (tlhTop[sectionNum] > tlhEnd)

tlhTop[sectionNum] = tlhEnd;

goto reservedAllocation;

}

else

{

//no space in the TLH

requestNewTLH ();

initializePointers(tlhStart , tlhEnd);

goto reservedAllocation;

}

}

// object cannot fit in the reserved section

//this should never happen

3 Cache Line Reservation 37

return allocateNonReserved(objectSize);

}

The allocateReserved works similarly as allocateNonReserved, only that it is im-

plied that the reserved object size is smaller than the reserved section size. If larger objects

need to be allocated in that reserved section, than its corresponding sectionProportion

entry should be increased. Changing the values during runtime in the sectionProportion

is an expensive task because of the requirement that the unreserved region is in the be-

ginning of each section (and continuous). If we are to change an entry for section N in the

array, we will also have to change the entry for index 0 (non-reserved section) by the exact

same amount so that all the sections’ values add up to 1. But, this will have the effect of

moving all the sections below N relative to each chunk, increasing cache pollution.

3.1.1 Choosing the number of cache lines to reserve

Once an allocation site has been chosen for reserved allocation, one parameter that needs to

be selected is how many cache lines to reserve for such an allocation. This should be done

using a heuristic function that chooses the number based on criteria such as the number

of objects that are likely to be allocated (can be estimated by profiling), the size of the

objects, the overhead of taking care of TLH pointers as well as the amount of pollution

that will be introduced by changing the sections. In any case, the number of cache lines in

one reserved section must be enough to hold at least one instance of the object. We might

choose to put the reserved object in an existing reserved section (thus sharing it with some

other object), or creating a new reserved section. What will happen is that when that

method is compiled, the allocation of the selected object from that site will be compiled

utilizing CLR.

3.1.2 Alteration to pre-fetch strategy

Some compilers insert prefetch instructions before object allocation in an attempt to de-

crease cache misses. Without CLR, we can safely just prefetch the data after the tlhAlloc

pointer. This will bring in the cache lines where the object is to be located before they

are needed for object initialization. With CLR, this prefetching strategy will have to be

changed. Now, data after tlhAlloc[n] should be brought in, unless the pointer has to be

adjusted. If that happens, than the new value of tlhAlloc[n] should be brought in as

3 Cache Line Reservation 38

soon as it is known.

3.1.3 Interaction with garbage collection

If the language that CLR is used on uses garbage collection that move objects, then these

objects have to be moved in a way so that the CLR benefits are still present after the GC.

This means that objects that are inside their appropriate sections have to be moved to

those same sections. There are three possible high-level implementations:

• One simple implementation would be to treat chunks as units for garbage collection,

instead of objects. A chunk can be collected only if all the objects in that chunk are

dead. If not, the chunk as a whole can be moved to another area of the heap, but

on a chunk boundary. The advantage of this is that no special knowledge of sections

and reservations is needed by the GC, only the chunk size. The disadvantage is that

the GC is less efficient, and that any cache pollution that arose from changing the

sections will still be there.

• Another way would be to inspect where the objects are located from within the

chunks. The GC will have to look at the sectionProportion array. Then, the GC

can move them to a new area of the heap to the appropriate sections. In effect, the

GC will allocate the objects again. This method has a lot of overhead, but it will not

be subject to internal fragmentation of the first method.

• The third method could be to mark in the objects themselves what section they

belong to. In the object header, one could store a number representing the section to

which the object belongs to. This number does not necessarily have to correspond to

the index of the sectionProportion array, to account for changes of sections during

runtime. When the GC finds that it needs to move these objects, all it has to do

is check this field in order to see to what section the object can be copied. This

approach has medium overhead (no calculation of which section the object is in but

the objects now occupy a larger space) but it deals with cache pollution, as the field

in the object header is more reliable indicator of which section an object should be

in than the object’s position within a chunk.

3 Cache Line Reservation 39

3.1.4 Multiple levels of cache

Today’s caches typically contain more than one level. Because CLR works from the lowest

level (L1), its benefits will be realized by caches of any levels. But, CLR can be extended

to work on higher levels as well. We can either ignore the L1 cache altogether and use the

same structure, only with L2 parameters. This will effectively mean that the chunk size

has been increased and that the TLH size itself must be larger so that it contains at least

one chunk.

An alternative would be to extend the CLR scheme to use two levels. Another set of

arrays of pointers will be needed for the L2 cache, and the reserved allocations will have

to specify what section (for the L2 chunk) and subsection (for the L1 chunk) they want to

allocate to.

3.1.5 Multiple allocation sites per section

If CLR is to dynamically update the sectionProportion array, then the way CLR was

presented so far, we can only allocate instances of objects from a single allocation site per

reserved section. This is because if we want to delete the reserved section (i.e. making

its sectionProportion entry 0), we can identify the site of allocation that is not required

for reserved allocation, and change its allocation code to non-reservation. But, if there

is another allocation site that is using the same reserved section, this section does not

exist any more. Therefore, in order to reserve objects from multiple allocation sites to one

reserved section, we have to make sure that that section never gets deleted.

Alternatively, we could introduce another array, numAllocationSites, which be of

size equal to reservedSections. Each entry is a counter that gets incremented every

time code for a reserved allocation is compiled for an allocation site. Then, we know

that we cannot make the section proportion 0 unless the corresponding counter in the

numAllocationSites array is also 0. Conversely, when CLR allocations are cancelled (see

Section 3.3.1), the entries in numAllocationSites are decremented. If any of them reaches

0, then that section has no objects that are allocated in it, and it might be beneficial to

make these sections 0 (but it might not, have a look at Section 3.2.4).

3 Cache Line Reservation 40

3.2 Criteria for selecting objects

The CLR allocation scheme’s goal is to reduce cache misses in correct conditions. To

do that, we have to identify what objects are eligible for CLR. Here, we explore all the

possible scenarios where CLR could offer a benefit, and how to identify them so that we

can (re)compile the allocation code to use CLR.

3.2.1 Frequently Instantiated Types

If there are certain types of objects that are very frequently allocated (per unit of time of

execution or relative compared to other objects), then chances are that these objects will

be short lived. One extreme would be allocating a lot of zero-lifetime objects using CLR.

From the cache perspective, without CLR, they would take up the whole cache, evicting

anything that was there before. When longer lived objects are accessed in the future, cache

misses occur. With CLR, zero-lifetime objects would only occupy specific cache lines, so

that they evict mostly themselves out of the cache (not a problem because they will die

and will not be needed in the future anyway). As a result, when other long-lived objects

are accessed, there will be more cache hits. If an object type has been identified as being

frequently allocated, all we have to do is compile the allocation code for all these objects

using CLR.

3.2.2 Frequently Executed Allocation Site

Another way to identify short-lived objects is to look at allocation sites. If we have a section

of code that allocates certain objects, and this section gets executed often, then chances

are that these objects allocated from this site are short-lived, even though the same object

types in general could not be. We could find this out by profiling during runtime, or by

some sort of static analysis of code. The advantage of this method over just looking at

frequently instantiated types in general is that it is more targeted.

3.2.3 Objects that are unlikely to co-exist

There are many objects withing a lifespan of a program that are unlikely to co-exist. If

all of the objects that do not co-exist always occupy the same part of the cache, then they

3 Cache Line Reservation 41

would evict each other out of the cache, instead of other objects that will be needed during

their lifetime.

3.2.4 Objects accessed in infrequent bursts

Even if the objects are not short-lived, CLR could help. If a large group of objects is

periodically read/written to in isolation, they would evict all the lines from the cache when

this happens. But, if they occupy only a specific part of the cache, then they would evict

less of the other objects from the cache. For example, we might be searching for an element

in a linked list. If each node in the linked list is occupying the same cache line, then every

time we search for an element in the linked list, we are only evicting one cache line, instead

of the entire cache (if the linked list is large enough).

3.2.5 Mostly Written Objects

Objects that are typically only written to (such as log buffers), would benefit from an

exclusive cache line state. It is typically more expensive for a cache nest to be moved from

a non-exclusive to exclusive state. If these objects are all located in certain cache lines,

then whenever they are written to, the cost of turning the cache nest to an exclusive state

has already been paid. This could be more beneficial than if we had to write to other

(non-reserved) cache lines.

3.2.6 Objects in Different Threads

Finally, objects allocated by (and potentially only used by) a certain thread can be allocated

such that they are mapped to cache lines that are different from those that would be utilized

for allocations done by any other thread. This is useful in scenarios where multiple threads

running on a different processor are primarily operating on their own thread-local data.

3.3 Limitations of CLR

The CLR allocation scheme, of course, comes at a certain cost. It will depend on how CLR

is implemented, as well as how often reserved allocations occur. The idea of CLR it is not

limited to any programming language or compiler, but as this thesis focuses on Java, here

we explore some sources of overhead from the perspective of a JVM that uses TLHs.

3 Cache Line Reservation 42

• Reduced L1 cache capacity for non-reserved objects

When reserved sections are allocated, they effectively render these sections useless for

non-reserved allocation. That means that the cache capacity has reduced from 100%

to the value in sectionProportion[0].

• More garbage collection

If reserved objects are being continuously allocated, in order to satisfy the requirement

of them occupying only one part of the cache, there will be a lot of unused space in the

TLH when it reaches the top. For example, if the first 25% of the cache is reserved,

and there is a section of code that only allocates reserved objects, the TLH will fill

up 4 times as quickly. As a result, GC will occur 4 times as often. However, this is

only true when allocating objects. After they have already been allocated, there is

no GC cost in reusing (reading or writing) them.

• Fragmentation of the heap

After a GC, even though the space in the non-reserved areas will be reclaimed, now

the free space is heavily fragmented which might make future allocations (reserved or

non-reserved) difficult. This effect will be minimized by GC schemes that compact

the heap (move objects around to fill up the holes), such as generational GCs. The

choice of how the free list of pointers in the memory pool is implemented also affects

the degree of this overhead.

• More expensive allocation

Allocation of reserved objects is not as straightforward as incrementing the tlhAlloc

pointer in the TLH any more. We have to deal with different sections, initializing

and incrementing pointers as well as reading all of these pointers from memory. This

increases execution time per allocation, and might even hurt data cache locality (due

to more memory reads). Of course, most of the time, the allocations will take the fast

path, which is similar to the non-CLR allocation, but it still means going through

various conditional branches.

• Decreased Instruction Cache Locality

In addition to more execution time, the size of the compiled methods that use reserved

allocation will be bigger. This will hurt locality of the instruction cache.

3 Cache Line Reservation 43

• More frequent TLH requests

As the individual TLHs fill up more quickly, fresh TLH requests will happen more

often, and more time will be spent in the JVM on memory management instead

of running useful code. This will also put more strain on the free memory pool

management. The memory footprint of the program will appear to be bigger.

• CLR-aware GC and VM

Since not all allocations happen through the JIT compiled code, the allocations from

the VM must be compatible with the CLR infrastructure. Similarly, in GC schemes

that move objects (compaction, generational GC), the GC might have to be modified

so that the reserved objects are moved in a way so that they still map to the reserved

regions.

• Extra instrumentation and compilation time

In a fully-automatic JVM with a JIT that supports CLR, extra instrumentation has

to be developed that detects what objects to reserve. Then, these methods would

have to be recompiled (which takes time). Alternatively, it might be decided that

some objects should stop being reserved, which would trigger recompilation again.

The question is whether all these costs are justified by the reduction in cache misses

that CLR provides, and under what circumstances. The aim of the CLR implementation

presented in the next chapter is to answer this question.

3.3.1 Cancellation policy

The criteria for selecting allocation sites for CLR is described in Section 3.2. However,

sometimes, this decision should be reversed, due to the overhead. As mentioned before,

each time we are creating a reserved section, we are reducing the cache capacity of non-

reserved allocations. If the reserved allocation site stops allocating as many objects, or

it disappears (for example, if a method containing it never gets called again), then this

reserved area should be reclaimed. In a dynamic CLR scheme, some profiling will be

necessary for evaluation of CLR schemes. Here are some examples:

• Tracking the number of allocations for each site

Each time we perform a reserved allocation, we could increment a counter. This

3 Cache Line Reservation 44

counter can be checked by a profiler after a certain unit of time to measure the

rate of reserved allocations. If this rate falls below a certain threshold, the reserved

allocation from that site should be cancelled.

• Tracking the number of new TLH requests

Similarly, a counter can be incremented each time a TLH is requested. If the rate of

TLH requests rises above some threshold, that means that CLR could be impacting

performance too much, and that we are spending too much time managing TLH

requests and initializing CLR pointers.

• Tracking the number of polluting allocations

Another easy counter that could be monitored is how often the cache pollution occurs

from unreserved allocations. If lots of relatively large objects are being allocated, the

introduction of CLR itself might make all of them reserved. Whereas before, they

had the whole TLH to their disposal, now the TLH is fragmented, and they might

not fit in their unreserved sections.

When an allocation site that used CLR is nominated for cancellation, the allocation code

should be recompiled to not use CLR, and the appropriate pointers should be updated

(sectionProportion, tlhAlloc and tlhEnd arrays). A convenient time to do this in

languages with GC is just before a GC, so that the objects start out in their updated

places before execution continues, as well as to clear up as much space in the non-reserved

sections as possible.

45

Chapter 4

Implementation Details

4.1 The TR JIT Compiler and J9 Java Virtual Machine

The basis for our implementation is the proprietary IBM Java Virtual Machine (see Figure

4.1), called J9. It uses a highly optimized, high performance JIT (just-in-time) compiler,

called Testarossa. It has been designed in a modular way, as it can be used with different

JVMs, Java class libraries and target architectures. It is currently being developed at the

IBM Toronto Software Lab.

4.1.1 The J9 JVM

The J9 JVM [70] is a part of a larger JRE (Java Runtime Environment) that enables Java

to run on a specific system (defined by its operating system and CPU architecture). Java

high-level code is contained in .java files. These files define Java objects, called classes.

Javac then compiles the .java files to portable Java bytecode, with the help from standard

class libraries (e.g. String, Thread, BigInteger). Java bytecode is an instruction set for

a stack-oriented virtual architecture. This architecture does not exist in hardware and the

JVM emulates it. This design decision was made so that Java applications are portable

across different systems: all we need is a JVM for that system. Traditionally, the interpreter

manipulates the operand stack and interprets the bytecode to run the application. This

is very slow. The alternative would be to compile all the methods on startup, but this

would greatly increase the startup time. The compromise is dynamic compilation, which

is where the JIT compiler is used. It runs faster than an interpreter, and starts up faster

2009/10/31

4 Implementation Details 46

Fig. 4.1 An overview of the J9 JVM and JRE

4 Implementation Details 47

than pre-compilation.

Figure 4.1 shows the main components of the IBM J9 JVM. The class loader is respon-

sible for loading classes from .class files into the JVM as they are needed. The interpreter

can then interpret them. There is also a profiler component which samples what is hap-

pening in the JVM. The most important task is counting how many times each method

gets executed. If this number exceeds a certain threshold, it triggers the compilation of

that method by the JIT. Once the method is compiled, the next time it is run, it will run

from compiled native code, instead of interpreted. An essential component of any JVM is

the garbage collector. IBM’s GC has three main schemes: optthruput (the default scheme

which is a simple mark-and-sweep scheme with compaction), optavgpause (the scheme de-

signed to reduce the pauses that GC makes during a collection) and gencon (generational

GC). The platforms supported include x86 Windows/Linux, x86-64 Windows/Linux, AIX

(PowerPC), z/OS and z/Linux. Ahead of time compilation (AOT) is also supported. The

JIT has three versions based on how much resources it uses: Testarossa (the full JIT),

Cinquecento (used in embedded systems) and Vespa (used in cellphones).

4.1.2 Testarossa JIT

The role of the Testarossa JIT optimizing compiler is to compile frequently used methods

when they are needed, (just in time).

The JVM we used is IBM’s J9 along with the Testarossa (TR) JIT compiler. The

first stage is converting the Java bytecodes into an internal intermediate language(IL).

The Testarossa IL utilizes a tree-like structure. Treetops are connected via a linked list.

There is also a control-flow-graph (CFG) that defines how groups of treetops are connected.

This is done because it is difficult to perform optimizations on Java bytecode, whereas the

Testarossa IL is easily manipulated. The next stage is passing the IL through the optimizer

multiple times. The optimizer performs all the standard dynamic compiler optimizations

such as value propagation, inlining, escape analysis and tree simplification [71]. The number

of optimizations done is dictated by the compilation level of the method (no-opt, cold,

warm, hot or scorching). Methods are compiled at an increased level of compilation if

they are frequently executed and/or the program spends a lot of time in them (the profiler

can identify that). After the IL has been optimized, the IL evaluation stage is next. It

converts the IL to machine-specific instructions, assuming an infinite number of registers.

4 Implementation Details 48

Then, the register assignment stage allocates real registers to symbolic ones and generates

spilling instructions where required. The last stage, binary encoding, simply translates

the assembly instructions into machine code. The JVM is now ready to run the compiled

version of the method the next time it is executed.

Fig. 4.2 An overview of Testarossa JIT compiler

4 Implementation Details 49

4.2 Other Tools Used

4.2.1 WinDbg Debugger

The main debugging tool used during development of the CLR prototypes was the WinDbg

debugger [72]. It has been used in three main ways. Firstly, it has the ability to load

core dumps that are created after the JVM crashes (e.g. due to a segmentation fault).

WinDbg can restore the memory and register contents of all threads, the call stack as well

as the crashing instruction. Secondly, Windbg can attach itself to a running process and

step through the code (either machine instructions, or through the C++ code with the

appropriate debugging symbols that are present in the J9 JVM). Thirdly, by inserting a

simple illegal instruction (int 3 on x86), and setting WinDbg as the default postmortem

debugger, a breakpoint can be generated in the compiled code that automatically invokes

the debugger.

4.2.2 IBM Heap Analyser

In Java, there is no way of knowing where the object is stored. The physical address of Java

pointers is not accessible to the programmer (unlike in C/C++, for example). Therefore, in

order to know where the objects are located from within the heap, IBM Heap Analyzer [73]

was used, a graphical tool for analysis of IBM JVM’s heap dumps (those can be triggered

by the user). It can create a tree of object hierarchy, and, more importantly, show their

locations in memory.

4.2.3 IBM Garbage Collection and Memory Visualizer

The GC and Memory Visualizer is a tool used in the IBM Monitoring and Diagnostic Tools

for Java [74]. It can read J9 JVM GC logs and process/summarize them, to give statistics

about GC and the heap, such as the number of collections, mean time per collection and

the proportion of time spent in GC. It can also draw graphs indicating how the heap size

was changing during time.

4.2.4 AMD CodeAnalyst

AMD CodeAnalyst [75] is a program designed to analyze code performance on AMD pro-

cessors. It uses lightweight profiling to collect data from hardware counters and processes

4 Implementation Details 50

them after. The metrics interesting to us include the number of memory accesses, L1 cache

misses as well as the number of evicted L1 lines. It was used to evaluate the performance

of CLR.

4.3 Prototypes Developed

In this section, we discuss details of the CLR prototypes developed. The implementations

were done on a development branch of the J9 JVM and Testarossa JIT for Windows from

January 2009. The platforms used were x86, x86-64 and x86-64 with compressed references.

Compressed references are used in a special version of the J9 JVM and JIT, which tries to

reduce the overhead of having larger references and hence larger objects due to the 64-bit

addressing mode compared to 32 bits. This is done by reducing the sizes of references used

in the JVM.

Java objects are allocated when the following Java bytecodes are encountered: new,

newarray (for array allocations) and anewarray (for allocations of arrays of references).

The allocations can be invoked through the following paths: from methods that the JIT

compiled, from the JVM when a JIT allocation fails (if the TLH gets full or the object is

too large for TLH allocation) or from interpreted methods by the JVM. The JIT compiler

compiles frequently executed methods. Since CLR focuses on frequently allocated and/or

frequently used objects, chances are that they will be allocated from the compiled code.

Therefore, we are interested in the JIT path, and change the compiled code for these byte-

codes in order to incorporate CLR. Without CLR, the JVM allocates objects as explained

in Listing 3.1, using the tlhAlloc and tlhTop pointers.

4.3.1 Prototype 1 - “Weak” CLR Reservation

In our first prototype, we allocate all objects so that their beginning is in a specific N % of

the L1 CPU cache. When the JIT compiles new, newarray or anewarray bytecodes, instead

of just incrementing the tlhAlloc pointer, we check whether that pointer is in the reserved

N% of the cache. If it is, then the allocation continues as before. If it is not, then the

heapAlloc pointer is bumped (incremented) so that it maps to the beginning of L1 cache,

and the space in between is marked as used (so that other objects are not allocated in that

area). We call this weak allocation because although we guarantee that tlhAlloc will be

in the reserved section, this is just the beginning of the object, and its end might extend

4 Implementation Details 51

into the non-reserved section. The TLH space that was not used has to be marked as used

because otherwise, GC would get confused about what is in that part of the heap, as it

walks the heap (and walking the heap is required for compacting GC schemes).

For example, we can select N to be 25, so that we try to allocate all objects from

the first 25% of the cache. Let us assume that an AMD Opteron (Shanghai) processor is

used, which has 64KB of L1 data cache, and is 2-way set associative with a 64-byte line.

Hence, this cache has 1024 lines. The fact that it is 2-way set associative means that there

are effectively only 512 uniquely addressable sets, with 2 lines in each set. In relation to

CLR definitions outlined in Section 3.1, this means that we can think of the TLH as being

made up of chunks of chunkSize = 64KB/2 = 32KB, and with sectionProportion[0] =

sectionProportion[1] = 0.25. The location where a physical address maps to the cache

is determined by its address’ least significant bits. In this case, when CLR is enabled,

tlhAlloc is forced to have bits 13 and 14 set to 1. Bits 13 and 14 would determine which

quarter of the cache the address will be mapped to, because 21̂5 = 32KB. This is done

in the compiled assembly code using bitwise arithmetic. N, as well as the cache size and

associativity are constants that can be changed in the prototype. Figure 4.3 illustrates how

objects are allocated in the weak CLR prototype.

One might ask why we would allocate all objects in this way. The idea is for this to

be used with generational GC (gencon) that is unaware of CLR (see Section 1.3.2). On

local GC, gencon copies all the live objects from one half of the nursery to the other. As a

result, the heap is compacted, but it also means that all objects, if they survive a GC, will

be spread evenly across the L1 cache. This makes sense in the context of CLR because if

they survive a GC, then they are longer-lived objects anyway, and their place is not in the

reserved area of the cache. In other words, we are trying to approximate the allocation of

short lived objects in reserved areas, which target CLR benefits as described in Sections

3.2.1 and 3.2.2.

The advantage of this prototype is its simplicity: it does not require any additional

pointers in the TLH, and there is no modification outside the JIT: If an object needs

to get allocated from the VM, it can still be allocated as before, by incrementing the

tlhAlloc pointer. The disadvantage of this scheme is that objects might occupy non-

reserved sections, so cache pollution is significant. In addition, having more than one

reserved section is not possible. Also, it offers no control over what objects to reserve, and

the heap will fill up very quickly (as outlined in 3.3).

4 Implementation Details 52

Fig. 4.3 Allocation in the weak CLR prototype

4 Implementation Details 53

4.3.2 Prototype 2 - “Strong” CLR Reservation

A second prototype was developed that guarantees that a reserved object will be in its

entirety in the reserved region. We call this strong reservation. It comes at the expense

of more overhead for allocation in compiled assembly code, but reserved objects do not

pollute the non-reserved sections. This also means that we can safely have more than one

reserved section.

In addition to tlhAlloc, we add the tlhReserved pointer (in terms of the CLR def-

initions, this would be tlhAlloc[1]). Then, non-reserved allocations can be done by

incrementing the tlhAlloc pointer and reserved allocations are done by incrementing the

tlhReserved pointer. tlhReserved is kept at null if there were no reserved allocations.

tlhAlloc is always kept above tlhReserved, so that if objects need to be allocated from

the VM (not the JIT), the conventional scheme of allocation will work without much mod-

ification (the tlhAlloc can safely be incremented, as it will not overshoot tlhReserved).

Again, each time that the TLH gets full or the tlhReserved pointer is bumped, to prevent

having a hole of unallocated space in the middle of the TLH, the area between tlhReserved

and the end of the current reserved section is marked as being used (it will be reclaimed at

the next GC). Figure 4.4 shows the steps that occur.

In this prototype, when the JIT is compiling a method that allocates an object, it

decides based on the object name (or if it is an array, based on the name of the method

that contains it), whether to generate code for reserved or normal allocation. Even though

Figure 4.4 might suggest that the overhead for reserved allocation is significant, most of that

control-flow is for checking limiting cases. In most reserved allocations, what will end up

happening is that tlhReserved will simply get incremented (after some untaken conditional

branches), just like tlhAlloc is incremented in the in the non-reserved, conventional case.

The behaviour of the compiler is controlled through environment variables and precompiler

constants (what objects to reserve, the size of the reserved section, cache associativity, size

and others).

The advantage of this prototype is the fact that it does not significantly affect non-

reserved allocations, as tlhAlloc is always kept above tlhReserved. The JVM can func-

tion normal as before, and only if reserved allocation is needed is the tlhReserved pointer

initialized. Of course, it is an approximation to CLR with a lot of cache pollution, but due

to its low overhead, it might be the most useful one for a production-level JVM.

4 Implementation Details 54

Fig. 4.4 Reserved allocation in the strong CLR prototype

4 Implementation Details 55

4.3.3 Prototype 3 - “Strong” CLR Reservation and Non-Reservation

The second prototype guaranteed that a reserved object would be in the reserved section,

but it did not guarantee that the non-reserved object will not be in the reserved section. In

the third prototype, we allocate non-reserved objects only to the non-reserved regions (from

the JIT). The objects allocated from the VM are still allocated in the conventional way,

and that is possible because tlhAlloc is kept above tlhReserved at all times. Reserved

allocations are done identically as in prototype 2. A flowchart showing how the non-reserved

allocation is performed is shown in Figure 4.5. Inspired by the second prototype, it is also

possible to allocate non-reserved objects in the weak way. In that case, we only guarantee

that the beginning of the non-reserved object is in the non-reserved section.

The advantage of this prototype is that it minimizes cache pollution (for objects allo-

cated from the JIT). However, each time the TLH gets full or in in interpreted methods,

objects are allocated from the VM, and are likely to cause cache pollution.

4.3.4 Other modifications

Apart from the JIT, some modifications were made in the JVM as well. In particular, every

time the TLH got full, on clearing the current TLH pointers, tlhReserved would be set

to 0, and the space between the tlhReserved and the beginning of the next non-reserved

section would be marked as used space. This was done because the TLH can get full not

just from JIT allocations, but also from VM allocations. Also, when there is a global

GC, the TLH also gets cleared. Failing to reset the tlhReserved pointer would make the

JIT use a corrupt pointer next time it does an allocation (from a different TLH). Also,

various optional assertions were inserted in the code, such as making sure that tlhAlloc

is above tlhReserved at all times, that marking of the used space always goes from low

to high, and that tlhReserved does not get modified outside the JIT allocation functions.

Counters that record the number of new TLH requests and garbage collections were also

implemented.

4 Implementation Details 56

Fig. 4.5 Non-reserved allocation in Prototype 3

57

Chapter 5

Experimental Results

After the prototypes were developed, we put them to a test in various ways. The first goal

was to make sure that CLR can provide a benefit in terms of execution time. For that, we

have developed our own benchmarks, in C (unrelated to the JVM prototypes) and in Java

(for use with the JVM prototypes). The next goal was to see whether CLR can provide

a benefit in standard SPECjvm2008 [76] and SPECjbb2005 [77] benchmarks. Lastly, we

measure the overhead that CLR introduces in its current implementation. We begin the

chapter by describing the experimental setup used.

5.1 Experimental Setup

Unless otherwise specified, all tests were done on a system with two AMD Opteron (Shang-

hai) processors, running Windows Server 2003. Its L1 cache size is 64KBytes, and it is

2-way set associative, with a 64-byte line size. Although in total, there are 8 cores (4 in

each Opteron), only 4 were used to prevent memory access variations due to NUMA (non-

uniform memory access) [50]. In a multiprocessor system, if one processor is waiting for

data, it could stall all other processors. NUMA systems try to alleviate this by letting each

processor have its own separate memory. The downside of this is that any one processor

can have a slower access to other processors’ cache lines, because of the overhead of keeping

cache coherency. By using only 4 cores, we used only one processor, and hence memory

associated with only one socket. AMD’s CodeAnalyst software tool was used to profile

benchmarks (described in Section 4.2.4). The counters that were interesting to us were:

executed instructions, number of memory accesses, cache misses and lines evicted. From

2009/10/31

5 Experimental Results 58

these, we may further define the following metrics:

miss rate =
cache misses

executed instructions

miss ratio =
cache misses

memory accesses

evicted rate =
lines evicted

executed instructions

These will be the main metrics in determining whether CLR works or not. Whenever

AMD CodeAnalyst was used to profile a run, it was set up to automatically start profiling

after a predetermined time, and then to profile for a fixed time. These conditions were

always kept the same for the CLR and non-CLR runs, in order to achieve a fair comparison.

The tests were also run back-to-back from a batch file. Whenever a claim was made that

CLR made an improvement, the test was repeated multiple times to verify the results. The

heap memory used was fixed at 1.77GB when using a 32-bit JVM and to 3.54GB when using

a 64-bit JVM version. This was done so that the JVM’s internal memory management (i.e.

adjusting the heap size dynamically based on application memory usage) does not interfere

with benchmark scores. Unless otherwise stated, the GC policy used was optthruput.

For all SPECjvm2008 and SPECjbb2005 tests, as we are using a development version

of the J9 JVM and Testarossa JIT compiler, IBM Canada has not allowed the publication

of absolute scores. Rather, a relative comparison of scores is provided (generally with and

without CLR) given in percentages. For both benchmarks, a bigger score is better. This

is in contrast to most of the custom benchmarks, where we measure execution time in

seconds, and a smaller score is better.

5.2 Proof of Concept

To make sure that the CLR can work at all (under any implementation), we have developed

two proof-of-concept C programs that mimic what would happen in CLR prototype 2 when

CLR is not enabled, and when CLR is enabled (the main loops of the programs are given

5 Experimental Results 59

in Appendix A). It was made to determine whether CLR can offer a benefit, and whether

CLR can function hardware-wise. The following steps were performed in the program for

the non-CLR version:

• Allocate using malloc a continuous area of memory (192 KBytes), and assign it an

integer pointer. We can think of it as consisting of 6 chunks.

• Read and write to every 16th integer in the first chunk. This is so that we can bring

in one cache line with every access, as a single cache line holds 16 integers (4-bytes

each) on the Opteron processor.

• Read and write to every 16th integer in the second chunk.

• Read and write to every 16th integer in the third chunk.

• Repeat this loop of accesses multiple times and measure the time taken.

This can be thought of as creating three linked lists of size equal to one chunk, with

elements equal to one cache line size, and then traversing all three linked lists in order. The

CLR case is trying to mimic the CLR scheme where 25% of the cache lines are reserved,

and where the first array has been allocated to a reserved section (it will span across four

reserved sections):

• Allocate 192 KBytes with malloc and assign it an integer pointer.

• Read and write to every 16th integer in the first 25% of the first chunk.

• Read and write to every 16th integer in the first 25% of the second chunk.

• Read and write to every 16th integer in the first 25% of the third chunk.

• Read and write to every 16th integer in the first 25% of the fourth chunk.

• Read and write to every 16th integer in the fifth chunk.

• Read and write to every 16th integer in the sixth chunk.

• Repeat this loop of accesses multiple times and time it.

5 Experimental Results 60

Fig. 5.1 Access pattern in the proof-of-concept C program

If we think about the steady state of these loops, then in the non-CLR case, all of these

accesses will be cache misses. There are three chunks being accessed. The first two will

completely fill up the cache (because it is 2-way set associative), and when the third one is

accessed and brought into the cache, all of these accesses will be misses. The third chunk

will evict the first chunk out of the cache, and then when the first chunk is accessed again,

we will have misses again. This cycle will repeat to give us only misses. In the case of

CLR, in the steady state of the loop, the accesses from the first four chunks will be misses,

but 75% of accesses in chunks 5 and 6 will be hits. If we take into account the amount of

accessed lines in the chunks (chunks 3, 4, 5 and 6 are only 25% filled with objects), this will

mean that half of those accesses will be hits, and the other half misses. Figure 5.1 visually

shows this pattern of cache misses and accesses for both cases.

Table 5.1 C program proof-of-concept results (smaller time is better)

option time (s) miss rate miss ratio

no CLR 5.97 (100%) 0.209 (100%) 0.7368 (100%)

CLR (25%) 3.72 (62%) 0.114 (55%) 0.4232 (57%)

Table 5.1 shows the results of the experiments. From the results, we can see that CLR

does offer a significant improvement in performance. In theory, the cache misses should have

halved, but due to overhead, the miss rate went down only to 55%, which is not far from

theory. This translated to a CLR execution time of 62% of the non-CLR execution time.

Some of the overhead is due to the evaluation of loop conditions. In either case, this proof-

5 Experimental Results 61

of-concept program shows that cache misses can translate to a performance improvement,

and that CLR can provide this improvement. The C code was compiled using Microsoft’s

Optimizing Compiler Version 14.00, with an optimization level of 2 (/O2 switch: maximize

speed).

5.3 Custom Benchmarks

After the proof-of-concept C program confirmed that CLR can function, a similar mi-

crobenchmark was developed in Java. Its job is to evaluate out the Java prototypes and

confirm that CLR can provide a benefit in the JVM and the Testarossa JIT. The benchmark

performs the following steps:

• A linked list class is created with nodes that were 64 bytes each, the size of one cache

line. The nodes are padded with dummy data to increase their size.

• A number of linked lists is created and 512 nodes (one chunk) are added to each of

them. Some of them are set up so that nodes are allocated to the reserved areas,

some of them not.

• The linked lists are traversed in a specific order (going from the first to the last

element). If a reserved linked list is traversed followed by a traversal of a non-reserved

linked list, we denote this as “RN”.

• Optionally, the data in the nodes (an int) is changed to create a write instruction (in

addition to the read).

• This traversal is repeated many times in a timed loop.

This benchmark provides a pattern of accesses very similar to the proof-of-concept C

program. Creating a linked list with 512 elements is similar to allocating one chunk of

memory with malloc and traversing the linked list is just like reading every 16th integer

in the allocated chunk. As before, we reserve 25% of the cache, and prototype 2 is used.

Table 5.2 summarizes the results.

From Table 5.2, you can see all the variants of the benchmark that was performed. The

results confirmed what was expected. When we had only one linked list, CLR slowed things

down significantly (in the R case, the test took twice as long to execute with CLR when

5 Experimental Results 62

Table 5.2 Custom linked list benchmark performance (smaller time is bet-
ter)

read read/write

traversal order no CLR CLR (25%) no CLR CLR (25%)

R 0.91 2.16 0.92 3.17

RR 1.97 4.19 2.05 6.22

N 0.89 0.94 0.92 0.99

NN 2.13 2.14 2.28 2.28

RN 2.25 3.28 2.38 4.75

NR 2.23 3.28 2.36 4.75

NNR 6.45 4.86 10.55 6.48

NRN 6.48 4.83 10.66 6.81

RNN 6.45 4.88 10.56 6.81

RRN 6.47 5.34 10.55 7.83

RRNN 8.42 7.00 14.36 9.95

RNRN 8.53 6.91 14.50 9.88

Values shown represent execution time in seconds. Gencon GC policy, constant total heap
size 1.77GB (new space of 1.1GB).

5 Experimental Results 63

only reading, and 3 times longer when both reading and writing). We would expect that

the order of traversal does not matter in steady state of the loops. This is observed from

the results, as RN and NR, NRN and RRN, as well as RRNN and RNRN cases have very

close scores. Next, it is confirmed that the cache associativity is 2-way because there is a

time improvement only once we allocate 3 or more linked lists (the last two fill up the cache

entirely, and the third one evicts the first one). The NNR read/write benchmark mirrors

the proof-of-concept C program, with the results also being very similar (10.55 seconds

without CLR, and 6.48 seconds with CLR, which is 61% of the non-CLR case, compared

to 62% in the proof-of-cocept C program). Profiling of the NNR case (Table 5.3) shows

that the performance improvement does indeed come from a reduction in cache misses.

Table 5.3 Cache profile of the RNN read/write run on the custom linked list
benchmark (score is shown in Table 5.2, more executed instructions is better)

executed instructions % of total samples miss rate miss ratio

no CLR 68943 (100%) 76.4% 0.136 (100%) 0.152 (100%)

CLR (25%) 149884 (217%) 79.9% 0.066 (48%) 0.097 (64%)

From Table 5.3, it can be seen that the application thread was able to execute 117%

more instructions during the measurement window than without CLR. The column showing

the percentage of samples is a reminder that the application thread in the JVM is not the

only thread that is running: there is also the JVM thread, the GC thread, the JVM profiling

thread and the CodeAnalyst thread to collect samples. This proportion improved for the

CLR case as well. The fact that the miss ratio went down only to 64% (as opposed to

58% as in the proof-of-concept C progrem as shown in Table 5.1) means that there is more

overhead in terms of memory accesses in the JVM implementation of the benchmark than

with a bare C program, which is expected.

The custom benchmark demonstrates that CLR can provide a measurable benefit in

terms of execution time using the Java prototype that we have created. The next step is

to try to exploit opportunities similar to this benchmark in official benchmarks, such as

SPECjvm2008 and SPECjbb2005.

5 Experimental Results 64

5.4 SPECjvm2008

SPECjvm2008 is a suite of benchmarks that was designed to measure performance of the

Java Runtime Environment (JRE). From our perspective, it is interesting because it has

a wide range of different benchmarks. We have used prototype 1 so that all objects are

allocated to reserved areas. The hope is to identify any improvement that CLR can bring,

as we do not know which specific objects to reserve. In addition, we have varied the sizes

of the reserved sections to see how this will affect performance. Table 5.4 shows the results

of one execution.

Table 5.4 Scores on SPECjvm2008 using prototype 1 (bigger score is better)

CLR CLR CLR CLR no

(12.5%) (25%) (50%) (75%) CLR

startup.helloworld 100 96 102 103 100

startup.compiler.compiler 94 98 101 101 100

startup.compiler.sunflow 100 100 100 102 100

startup.compress 120 97 114 115 100

startup.crypto.aes 109 101 104 101 100

startup.crypto.rsa 105 92 103 109 100

startup.crypto.signverify 109 58 88 71 100

startup.mpegaudio 98 92 105 102 100

startup.scimark.fft 102 99 98 97 100

startup.scimark.lu 100 97 97 109 100

startup.scimark.monte carlo 100 99 114 98 100

startup.scimark.sor 91 88 93 91 100

startup.scimark.sparse 103 131 99 162 100

startup.serial 96 100 96 98 100

startup.sunflow 66 71 103 82 100

startup.xml.transform 94 97 94 97 100

startup.xml.validation 96 97 94 97 100

compiler.compiler 39 53 79 91 100

compiler.sunflow 31 50 78 90 100

compress 100 96 99 100 100

5 Experimental Results 65

crypto.aes 106 101 99 112 100

crypto.rsa 97 101 98 98 100

crypto.signverify 98 98 97 99 100

derby 58 80 88 93 100

mpegaudio 101 102 100 102 100

scimark.fft.large 75 81 88 110 100

scimark.lu.large 93 96 96 98 100

scimark.sor.large 101 101 89 137 100

scimark.sparse.large 105 111 101 107 100

scimark.fft.small 100 106 107 107 100

scimark.lu.small 99 99 99 99 100

scimark.sor.small 101 100 101 100 100

scimark.sparse.small 100 100 79 100 100

scimark.monte carlo 98 99 106 104 100

sunflow 78 96 91 101 100

xml.transform 74 89 94 98 100

xml.validation 70 81 91 95 100

overall 79.4 88.7 93.8 99.7 100

Scores shown are normalized to the “no CLR” case (where “no CLR” is 100).

From Table 5.4, it is shown that the smaller the reserved section, the worse the CLR

performance. More importantly, there is no clear result where CLR provided a benefit.

Upon repeating them multiple times, much variation of scores was seen in startup tests

because they generally execute for a shorter period of time. It is assumed that random

variations in startup conditions (such as what pages are currently in memory) have a larger

influence.

When it comes to CLR, the reason why smaller reserved areas produce worse scores is

because in prototype 1 we are allocating all objects to the reserved areas, so the TLHs will

fill up more quickly the smaller the reserved section. For example, with a reserved section

of 12.5% , the TLH will fill up about 8 times as quickly (compared to the no CLR case).

This will result in more TLH requests and GC time.

5 Experimental Results 66

Next, specific objects are reserved, using prototype 2, in an attempt to perform more tar-

geted reservations. Specifically, the following objects are reserved: Strings, StringBuffers,

StringBuilders and BigDecimals. The char[] array in String, StringBuffer and StringBuilder

is also allocated to a reserved section (instead of allocating just the container objects). The

reasoning behind reserving these objects is that we have observed empirically that a lot of

them are being allocated frequently, so there is a good chance that they are short lived.

We are also reserving objects that have been identified as candidates for stack allocation

through escape analysis. Escape analysis (EA) is a compiler optimization that can detect

variables and objects whose scope is only limited to a certain method body. In those cases,

instead of allocating these objects on the heap, they can be allocated on the stack in-

stead. These objects die with the method and allocating them on the stack saves GC time.

We disable these stack allocations, but use the results of escape analysis to identify these

objects, and reserve them using CLR. They are a typical example of short-lived objects.

Table 5.6 Scores on SPECjvm2008 when reserving specific objects (bigger
is better)

options: run 1 run 2 run 3 run 4

disable EA no yes yes yes

reserve EA objects no yes yes yes

reserve Strings no yes yes yes

reserve StringBuilders no yes yes yes

reserve StringBuffers no yes yes yes

reserve BigDecimals no yes yes yes

overall score 100 98 98 98

Scores shown are normalized to the “no CLR” case (where “no CLR” is 100).

Table 5.6 shows the SPECjvm2008 results when reserving specific objects. The overall

scores with and without CLR were very similar (the drop in the scores when stack alloca-

tions were disabled was expected, and is not related to CLR). However, once again, upon

repetition of the tests, CLR was found to make no difference in performance, and any

variations of the scores were due to variations in the running conditions of the JIT and

the JVM. The full scores were omitted, and only the overall scores are shown. This means

that if we are to observe an improvement due to CLR in SPECjvm2008 (and in general),

5 Experimental Results 67

we have to find a specific opportunity that has to be exploited using CLR. SPECjbb2005

is examined next.

5.5 SPECjbb2005

SPECjbb2005 is a benchmark for evaluating server side Java. It emulates a three-tier

client/server system with the emphasis on the middle tier. It uses a number of fictional

warehouses to create realistic workloads. Each warehouse runs in a separate thread, and as

the number of warehouses is increased, additional CPUs are put to use. Therefore, it also

measures scalability of the computer system, apart from its performance. On the system

used for benchmarks, because there are 4 cores, the peak is reached with 4 warehouses.

Similar tests were performed as presented for SPECjvm2008 (the results are omitted).

Prototype 1 was used to allocate every object to the reserved section and prototypes 2 and

3 were used to reserve String-based, BigDecimal and local objects identified by EA. CLR

performance improvement was not seen.

It is clear that a more intelligent way of selecting objects to be reserved is needed if

CLR is to yield an improvement in SPECjbb2005 or SPECjvm2008. In an attempt to

find CLR opportunities, we have identified a method, populateXML, that gets called often

during SPECjbb2005, and that might hold an opportunity for CLR.

5.5.1 populateXML

Although we are unable to profile the code for populateXML, as the code for SPECjbb2005

is closed-source, we can describe what it does. Roughly, it performs the following steps:

• It goes through each row in a 2D char array (usually of size char[24][80])

• For each of the 24 rows in the array, an instance of a new String object is created,

with the constructor argument being the current row in the 2D array. Therefore, each

String will be of length 80.

• Inside the String constructor, because Strings are immutable in Java, a new char

array is created and contents of the row of the 2D array are copied to the new array.

• The newly created String is used to call another method that does not do anything

time-intensive.

5 Experimental Results 68

Every time populateXML allocates a String, a new array has to be allocated and brought

into the cache. These Strings are not zero-lived, but they do consistently die as they

are used to fill up a buffer which has a limited capacity. In order to measure the cost

of different overheads, we have modified the populateXML method 5 times to create 5

different benchmarks:

• Benchmark 1:

Instead of instantiating the String, a constant String literal is used, of length 80 (an

example of a String literal would be: "abcd").

• Benchmark 2:

A constant String literal of length 80 is used in the constructor for instantiating the

String (e.g. new String("abcd")).

• Benchmark 3:

In addition to what is done in benchmark 2, the contents of the corresponding row

in the 2D array are read (and stored into a “dummy” static char field). This is to

simulate the reading of the row in the copying of the array in the String constructor.

• Benchmark 4:

A “dummy” static char array of size 80 is created, and used to call the String

constructor. This way, the benchmark is almost identical to the real SPECjbb2005,

but the effect of locality of the 2D array is removed from the score (as only one row

is used, 24 times).

• Benchmark 5:

Unmodified SPECjbb2005 benchmark.

The diagnostic measurements (Table 5.7) indicate that a total of 8% of time is spent

for the array copy inside the String constructor. This is a significant amount, and if the

locality of these array copies is improved, one should see a benefit in performance. The

String allocations should be perfect candidates for CLR.

Table 5.8 shows what happened when String objects from the method populateXML

and their respective char arrays were allocated to the reserved section (using prototype 2).

Compared to the “no CLR” run, the score with CLR was worse, but the cache performance

5 Experimental Results 69

Table 5.7 Diagnostic benchmarks for calculating overhead in populateXML
(bigger score is better)

benchmark score source of overhead contribution

1 112%

2 110% String allocation (without the array copy) 2%

3 108%
writing the 2D array for array copy in the
String constructor

7%

4 101%
reading the 2D array for array copy in the
String constructor

2%

5 100% locality of the 2D array 1%

Measured with 1 warehouse for 4 minutes, average of 3 runs.
Scores were scaled to the score benchmark 5.

Table 5.8 Cache profiles of SPECjbb2005 when reserving Strings in popu-
lateXML (bigger score is better)

score miss rate miss ratio evicted rate

no CLR 100% 0.0101 0.0238 0.0218

CLR (25%) 85% 0.0098 0.0242 0.0214

Measured with 4 warehouses for 4 minutes, average of 3 runs.
Scores were scaled to the “no CLR” run.

5 Experimental Results 70

did not improve much. Although the miss rate and the evicted rate have decreased, it was

only slight, and the miss ratio (cache misses divided by the number of memory accesses)

has gotten slightly worse. The reason for a similar cache profile is likely the following. One

char in Java occupies 2 bytes, so an 80 character array occupies 160 bytes. Every time

populateXML is called, 24 of those are allocated, for a total of 3840 bytes. If each cache

line is 64 bytes, that mens that every time that populateXML is called, 60 lines worth

of reserved objects are allocated (and the whole cache contains 1024 lines, with 2-way

associativity). These objects will therefore evict 60 cache lines. When CLR is disabled,

these 60 lines will be random. With CLR is enabled, these 60 lines will be in the first 25%

of the L1 cache. But they will still produce cache misses, no matter where they are. Before

populateXML gets called again, the previous reserved array has already been evicted, and

then we have another set of misses, no matter where they are. For CLR to work in this

case, it needs to evict its own reserved objects from the cache. This would be true if

populateXML would be called more often. Or, if the array was bigger than 60 lines.

Table 5.9 Cache profiles of SPECjbb2005 when reserving larger Strings in
populateXML (bigger score is better)

score miss rate miss ratio evicted rate

no CLR 100% 0.0093 0.0224 0.0351

CLR (25%) 88% 0.0058 0.0157 0.0225

Measured with 4 warehouses for 4 minutes, average of 3 runs.
Scores shown are normalized to the “no CLR” case (where “no CLR” is 100%).

When prototype 2 was tested with a bigger array, it was clear that the cache misses

have decreased, as Table 5.9 shows. Instead of being 24 by 80, the size of the 2D character

array was changed to be 120 by 320. However, there was still no improvement in the overall

score. The reason for this is the large GC overhead that is incurred.

To try to investigate and minimize the GC overhead, different GC policies were exam-

ined (generational and conventional), as well as different sizes of the heap. Table 5.10 shows

the results. Two conclusions can be reached. First, increasing the heap size from 1.77GB

to 3.54GB has the effect of decreasing the GC overhead introduced by CLR, so that the

application thread has more time to run. The reason for this is that a larger heap will run

out of memory less frequently than a smaller heap, assuming a constant rate of allocations.

Second, generational garbage collection suffers from less overhead than optthruput garbage

5 Experimental Results 71

Table 5.10 Investigating the effect of different GC policies and heap sizes
in SPECjbb2005 (bigger score is better)

Time spent in:

GC, application

heap size optthruput gencon

1.77 GB
no CLR 14% 83% 5.4% 91%

no CLR 36% 60% 17% 80%

3.54 GB
no CLR 8.0% 89% 3.3% 93%

CLR 24% 72% 10% 87%

1.77 GB
no CLR 14% 83% 5.4% 91%

no CLR 36% 60% 17% 80%

3.54 GB
no CLR 8.0% 89% 3.3% 93%

CLR 24% 72% 10% 87%

Performance gap (CLR score vs. no-CLR score)

1.77 GB 68% 89%

3.54 GB 76% 94%

Measured with 4 warehouses for 4 minutes, average of 3 runs.
Scores shown are normalized to the “no CLR” case (where “no CLR” is 100%).

5 Experimental Results 72

collection. The reason for this is that optthruput does not compact the heap (it is a simple

GC policy where the dead objects are simply reclaimed into the free space pool). As a re-

sult, the heap gets fragmented heavily, and new free space requests become more difficult.

However, even with a large heap and generational GC, the reduction in cache misses due

to CLR was not enough to yield a performance benefit. The best CLR score was 94% of

the non-CLR score.

To eliminate the overhead of GC, we shift our focus from reserving objects that are

frequently allocated, to objects that are frequently accessed. If objects are found to be

allocated only once, and written to or read from many times, then they will not cause the

heap to overfill if they are allocated to reserved sections. But, each time they are accessed,

they will have to be loaded in the cache and evict other objects. If these reserved, frequently

accessed objects are large enough, they should evict themselves from the cache, therefore

not evicting as many other objects.

At the time of writing, we do not know of a suitable frequently accessed object in

SPECjvm2008 or SPECjbb2005. But, we have tested the potential of this idea by intro-

ducing a linked list to the populateXML method in SPECjbb2005. Instead of allocating

String objects in populateXML in the normal benchmark, we make it traverse a linked list.

The same linked list was used as from the previous custom benchmark, only with 256 nodes

this time (25% of the L1 cache to match the size of the reserved section). So, instead of

allocating 24 Strings and their char arrays, populateXML now traverses this linked list 24

times.

Table 5.11 Cache profiles and scores of SPECjbb2005 where populateXML
traverses a single linked list instead of allocating Strings (bigger score is better)

score miss rate miss ratio evicted rate

no CLR 100% 0.0369 0.0224 0.278

CLR (25%) 130% 0.0196 0.0405 0.244

Measured with 4 warehouses for 4 minutes, average of 3 runs.
Scores shown are normalized to the “no CLR” case (where “no CLR” is 100%).

Table 5.11 shows that CLR does indeed yield a significant benefit (around 30%) in this

specialized benchmark. Although SPECjbb2005 was modified, this experiment shows that

CLR can yield a benefit if used to reserve certain objects that are frequently accessed,

but allocated only once. The challenge is to identify these objects automatically. This

5 Experimental Results 73

improvement is only seen with the optthruput GC policy. With generational GC, the

improvement is not seen because objects are moved during a collection, so any reserved

objects get scattered randomly across the cache. Having a CLR-aware GC policy would

solve this problem.

5.6 Measuring Overhead

In this section, the overhead that CLR induces in the current implementation is quantified.

For this, our tool will be the SPECjbb2005 benchmark with while reserving larger Strings

in populateXML (the same as in Table 5.9). We have already investigated this benchmark

thoroughly, and it has a simple structure: it tries to do as many operations as possible for

a fixed period of time. We can create a simplistic model of the components included in the

SPECjbb2005 score:

S = Sbase −Oalloc −Ocomp −OTLH −OGC

where S is the SPECjbb2005 score, Sbase is what the score would be without the alloca-

tion, compilation, TLH request and GC overhead, Oalloc is the score reduction due to the

allocation overhead, Ocomp is the score reduction due to the compilation overhead (of the

allocation function), OTLH is the score reduction due to the TLH requests overhead and

OGC is the score reduction due to the GC overhead. If we measure by how much CLR

increases each of the overheads, then we will know by how much the base score needs to

be improved in order for CLR to give a benefit.

5.6.1 Allocation Overhead

To measure the allocation overhead, duplicate allocation functions have been created that

gets compiled (and executed) just before the real allocation functions. The “dummy”

allocation functions are modified from the real ones in the following ways:

• None of the TLH pointers are modified. They are loaded into registers and manipu-

lated as usual while in registers, but all stores to them have been changed to stores

to some “dummy” pointers.

• Whenever there is a TLH allocation failure (when the TLH gets full), instead of

5 Experimental Results 74

jumping out of the JIT into the VM to get a new TLH request and proceed with the

allocation, we just jump out of the function and proceed with the jitted code.

• Instead of marking parts of the heap as used space, the corresponding instructions

are kept, but the stores use “dummy” locations in memory as operands.

The dummy functions should roughly take an equal amount of time (and execute an equal

number of instructions) as the real allocation functions. If the real allocation functions are

compiled without CLR as usual, the score is given by:

SnoCLR = Sbase,noCLR −Oalloc,noCLR −Ocomp,noCLR −OTLH,noCLR −OGC,noCLR

But, if the compiled dummy functions are inserted just before the real functions, we will

effectively double the allocation overhead, without affecting any other overheads:

SnoCLR,dummy = Sbase,noCLR − 2×Oalloc,noCLR − 2×Ocomp,noCLR −OTLH,noCLR −OGC,noCLR

If we are not measuring the score during the warmup stage of SPECjbb2005, there is

no compilation time, as all the functions that are needed have already been compiled,

Ocomp,noCLR = 0. The allocation overhead can now be calculated:

SnoCLR − SnoCLR,dummy = Oalloc,noCLR

To keep things in proportion, we can scale this overhead as a proportion of the overall score,

SnoCLR. A similar measurement can be done when CLR is turned on, to get Oalloc,noCLR,

as a proportion of SCLR. The difference between these two percentages will be the extra

allocation overhead that CLR introduces.

After performing experiments, Table 5.12 shows the results. We noticed that there was

quite a lot of variation in the scores (as reflected by the large standard deviation), but the

mean Oalloc,noCLR and Oalloc,CLR were as expected: Oalloc,noCLR was the smallest, followed

by Oalloc,CLR for prototype 2, Oalloc,CLR for prototype 3 using weak reservation, followed

by Oalloc,CLR by prototype 3 using strong reservation. Hence, we are able to estimate the

CLR overheads as 0.6%, 1.3% and 2.1% in the same order.

5 Experimental Results 75

Table 5.12 Allocation overhead when reserving Strings in populateXML

standard extra CLR

normal dummy overhead deviation* overhead

no CLR 100% 97.1% 2.9% 8.1% 0%

prototype 2 100% 96.5% 3.5% 5.8% 0.6%

prototype 3 (weak) 100% 95.7% 4.3% 4.9% 1.3%

prototype 3 (strong) 100% 94.9% 5.1% 5.2% 2.1%

Scores shown are scaled to the “normal” case (for each prototype)
* of the overhead; 1 warehouse for 4 minutes, average of 13 runs

5.6.2 Compilation Overhead

To measure the compilation overhead, the allocation functions can be compiled twice. This

time, the first function is also a “dummy” function, but it does not get executed. Rather,

the code generator generates an unconditional jump just before the dummy function’s code

that skips over the entire function (but, it will get compiled). Now the compilation time

is doubled, but all other overheads are kept constant. Similarly as before, the compilation

overhead can be calculated:

SnoCLR = Sbase,noCLR −Oalloc,noCLR −Ocomp,noCLR −OTLH,noCLR −OGC,noCLR

SnoCLR,dummy = Sbase,noCLR −Oalloc,noCLR − 2×Ocomp,noCLR −OTLH,noCLR −OGC,noCLR

SnoCLR − SnoCLR,dummy = Ocomp,noCLR

This time, the measurements have to be taken during the warmup run of SPECjbb2005,

to include the compilation time.

From the results given in Table 5.13, we can see that CLR seems to introduce a sig-

nificant amount of overhead. Compiling the allocation functions twice during the warmup

period slowed down the benchmark by only 0.1%. The worst case scenario for CLR is

observed in prototype 2 with Ocomp,CLR being 2.1%. However, it is unexpected that proto-

type 2 would have more compilation overhead than prototype 3, because prototype 2 uses

the non-CLR allocation function for non-reserved allocations. The test scores have a large

standard deviation, because they were measured during the warmup stage. During the

warmup stage, the order of compilation can significantly affect the score, and this order is

5 Experimental Results 76

Table 5.13 Compilation overhead when reserving Strings in populateXML

standard extra CLR

normal dummy overhead deviation* overhead

no CLR 100% 99.9% 0.1% 7.2% 0%

prototype 2 100% 97.8% 2.2% 4.4% 2.1%

prototype 3 (weak) 100% 99.3% 0.7% 5.7% 0.6%

prototype 3 (strong) 100% 98.3% 1.7% 3.5% 1.6%

Scores shown are scaled to the “normal” case (for each prototype)
* of the overhead; 1 warehouse for 4 minutes, average of 13 runs

not determenistic. On the other hand, the test has been repeated 13 times. It is possible

that the compilation footprint that prototype 2 produces happens to negatively impact the

heuristics for compilation of other methods in the warmup run.

5.6.3 New TLH Request Overhead

For measuring the TLH overhead, we can think of it as consisting of two parts: the time

needed to satisfy each TLH request, and the number of requests in total:

OTLH,noCLR = OTLH,noCLR,perrequest ×NTLHrequests,noCLR

OTLH,CLR = OTLH,CLR,perrequest ×NTLHrequests,CLR

CLR introduces both more TLH requests due to the TLH filling up more quickly, as well

as more heap fragmentation. More TLH requests will be reflected by the increased number

of TLH requests, and the fact that heap gets more fragmented will be reflected in a higher

average time that is needed to fulfil the TLH request. Currently, there is no direct way to

measure the amount of time that the GC spends on satisfying TLH requests, so we have

added a counter and a timer in the function that refreshes the TLH. Empirically, there were

two clear clusters in the time taken for the function to complete, different by several orders

of magnitude. The longer times happen when a TLH request triggers a GC collection, while

the shorter times indicate that a TLH was successfully found from the free space list. A

counter is incremented every time the second (shorter) cluster time sample is encountered.

This enabled us to directly calculate OTLH,noCLR and OTLH,CLR. We assume that if time

5 Experimental Results 77

was spent satisfying TLH requests, then that time directly impacts the score.

Table 5.14 TLH request overhead when reserving Strings in populateXML

time per

TLH requests request TLH request extra CLR

(in millions) (nanoseconds) overhead) overhead

no CLR 2.26 350 0.33% 0%

prototype 2 8.55 346 1.23% 0.90%

prototype 3 (weak) 9.25 340 1.31% 0.98%

prototype 3 (strong) 8.9 345 1.28% 0.95%

1 warehouse for 4 minutes, an average of 3 runs.

The results in Table 5.14 indicate that in all prototypes, TLH requests increase by an

order of approximately 4. OTLH,noCLR,perrequest and OTLH,CLR,perrequest do not change much,

which leads us to believe that heap fragmentation due to CLR does not impact performance

too much. However, extra TLH requests are significant, and they translate to about 1% of

time in the benchmark spent serving extra CLR requests.

5.6.4 Garbage Collection Overhead

The garbage collection overhead can be easily measured using a combination of the -

Xverbosegclog JVM option and IBM Garbage Collection and Memory Visualizer. A GC log

is created of the whole run. Since SPECjbb2005 puts timestamps to standard output when

each test begins and ends, it is clear which GC collections are relevant to the particular run

of interest (the GC verbose log also has time stamps). We isolate those GC collections that

we are included in the run, and load them in the GC and Memory Visualizer, a software

tool.

The results in Table 5.15 show that the GC overhead was similar in both prototypes

2 and 3. There were about 3 times more GC requests, which is reflected in more time

spent in GC (by about 3.3 times). The mean GC pause time did not change much, again

indicating that heap fragmentation is not a significant source of overhead. With such high

overhead, GC is the primary source of overhead. The GC policy used for these tests was

optthruput.

5 Experimental Results 78

Table 5.15 GC overhead when reserving Strings in populateXML

number of mean GC time spent extra CLR

collections pause (ms) in GC overhead

no CLR 102 48.57 2.07% 0%

prototype 2 320 48 6.4% 4.33%

prototype 3 (weak) 327 49.17 6.71% 4.64%

prototype 3 (strong) 313 49.23 6.42% 4.35%

1 warehouse for 4 minutes, an average of 3 runs.
Opthruput GC policy, 1.77GB constant heap size.

79

Chapter 6

Discussion

This chapter aims to put all the experimental results together and present the current

state of the CLR prototype: where it offers an improvement and where it does not. Pre-

liminary results for the proof-of-concept program are presented on other architectures and

the chapter ends with suggestions for future research.

6.1 Where CLR offers a benefit (long-lived objects)

In Section 3.2, objects that could potentially benefit from CLR reservation have been iden-

tified. CLR has shown a definite improvement with objects that are accessed in infrequent

bursts (as shown in Tables 5.2, 5.3 and 5.11). Furthermore, it was shown that this perfor-

mance improvement comes from cache misses.

The reason why CLR offers a benefit with objects accessed in infrequent bursts is

because the overhead is very low. If we have only one allocation function allocating one or a

few objects that are accessed in infrequent bursts, then they will just be allocated once (and

not die young). This does not cost much in terms of compilation and allocation overhead.

If these objects are then accessed often, we can capitalize on the CLR benefit there, without

any other allocations. If the objects are not accessed in infrequent bursts, they could still

exploit CLR, if we have many (long-lived) objects that are accessed irregularly, but are

used for a very short duration. If we have a lot of these kind of objects competing with

other objects for cache lines, then it makes sense to put them in the same section. These

objects resemble short-lived objects in usage, and long-lived objects in allocation.

In terms of the potential candidates for CLR that we have identified in Section 3.2, we

2009/10/31

6 Discussion 80

can say that CLR in its current implementation can be used with:

• Provided that they are long-lived:

– Objects that are accessed in infrequent bursts

• Provided that they are long-lived and used for short durations (read to or written to

only once):

– Objects that are unlikely to co-exist

– Mostly written objects

– Objects in different threads

In the context of CLR, short-lived objects are those objects that either die right after

allocation (zero-lived objects), or die before the next garbage collection without being used

after allocation. Java has many of those since it has many immutable classes. Long-lived

objects are those objects that survive several garbage collections.

6.2 Where CLR overhead is too high (short-lived objects)

When we have tried to test CLR on general short-lived objects that get allocated fre-

quently, it became apparent that CLR in the current implementation introduces a signifi-

cant amount of overhead (different sources of overhead were introduced in Section 3.3). For

String objects in SPECjbb2005 that are short lived and get allocated frequently, we incur

a performance cost of 0.6-2.1% due to the allocation overhead, 0.6-2.1% due to the compi-

lation overhead, 0.9-1.0% due to the extra TLH request overhead, and 4.3-4.6% due to the

GC (optthruput) overhead when looking at these overheads independently. Together (and

also including any other overhead that we did not account for), the total overhead cost is

21%-23%. Still, cache misses decrease as presented in Table 5.9. However, the performance

improvement due to the reduced amount of cache misses is overshaddowed by the extra

overhead. Therefore, objects that are of frequently instantiated types or are coming from

frequently executed allocation sites cannot see a CLR benefit yet.

In terms of the potential candidates for CLR that we have identified in Section 3.2, we

can say that CLR in its current implementation can be used with:

• Objects of frequently instantiated types

6 Discussion 81

• Objects coming from frequently executed allocation sites

However, it is important to note that if the allocation overhead is reduced enough in the

future, CLR should offer a benefit even with these objects.

6.3 CLR for Other Architectures

One detail that one might notice is that so far, we have used CLR only with one CPU

(AMD Opteron 8384). An interesting follow-up experiment would be to determine how

CLR performs on other CPUs. We took the proof-of-concept program (Section 5.2) and

modified it for different CPUs, based on their cache size and associativity. For example,

newer Intel CPUs have an associativity of 8. This would mean that we would traverse

9 chunks of memory for the non-CLR case (instead of 3 for the 2-way associativity used

before) and 12 chunks of memory for the CLR case (instead of 6).

Table 6.1 shows the results of executing the modified proof-of-concept program (based

on their cache parameters) on various CPUs. On all processors, the CLR version of the

proof-of-concept program shows an improvement. However, the results might be misleading

because the tests were tailored to the specific cache configuration. Although Intel processors

have shown a bigger improvement with CLR, AMD processors are more suited for CLR.

This is because CLR favours small cache associativity and a large cache size. This is

because the smaller the associativity, the easier it becomes to evict lines from a cache due

to conflict misses. Large caches are good for CLR because by reserving certain lines, we are

leaving a bigger proportion of other lines intact compared with smaller caches. The reason

why Pentium 4 had poor CLR results was because it had a small cache and a relatively

small associativity. Of course, a contributing factor might also be the larger penalty for

L1 cache misses on an older processor like Pentium 4 (another indication of a memory wall

and the need for effective cache management). Nonetheless, results in Table 6.1 do show

that investigating CLR for other architectures is something that is worth looking into.

CLR only relies on having a cache memory that has a lower access time than main

memory. One question that remains open is how CLR would benefit from hardware support

or any architectural changes. Scratchpad memory (as described in Section 2.1.5) is a

hardware addition that somewhat resembles CLR. In particular, scratchpad memory can be

used for allocating short-lived objects. However, it does not share the same virtual address

space as cache memory. Having different areas of main memory that map to specific cache

6 Discussion 82

Table 6.1 Proof-of-concept C program results on different CPUs (smaller
time is better)

CPU no CLR (R) CLR (R) no CLR (R/W) CLR (R/W)

AMD Athlon Xp 2200+ 18391 10109 17828 10046

64KB, 2-way (100%) (55%) (100%) (56%)

AMD Opteron 870 (MP) 8109 5421 9781 5687

64KB, 2-way (100%) (67%) (100%) (58%)

AMD Opteron 8384 4624 3109 6234 3703

64KB, 2-way (100%) (67%) (100%) (59%)

Intel Pentium 4 HT 3.2 1703 1593 6546 6421

8KB, 4-way (100%) (94%) (100%) (98%)

Intel Core 2 Quad Q6600 1206) 704 1010 1948

32KB, 8-way (100%) (58%) (100%)
1948

(52%)

Intel Xeon E5560 686 405 1092 530

32KB, 8-way (100%) (52%) (100%) (50%)

All CPUs have lines of size 64 bytes. Values shown represent execution time in
milliseconds (not comparable across different cache parameters).

6 Discussion 83

lines would help CLR. In this thesis, this is done “artificially” by leaving gaps in the heap.

Another way would be if we had more than one cache memory each coupled with its own

main memory. We would effectively have several reserved sections, and allocating memory

to a specific section would simply be a matter of using the heap located on that specific

main memory. An alternative would be to have a single main memory, but change the way

the physical address is mapped to cache. For example, addresses coming from one half of

main memory could be mapped to the corresponding half of cache memory. This would

eliminate the main overhead of the current implementation of CLR, which is excessive

memory space consumption due to the unused memory gaps in the heap.

6.4 CLR for Other Programming Languages

CLR is not limited to Java. Java was chosen in our implementation because it creates

many short-lived objects, but as the results show, CLR can help with long-lived objects

as well (even more so). In general, all programming languages that use dynamic memory

management could benefit from CLR.

Object oriented languages such as Java or C++ have the most potential in exploiting

CLR, because of the large amount of objects that they create (see Section 1.1). This thesis

dealt with a dynamic compiler, which has a profiler that can be used to influence CLR

decisions on-the-fly. However, there is nothing stopping static compilers to allocate objects

using CLR as well, by using data from static analysis. In addition to turning CLR on or

off automatically by the compiler, programmers could also explicitly specify what objects

to reserve (perhaps through an alternative language keyword to new).

Non-object oriented languages could also use CLR, as long as they use dynamic memory

management. The most obvious implementation would be to create a special version of the

malloc function that allocates memory from reserved sections. Then, each time malloc

is called, a heuristic check could be performed that determines whether to use the CLR

version of malloc or not. This could also allow the programmer to directly call the special

version of malloc to enforce CLR.

Using CLR with functional languages [78] is also possible. Examples of functional

languages include Scheme, Erlang and Haskell. Under the hood, functional languages use

dynamic memory management and a heap, but they try to hide this from the user as much

as possible. Functional languages allocate memory in terms of function frames, as functions

6 Discussion 84

are called. Recursion is very common in functional languages, so it is easy to imagine a

scenario where a large amount of function frames would evict all data from the cache. It

this situation, it would probably be beneficial to allocate these function frames using CLR.

6.5 Future Directions

Future work should focus on two areas. First, the allocation overhead should be reduced

to an acceptable level in order to use CLR for allocation of many short-lived objects. The

main source of overhead is the garbage collection overhead, due to the increased usage

of the heap. With the current prototype using the J9 JVM, there is very little we can

do from the JIT, without considerable modification of the VM/GC. However, it would

definitely be possible. One idea could be to have a separate region of the heap just for

reserved allocations. When this area gets full, a local GC is performed only on that region.

Hopefully, all these objects are short-lived, and most of them would die. If not, they can be

moved to the conventional area of the heap. We could think of this as pre-nursery space for

the nursery (in generational GC schemes). Prototype 1 had a similar concept, only it used

the real nursery and allocated all objects to the reserved area. If we had this special region

of memory for reserved allocations, the allocation overhead should also increase. This is

because the CLR allocation pointer does not have to be related to the conventional TLH

pointer, and a lot of checks would be eliminated (including guaranteeing that the CLR

pointer is above the TLH allocation pointer and marking the heap area as used when these

pointers are bumped).

The second area in which CLR should go from here is to try to automatically identify

the objects that we already know can benefit from CLR in the current prototypes. We have

shown that CLR can help when traversing a linked list. This could be generalized to other

objects that have a similar memory access pattern (and other patterns where CLR helps

could be identified). Possible starting points include identifying objects that are the same

size as one cache line, objects that contain a method with a reference to another object

that is next to it in memory, or identifying a large amount of long-lived objects that get

accessed together.

85

Chapter 7

Conclusion

The main contribution of this thesis is the presentation of Cache Line Reservation (CLR), a

novel scheme for allocating objects designed to reduce data cache misses. Several prototypes

that use CLR were developed and tested using the JIT compiler in J9 JVM. Using these

prototypes, it is determined where CLR offers a benefit. In the cases where CLR does not,

it is due to the overhead introduced, and this overhead is measured.

Chapter 1 provides background information, and explains the motivation behind the

CLR allocation scheme: the ever-increasing memory wall between different cache hierar-

chies. This means that the penalty of cache misses is a performance bottleneck, and object

oriented languages such as Java only contribute to the problem. Chapter 2 examines some

existing software and hardware methods that are used to reduce cache misses.

Chapter 3 provides a description of CLR in detail, presented as a high-level general

definition without implementation details. We examine what objects could be candidates

for reserved allocation, as well as what overhead is introduced. CLR as a concept is not

limited to JVMs or even dynamic compilers.

Chapter 4 describes the details of our CLR implementation for Java, using a JIT com-

piler in the J9 JVM. We have developed three prototypes, all of which are a variation

of the general CLR scheme. We also present the tools used in development. We have

developed a number of tests to evaluate CLR with our implementation in Chapter 5. A

proof-of-concept C program shows a definite performance opportunity on our architecture

when using CLR. Custom Java microbenchmarks are presented that show the benefit of

CLR in traversals of linked lists. In SPECjvm2008 and SPECjbb2006, the overhead was

2009/10/31

7 Conclusion 86

too large for a performance improvement to appear when reserving short-lived objects. We

continue by measuring this overhead, and show that the main source of overhead is the

increased GC time, due to the heap filling up too quickly when allocating reserved objects.

In Chapter 7, we examine how to minimize CLR overhead. The results seen in custom

benchmarks indicate that CLR should concentrate on reserving long-lived objects that are

allocated once but accessed in short bursts, as well as long-lived objects that are allocated

once and used irregularly for shorts periods of time. This eliminates the allocation and GC

overhead, as we only allocate these objects once. Future work should focus on trying to

identify these objects automatically, as well as reducing overhead so that CLR can be used

for allocating many short-lived objects as well. We present some proof-of-concept results

to show that CLR is able to operate on a number of different CPUs.

Traditionally, CPU caches were managed exclusively by hardware. In the future, as

the size of caches increase, it will become worthwhile for compilers to start performing

advanced optimizations catered to specific cache configurations. Cache line reservation is

a simple idea that can offer benefits, but making it operate consistently will be a challenge

that the compiler community will hopefully overcome in the future.

87

Appendix A

Proof Of Concept C Programs

int i,j, start, time taken millis;

int * dataptr; int dummy = 0;

dataptr = (int*) malloc (6*CHUNK SIZE);

Listing A.1 Proof-of-concept program without CLR (2-way cache R/W)

start = clock ();

for (j = 0; j<ITERATIONS; j++)

{

for (i = 0; i<CHUNK_SIZE/INT_SIZE; i=i+LINE_SIZE/INT_SIZE)

{

dataptr[i]= dataptr[i]+1; // all misses

}

for (i = CHUNK_SIZE *1/ INT_SIZE; i<CHUNK_SIZE *2/ INT_SIZE; i=i+LINE_SIZE/

INT_SIZE)

{

dataptr[i]= dataptr[i]+2; // all misses

}

for (i = CHUNK_SIZE *2/ INT_SIZE; i<CHUNK_SIZE *3/ INT_SIZE; i=i+LINE_SIZE/

INT_SIZE)

{

dataptr[i]= dataptr[i]+3; // all misses

}

}

time_taken_millis = (int)((clock ()-start)*1E3/CLOCKS_PER_SEC);

printf("without CLR: %d\n", time_taken_millis);

2009/10/31

A Proof Of Concept C Programs 88

Listing A.2 Proof-of-concept program without CLR (2-way cache R/W)

start = clock ();

for (j = 0; j<ITERATIONS; j++)

{

for (i = 0; i<CHUNK_SIZE /4/ INT_SIZE; i=i+LINE_SIZE/INT_SIZE)

{

dataptr[i]= dataptr[i]+1; // all misses

}

for (i = CHUNK_SIZE/INT_SIZE; i<(CHUNK_SIZE+CHUNK_SIZE /4)/INT_SIZE; i=i

+LINE_SIZE/INT_SIZE)

{

dataptr[i]= dataptr[i]+1; // all misses

}

for (i = CHUNK_SIZE *2/ INT_SIZE; i<(CHUNK_SIZE *2+ CHUNK_SIZE /4)/INT_SIZE;

i=i+LINE_SIZE/INT_SIZE)

{

dataptr[i]= dataptr[i]+1; // all misses

}

for (i = CHUNK_SIZE *3/ INT_SIZE; i<(CHUNK_SIZE *3+ CHUNK_SIZE /4)/INT_SIZE;

i=i+LINE_SIZE/INT_SIZE)

{

dataptr[i]= dataptr[i]+1; // all misses

}

for (i = CHUNK_SIZE *4/ INT_SIZE; i<CHUNK_SIZE *5/ INT_SIZE; i=i+LINE_SIZE/

INT_SIZE)

{

dataptr[i]= dataptr[i]+2; // 3/4 of these should be hits

}

for (i = CHUNK_SIZE *5/ INT_SIZE; i<CHUNK_SIZE *6/ INT_SIZE; i=i+LINE_SIZE/

INT_SIZE)

{

dataptr[i]= dataptr[i]+3; // 3/4 of these should be hits

}

}

time_taken_millis = (int)((clock ()-start)*1E3/CLOCKS_PER_SEC);

printf("with CLR: %d\n", time_taken_millis);

89

References

[1] J. Kim and Y. Hsu, “Memory system behavior of java programs: methodology and
analysis,” in Proceedings of the 2000 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems. Santa Clara, California, United
States: ACM, 2000, pp. 264–274.

[2] H. Inoue, D. Stefanovic, and S. Forrest, “On the prediction of java object lifetimes,”
IEEE Transactions on Computers, vol. 55, no. 7, pp. 880–892, 2006.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
3rd ed. Morgan Kaufmann, May 2002.

[4] I. Bilicki, V. Sundaresan, D. Maier, N. Grcevski, and Z. Zilic, “Cache line reservation:
Exploring a scheme for Cache-Friendly object allocation,” in Proceedings of the 2009
conference of the center for advanced studies on collaborative research: meeting of
minds, 2009.

[5] P. Dubey, A Platform 2015 Workload Model, Recognition, Mining and Synthesis
Moves Computers to the Era of Tera. Microprocessor Technology Lab, Intel
Corporation, 2005, white Paper. [Online]. Available: http://download.intel.com/
technology/computing/archinnov/platform2015/download/RMS.pdf

[6] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in Proceedings of
the ACM SIGPLAN 1991 conference on Programming language design and implemen-
tation. Toronto, Ontario, Canada: ACM, 1991, pp. 30–44.

[7] O. Temam, C. Fricker, and W. Jalby, “Cache interference phenomena,” in Proceedings
of the 1994 ACM SIGMETRICS conference on Measurement and modeling of computer
systems. Nashville, Tennessee, United States: ACM, 1994, pp. 261–271.

[8] J. A. G. Pulido, J. M. S. Prez, and J. A. M. Zamora, “An educational tool for testing
hierarchical multilevel caches,” SIGARCH Comput. Archit. News, vol. 24, no. 4, pp.
11–15, 1996.

http://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf
http://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf

References 90

[9] N. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers,” in [1990] Proceedings. The 17th Annual
International Symposium on Computer Architecture, Seattle, WA, USA, pp. 364–373.

[10] P. Viana, A. Gordon-Ross, E. Keogh, E. Barros, and F. Vahid, “Configurable cache
subsetting for fast cache tuning,” in Proceedings of the 43rd annual Design Automation
Conference. San Francisco, CA, USA: ACM, 2006, pp. 695–700.

[11] T. Sheu, Y. Shieh, and W. Lin, “The selection of optimal cache lines for
microprocessor-based controllers,” in [1990] Proceedings of the 23rd Annual Work-
shop and Symposium on Microprogramming and Microarchitecture, Orlando, FL, USA,
1990, pp. 183–192.

[12] J. M. Velasco, D. Atienza, and K. Olcoz, “Exploration of memory hierarchy config-
urations for efficient garbage collection on high-performance embedded systems,” in
Proceedings of the 19th ACM Great Lakes symposium on VLSI. Boston Area, MA,
USA: ACM, 2009, pp. 3–8.

[13] A. Janapsatya, A. Ignjatovic, and S. Parameswaran, “Finding optimal l1 cache con-
figuration for embedded systems,” in Asia and South Pacific Conference on Design
Automation, 2006., Yokohama, Japan, 2006, pp. 796–801.

[14] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative cache for
high performance and low energy consumption,” Low Power Electronics and Design,
1999. Proceedings. 1999 International Symposium on, 1999.

[15] C. Zhang, X. Zhang, and Y. Yan, “Multi-column implementations for cache associativ-
ity,” in Proceedings International Conference on Computer Design VLSI in Computers
and Processors, Austin, TX, USA, pp. 504–509.

[16] A. Seznec, “A case for two-way skewed-associative caches,” in Proceedings of the 20th
annual international symposium on Computer architecture. San Diego, California,
United States: ACM, 1993, pp. 169–178.

[17] R. Subramanian, Y. Smaragdakis, and G. Loh, “Adaptive caches: Effective shaping of
cache behavior to workloads,” in 2006 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO’06), Orlando, FL, USA, 2006, pp. 385–396.

[18] A. J. Smith, “Cache memories,” ACM Computing Surveys, vol. 14, no. 3, pp. 473–530,
1982.

[19] I. K. Chen, C. Lee, and T. Mudge, “Instruction prefetching using branch prediction
information,” in Proceedings International Conference on Computer Design VLSI in
Computers and Processors, Austin, TX, USA, pp. 593–601.

References 91

[20] J. Baer and T. Chen, “An effective on-chip preloading scheme to reduce data ac-
cess penalty,” in Proceedings of the 1991 ACM/IEEE conference on Supercomputing.
Albuquerque, New Mexico, United States: ACM, 1991, pp. 176–186.

[21] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a compiler algo-
rithm for prefetching,” in Proceedings of the fifth international conference on Architec-
tural support for programming languages and operating systems - ASPLOS-V, Boston,
Massachusetts, United States, 1992, pp. 62–73.

[22] H. Peter, “Introduction to the cell broadband engine - white paper,” Nov. 2005.

[23] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of Scratch-Pad memory
in embedded processor applications,” in Proceedings of the 1997 European conference
on Design and Test. IEEE Computer Society, 1997, p. 7.

[24] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh,
“Dynamic management of scratch-pad memory space,” in Proceedings of the 38th an-
nual Design Automation Conference. Las Vegas, Nevada, United States: ACM, 2001,
pp. 690–695.

[25] C. Lebsack and J. Chang, “Using scratchpad to exploit object locality in java,” in
2005 International Conference on Computer Design, San Jose, CA, USA, 2005, pp.
381–386.

[26] K. F. Chong, C. Y. Ho, and A. S. Fong, “Pretenuring in java by object lifetime and
reference density using Scratch-Pad memory,” in 15th EUROMICRO International
Conference on Parallel, Distributed and Network-Based Processing (PDP’07), Napoli,
Italy, 2007, pp. 205–212.

[27] S. Tomar, S. Kim, N. Vijaykrishnan, M. Kandemir, and M. Irwin, “Use of local memory
for efficient java execution,” in Computer Design, 2001. ICCD 2001. Proceedings. 2001
International Conference on, 2001, pp. 468–473.

[28] “PlayStation - wikipedia, the free encyclopedia,” Aug. 2009. [Online]. Available:
http://en.wikipedia.org/wiki/PlayStation

[29] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient procedure mapping using cache
line coloring,” in Proceedings of the ACM SIGPLAN 1997 conference on Programming
language design and implementation. Las Vegas, Nevada, United States: ACM, 1997,
pp. 171–182.

[30] J. Kalamatianos, A. Khalafi, D. Kaeli, and W. Meleis, “Analysis of temporal-based
program behavior for improved instruction cache performance,” IEEE Transactions
on Computers, vol. 48, no. 2, pp. 168–175, Feb. 1999.

http://en.wikipedia.org/wiki/PlayStation

References 92

[31] J. Kalamatianos and D. Kaeli, “Accurate simulation and evaluation of code reorder-
ing,” in Performance Analysis of Systems and Software, 2000. ISPASS. 2000 IEEE
International Symposium on, 2000, pp. 13–20.

[32] S. Bartolini and C. A. Prete, “Optimizing instruction cache performance of embedded
systems,” ACM Trans. Embed. Comput. Syst., vol. 4, no. 4, pp. 934–965, 2005.

[33] N. Gloy and M. D. Smith, “Procedure placement using temporal-ordering informa-
tion,” ACM Trans. Program. Lang. Syst., vol. 21, no. 5, pp. 977–1027, 1999.

[34] D. Genius, “Handling cross interferences by cyclic cache line coloring,” in Proceedings.
1998 International Conference on Parallel Architectures and Compilation Techniques
(Cat. No.98EX192), Paris, France, 1998, pp. 112–117.

[35] A. Ramirez, J. Larriba-Pey, and M. Valero, “The effect of code reordering on branch
prediction,” in Parallel Architectures and Compilation Techniques, 2000. Proceedings.
International Conference on, 2000, pp. 189–198.

[36] X. Huang, S. M. Blackburn, D. Grove, and K. S. McKinley, “Fast and efficient partial
code reordering: taking advantage of dynamic recompilatior,” in Proceedings of the
5th international symposium on Memory management. Ottawa, Ontario, Canada:
ACM, 2006, pp. 184–192.

[37] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in Proceedings of the
ACM SIGPLAN 1990 conference on Programming language design and implementa-
tion. White Plains, New York, United States: ACM, 1990, pp. 16–27.

[38] E. Yardimci and M. Franz, “Mostly static program partitioning of binary executables,”
ACM Trans. Program. Lang. Syst., vol. 31, no. 5, pp. 1–46, 2009.

[39] X. Huang, B. T. Lewis, and K. S. McKinley, “Dynamic code management: improving
whole program code locality in managed runtimes,” in Proceedings of the 2nd inter-
national conference on Virtual execution environments. Ottawa, Ontario, Canada:
ACM, 2006, pp. 133–143.

[40] “Jikes RVM - home,” Aug. 2009. [Online]. Available: http://jikesrvm.org/

[41] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,” in Proceedings of
the fourth international conference on Architectural support for programming languages
and operating systems. Santa Clara, California, United States: ACM, 1991, pp. 40–52.

[42] A. K. Porterfield, “Software methods for improvement of cache performance on super-
computer applications,” Ph.D. dissertation, Rice University, 1989.

http://jikesrvm.org/

References 93

[43] A. C. Klaiber and H. M. Levy, “An architecture for software-controlled data prefetch-
ing,” in Proceedings of the 18th annual international symposium on Computer archi-
tecture - ISCA ’91, Toronto, Ontario, Canada, 1991, pp. 43–53.

[44] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. mei W. Hwu, “Data access mi-
croarchitectures for superscalar processors with compiler-assisted data prefetching,”
in Proceedings of the 24th annual international symposium on Microarchitecture - MI-
CRO 24, Albuquerque, New Mexico, Puerto Rico, 1991, pp. 69–73.

[45] C. Luk and T. Mowry, “Automatic compiler-inserted prefetching for pointer-based
applications,” IEEE Transactions on Computers, vol. 48, no. 2, pp. 134–141, Feb.
1999.

[46] J. R. Allen and K. Kennedy, “Automatic loop interchange,” in Proceedings of the 1984
SIGPLAN symposium on Compiler construction. Montreal, Canada: ACM, 1984, pp.
233–246.

[47] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and optimiza-
tions of blocked algorithms,” in Proceedings of the fourth international conference on
Architectural support for programming languages and operating systems. Santa Clara,
California, United States: ACM, 1991, pp. 63–74.

[48] A. C. McKellar and E. G. Coffman, “Organizing matrices and matrix operations for
paged memory systems,” Communications of the ACM, vol. 12, no. 3, pp. 153–165,
1969.

[49] S. Coleman and K. S. McKinley, “Tile size selection using cache organization and
data layout,” in Proceedings of the ACM SIGPLAN 1995 conference on Programming
language design and implementation. La Jolla, California, United States: ACM, 1995,
pp. 279–290.

[50] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but effective techniques for NUMA
memory management,” in Proceedings of the twelfth ACM symposium on Operating
systems principles. ACM, 1989, pp. 19–31.

[51] G. Rivera and C. Tseng, “Data transformations for eliminating conflict misses,” in
Proceedings of the ACM SIGPLAN 1998 conference on Programming language design
and implementation. Montreal, Quebec, Canada: ACM, 1998, pp. 38–49.

[52] M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss, “An automated temporal par-
titioning and loop fission approach for FPGA based reconfigurable synthesis of DSP
applications,” in Proceedings of the 36th annual ACM/IEEE Design Automation Con-
ference. New Orleans, Louisiana, United States: ACM, 1999, pp. 616–622.

References 94

[53] M. Liu, Q. Zhuge, Z. Shao, and E. H. Sha, “General loop fusion technique for nested
loops considering timing and code size,” in Proceedings of the 2004 international con-
ference on Compilers, architecture, and synthesis for embedded systems - CASES ’04,
Washington DC, USA, 2004, p. 190.

[54] B. Girodias, “Optimisation des memoires dans le flot de conception des systemes mul-
tiprocesseurs sur puces pour des applications de type multimedia,” Ph.D. dissertation,
Universite de Montreal, 2009.

[55] M. Wolf, D. Maydan, and D. Chen, “Combining loop transformations considering
caches and scheduling,” in Proceedings of the 29th Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO 29, Paris, France, pp. 274–286.

[56] C. S. Lebsack and J. M. Chang, “System level perspective on object locality,” in
Companion to the 20th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications. San Diego, CA, USA: ACM, 2005,
pp. 244–245.

[57] M. Hirzel, J. Henkel, A. Diwan, and M. Hind, “Understanding the connectivity of heap
objects,” in Proceedings of the 3rd international symposium on Memory management.
Berlin, Germany: ACM, 2002, pp. 36–49.

[58] C. Lattner and V. Adve, “Automatic pool allocation: improving performance by con-
trolling data structure layout in the heap,” in Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation. Chicago, IL, USA:
ACM, 2005, pp. 129–142.

[59] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache-conscious structure layout,” in
Proceedings of the ACM SIGPLAN 1999 conference on Programming language design
and implementation. Atlanta, Georgia, United States: ACM, 1999, pp. 1–12.

[60] T. M. Chilimbi and J. R. Larus, “Using generational garbage collection to implement
cache-conscious data placement,” in Proceedings of the 1st international symposium
on Memory management. Vancouver, British Columbia, Canada: ACM, 1998, pp.
37–48.

[61] P. R. Wilson, M. S. Lam, and T. G. Moher, “Effective “static-graph” reorganization to
improve locality in garbage-collected systems,” in Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and implementation. Toronto, On-
tario, Canada: ACM, 1991, pp. 177–191.

[62] ——, “Caching considerations for generational garbage collection,” in Proceedings of
the 1992 ACM conference on LISP and functional programming. San Francisco,
California, United States: ACM, 1992, pp. 32–42.

References 95

[63] M. B. Reinhold, “Cache performance of garbage-collected programs,” in Proceedings
of the ACM SIGPLAN 1994 conference on Programming language design and imple-
mentation. Orlando, Florida, United States: ACM, 1994, pp. 206–217.

[64] A. Diwan, D. Tarditi, and E. Moss, “Memory system performance of programs with
intensive heap allocation,” ACM Trans. Comput. Syst., vol. 13, no. 3, pp. 244–273,
1995.

[65] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh, “Exploiting prolific types for
memory management and optimizations,” in Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. Portland, Oregon:
ACM, 2002, pp. 295–306.

[66] T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E. Petrank, and D. Sheinwald,
“Thread-local heaps for java,” in Proceedings of the 3rd international symposium on
Memory management. Berlin, Germany: ACM, 2002, pp. 76–87.

[67] J. Bonneau and I. Mironov, “Cache-Collision timing attacks against AES,” in
Cryptographic Hardware and Embedded Systems - CHES 2006, 2006, pp. 201–215.
[Online]. Available: http://research.microsoft.com/pubs/64024/aes-timing.pdf

[68] M. O’Hanlon and A. Tonge, “Investigation of Cache-Timing attacks on AES,” 2005.
[Online]. Available: http://www.computing.dcu.ie/research/papers/2005/0105.pdf

[69] C. Percival, “Cache missing for fun and profit,” 2005. [Online]. Available:
http://www.daemonology.net/papers/htt.pdf

[70] “IBM j9 - wikipedia, the free encyclopedia,” Aug. 2009. [Online]. Available:
http://en.wikipedia.org/wiki/IBM J9

[71] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundaresan, “Java just-in-
time compiler and virtual machine improvements for server and middleware applica-
tions,” in Proceedings of the 3rd conference on Virtual Machine Research And Tech-
nology Symposium - Volume 3. San Jose, California: USENIX Association, 2004, pp.
12–12.

[72] “Debugging tools for windows - overview,” Aug. 2009. [Online]. Available:
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

[73] “IBM - using IBM HeapAnalyzer to analyze java heap usage and detect possible
java heap leak,” Aug. 2009. [Online]. Available: http://www-01.ibm.com/support/
docview.wss?rs=180&uid=swg21190608

http://research.microsoft.com/pubs/64024/aes-timing.pdf
http://www.computing.dcu.ie/research/papers/2005/0105.pdf
http://www.daemonology.net/papers/htt.pdf
http://en.wikipedia.org/wiki/IBM_J9
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg21190608
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg21190608

References 96

[74] “developerWorks : IBM monitoring and diagnostic tools for java - garbage
collection and memory visualizer version 2.3,” Aug. 2009. [Online]. Available:
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/

[75] “AMD CodeAnalyst for windows,” Aug. 2009. [Online]. Available: http:
//developer.amd.com/cpu/CodeAnalyst/codeanalystwindows/Pages/default.aspx

[76] “SPECjvm2008,” Aug. 2009. [Online]. Available: http://www.spec.org/jvm2008/

[77] “SPEC JBB2005,” Aug. 2009. [Online]. Available: http://www.spec.org/jbb2005/

[78] P. Hudak, “Conception, evolution, and application of functional programming lan-
guages,” ACM Comput. Surv., vol. 21, no. 3, pp. 359–411, 1989.

http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://developer.amd.com/cpu/CodeAnalyst/codeanalystwindows/Pages/default.aspx
http://developer.amd.com/cpu/CodeAnalyst/codeanalystwindows/Pages/default.aspx
http://www.spec.org/jvm2008/
http://www.spec.org/jbb2005/

	1 Introduction
	1.1 Java and Object Locality
	1.2 CPU Caches
	1.3 Dynamic Memory Allocation
	1.3.1 Manual Memory Management
	1.3.2 Automatic Memory Management (Garbage Collection)

	2 Related Work
	2.1 Hardware Approaches of Improving Cache Performance
	2.1.1 Reducing Cache Miss Penalty
	2.1.2 Changing Cache Parameters
	2.1.3 Non-Standard Cache Topologies
	2.1.4 Hardware Prefetching
	2.1.5 Scratchpad Memory

	2.2 Software Approaches of Improving Cache Performance
	2.2.1 Code Reordering
	2.2.2 Software Prefetching
	2.2.3 Loop Transformations
	2.2.4 Improving Object Locality in Memory
	2.2.5 Thread Local Heaps
	2.2.6 Our approach: Cache Line Reservation

	3 Cache Line Reservation
	3.1 Description of CLR
	3.1.1 Choosing the number of cache lines to reserve
	3.1.2 Alteration to pre-fetch strategy
	3.1.3 Interaction with garbage collection
	3.1.4 Multiple levels of cache
	3.1.5 Multiple allocation sites per section

	3.2 Criteria for selecting objects
	3.2.1 Frequently Instantiated Types
	3.2.2 Frequently Executed Allocation Site
	3.2.3 Objects that are unlikely to co-exist
	3.2.4 Objects accessed in infrequent bursts
	3.2.5 Mostly Written Objects
	3.2.6 Objects in Different Threads

	3.3 Limitations of CLR
	3.3.1 Cancellation policy

	4 Implementation Details
	4.1 The TR JIT Compiler and J9 Java Virtual Machine
	4.1.1 The J9 JVM
	4.1.2 Testarossa JIT

	4.2 Other Tools Used
	4.2.1 WinDbg Debugger
	4.2.2 IBM Heap Analyser
	4.2.3 IBM Garbage Collection and Memory Visualizer
	4.2.4 AMD CodeAnalyst

	4.3 Prototypes Developed
	4.3.1 Prototype 1 - ``Weak'' CLR Reservation
	4.3.2 Prototype 2 - ``Strong'' CLR Reservation
	4.3.3 Prototype 3 - ``Strong'' CLR Reservation and Non-Reservation
	4.3.4 Other modifications

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Proof of Concept
	5.3 Custom Benchmarks
	5.4 SPECjvm2008
	5.5 SPECjbb2005
	5.5.1 populateXML

	5.6 Measuring Overhead
	5.6.1 Allocation Overhead
	5.6.2 Compilation Overhead
	5.6.3 New TLH Request Overhead
	5.6.4 Garbage Collection Overhead

	6 Discussion
	6.1 Where CLR offers a benefit (long-lived objects)
	6.2 Where CLR overhead is too high (short-lived objects)
	6.3 CLR for Other Architectures
	6.4 CLR for Other Programming Languages
	6.5 Future Directions

	7 Conclusion
	A Proof Of Concept C Programs
	References

