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 Abstract 

 
FPGAs have witnessed an increased use of dedicated communication interfaces. With 

their increased use, it is becoming critical to test and properly characterize all such 

interfaces. Bit error rate (BER) characteristic is one of the basic measures of the 

performance of any digital communication system. Traditionally, BER is evaluated using 

Monte-Carlo simulations, which are very time-consuming. Though there are some BER 

test products, none of them includes channel emulator. To overcome these problems, this 

thesis presents a scheme for BER testing in FPGAs, with a few orders of magnitude 

speedup compared to Monte-Carlo method. This scheme consists of two intellectual 

property (IP) cores: the BER tester (BERT) core and the additive white Gaussian noise 

(AWGN) generator core. Two challenging testing cases are successfully conducted using 

the testing scheme. We demonstrate through case studies that the proposed BER testing 

solution exhibits advantages in speed and cost compared with the existing solutions. 
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Résumé 

 
Au cours des dernières années, les architectures FPGA ont connus une augmentation 

importante de l'utilisation d'interfaces dédiées pour la communication. Il devient donc 

crucial de tester et de caractériser convenablement ces types d'interface. La performance 

d'un système de communication numérique est généralement mesurée par le Taux 

d'erreurs sur les bits (TEB). Traditionnellement, le TEB est évalué à l'aide de simulations 

logicielles par la méthode de Monte-Carlo. Malheureusement, cette méthode est reconnue 

pour être très coûteuse en temps. Bien qu'il existe quelques appareils de test mesurant le 

TEB, aucun de ceux-ci n'offre l'émulation de canal. Pour palier à ces problèmes, ce 

mémoire propose une technique pour effectuer le test du TEB (à l'aide d'un) FPGA. Cette 

dernière permet de réduire considérablement le temps d'exécution comparativement à la 

méthode utilisant les simulations de Monte-Carlo. La solution proposée est composée de 

deux blocs de propriété intellectuelle (PI): le bloc de test TEB (TEBT) ainsi que le bloc 

générateur de bruit blanc Gaussien additif (BBGA). Deux exemples de test ont été 

exécutés avec succès, en utilisant notre technique de test. Nous avons aussi démontré, à 

l'aide d'études de cas, que la solution proposée de test de TEB offre des avantages en 

temps et en coûts comparativement aux solutions déjà existantes. 
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Chapter 1 - Introduction 

 

1.1 Motivation 

1.1.1 FPGA Perspective 

As FPGAs and the associated design software have evolved to include multimillion gates, 

specialized communication interfaces, such as clock data recovery (CDR) circuitry and 

enhanced phase-locked loops (PLLs), are increasingly being included in FPGAs for high-

speed communication applications. Additionally, the performance and capacity 

improvements of FPGAs give their users sufficient processing power to implement a wide 

range of communication interfaces, including various wireline and wireless modulation 

schemes, modern turbo error correcting codes and spread spectrum schemes. In 

consequence, FPGA-based designs are more and more widely used in digital 

communication systems to replace ASIC implementations.  

 

Among these FPGA new features, high-frequency serial communication interfaces are 

probably the most important. They are mostly realized using CDR circuits to extract the 

clock from a data stream. Specialized CDR circuitry in Altera Mercury devices provides 

data rates of up to 1.25 gigabits per second (Gbps) per channel, and total CDR bandwidth 

of 45 Gbps [1]; the rate increases to 3.125 Gbps per channel in Altera Stratix GX devices. 

Lattice Semiconductor’s Field Programmable System Chip (FPSC) includes 10 Gbps line 

interfaces in ORLI10G and 1.5625 Gbps per channel CDR subsystems in ORT82G5 [2]. 

Xilinx’s Virtex-II Pro FPGAs provide up to twenty-four 3.125 Gbps full duplex Rocket 

I/O transceivers, with an aggregate baud rate of up to 75 Gbps [3]. In consequence, 

FPGA-based serial communication interfaces are being widely adopted into backplane 

applications, short and long-haul communications, mass storage access networking, and 

computer peripherals. However, the testing of gigabit-rate serializer and deserializer 

(SerDes) devices is still challenging.  According to International Technology Roadmap 

for Semiconductors (ITRS), the technology requirements for high-frequency serial 
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communication test are continuously putting pressure on the test industry. Table 1-1 

shows the device requirements for history and projections [4]. 

 

Table 1-1: High Frequency Serial Communications Test Requirements [4] 

Year of Production 2001 2002 2003 2004 2005 2006 2007 

High-performance-level serial transceivers 

Serial data rate (Gbits/s) 10 10 40 40 40 40 40 

Max reference clock speed (MHz) 667 667 2500 2500 2500 2500 2500 

High-integration-level backplane and computer I/O 

Production 2.5 3.125 3.125 10 10 40 40 Serial data rate 

(Gbits/s) Introduction 3.125 -- 10 -- 40 -- -- 

Production 166 166 166 667 667 2500 2500 Max reference 

clock speed (MHz) Introduction -- -- 667 -- 2500 -- -- 

 

Currently, testing functionality of high-performance serial interfaces must be done by 

using expensive, stand-alone pattern-generators and bit-error-rate detectors. This 

approach is very time consuming and the cost is hence high. There is an urgent need to 

develop testing equipment to characterize the performances of the serial communication 

interfaces, along with other communication interfaces. This thesis proposes a low cost 

scheme that uses existing FPGA resources to test the functionality of serial interfaces. 

 

1.1.2 BER Testing Perspective 

Bit error rate (BER) is the ratio of the number of incorrect to the total number of received 

bits. For qualifying the reliability of an entire digital communication system from “bits 

in” to “bits out”, BER characteristic is the fundamental measure of the performance of a 

digital communication system.  

 

As shown in Figure 1-1, a digital communication system consists of a transmitter, a 

channel, and a receiver. The transmitter changes the raw information (sequences of binary 

digits) into a format that is matched to the characteristics of the channel. Depending on 

applications, the transmitter may consist of a source encoder, an encryptor, a channel 

encoder, a carrier modulator or a spread-spectrum modulator. 
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Figure 1-1: Block Diagram of a Digital Communication System 

 

The receiver accepts the signal from the channel and recovers the transmitted binary 

digits. The recovered digits are usually processed to permit interfacing with the final 

destination, such as a computer monitor or the human ear.  

 

The channel is the physical medium used to send the signal from the transmitter to the 

receiver. The medium may be the air, wire lines, optical fiber and so on. One essential 

feature of the communication channel is that the transmitted signal is corrupted in a 

random manner by a variety of possible mechanisms, such as additive thermal noise 

generated by electronic devices; man-made noise, e.g., automobile ignition; and 

atmospheric noise, e.g., electrical lightning discharges during thunderstorms. 

 

In a digital communication system, either the channel or the communicating devices 

(sending and/or receiving end) can introduce distortion or cause errors. As modern 

communication interfaces are quite complex, besides inherent device and timing 

imperfections, the correctness and performance of communication interfaces depend on 

many design choices, such as types of waveforms used to transmit the information over 

the channel, the transmitter power, the characteristics of the channel (i.e., the amount of 

noise, the nature of the interference), and the method of demodulation and decoding. At 

macroscopic level, BER is a fundamental measure of the communication system 

performance, whose importance has been widely recognized [5]. As a measure of how 

well the overall communication system performs, BER is the probability of a bit-error at 

the output of the receiver, compared with the input of the transmitter.  
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In the development and manufacturing of a digital communication system, it is critical to 

quickly and precisely test the BER performance at the receiving end. In many cases, a 

self-test or an integrated test is necessary. In practice, the complexity and nonlinearity of 

the communication system prohibit us from obtaining the closed-form expression for 

BER. Traditionally, BER has been evaluated using software simulations, where the real 

communication system (transmitter, channel and receiver) is emulated by its software 

model and its statistical behavior is estimated by transmitting thousands of bits in the 

software model. Although software simulations are easy to set up, they are time 

consuming to conduct. Hence, the simulation time needed to obtain reliable estimation of 

the BER greatly limits the exploration of the solution space for optimizing the design of 

digital communication interfaces. 

 

Hardware-based solution is commonly 100,000 to 1 million times faster than the best 

simulation software at the same abstraction level [6]. While there exist hardware-based 

products available for BER testing [7], [8], [9], [10], none of them includes 

communication channel emulators, which are necessary in testing the BER performance 

of a digital communication system. Such testers are not convenient to evaluate the BER 

performance of a digital communication system.   

 

To overcome this problem, this thesis proposes a novel scheme for BER testing in 

FPGAs. The test scheme mainly consists of two IP cores: a BERT core and an AWGN 

core. The BERT core is used for BER testing, while the AWGN core is used for 

communication channel emulation. The proposed scheme can be used to test the 

performance of a wide range of communication systems, including native CDR 

interfaces, as well as various user-defined modulation/demodulation, spread spectrum and 

error correcting code cores. The proposed BER testing scheme is easy to set up and is a 

few orders of magnitude faster than software simulations.  

 

1.2 Thesis Outline 

In Chapter 2, the background of BER performance and the methods of testing BER under 

the presence of noise are first introduced. Hardware emulation exhibits speed advantages 
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over software simulations. After examining currently available hardware-based BER 

testing solutions for a digital communication system and their drawbacks, we present a 

low-cost, high-speed BER testing scheme at the end of Chapter 2 [12]. The whole testing 

solution can be implemented in a single FPGA device. 

 

Chapter 3 presents the function and detailed implementation of the BERT core. The core 

can be configured for either a serial or parallel interface, depending on the interface 

requirements of a design under test (DUT). The structure of the serial BER tester is given 

first. Then, the structure of the parallel BERT is derived from the serial one. The BERT 

core is capable of sending pseudo random bit sequences (PRBSs) for a serial BERT or 

pseudo random word sequences (PRWSs) for a parallel BERT to a DUT, and then giving 

the BER performance of the DUT by comparing the output from the DUT with the 

PRBSs or PRWSs. This core can automatically keep synchronization with the DUT 

regardless of the delay of the DUT. Simulation and synthesis results targeting Altera 

Mecury FPGAs are presented in the last part of this chapter. The core is verified by 

simulations and by running real tests. 

 

In Chapter 4, an overview of methods for AWGN generation is first given. To overcome 

the disadvantages of existing methods, a novel method is presented for AWGN 

generation [11]. Then, we reveal the detailed implementation of the proposed AWGN 

core and its performance compared with existing implementations. This core is based on 

Polar method and a novel Central Limit Theorem (CLT) method implementation. With 

Polar method, it is convenient to build a single or two independent AWGN generators 

with high speed and high precision. The novel CLT method can further smoothen the 

variance of a Gaussian distribution without speed penalty, while the traditional CLT 

method exhibits speed penalty. The experimental results show that the proposed AWGN 

core is suitable for channel emulation. 

 

As examples, Chapter 5 presents two applications of the proposed BERT core and 

AWGN core: one is testing a gigabit transceiver included in Altera Mercury FPGAs; the 

other is testing the BER performance of a baseband transmission system under different 
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SNR conditions. All the work is done on an Altera Mercury board. The two cases further 

validate the two cores. They also demonstrate that the proposed BER testing scheme has 

advantages in speed and cost compared with traditional solutions. 

 

Chapter 6 summarizes the work done in this thesis. The importance of the thesis and some 

possible future research directions are also presented at the end of Chapter 6. 
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Chapter 2 - Background 

 

2.1 BER Background 

2.1.1 Factors Affecting BER 

Figure 2-1 shows the basic elements of a digital communication system. Almost every 

element of the system can affect the BER performance. We now briefly describe the 

function of each component and how the components may affect the BER performance of 

the system. 

 

 

Figure 2-1: Basic Elements of a Digital Communication System 

 

The signal source refers to the original information that we intend to transmit in the 

communication system. The information may be either an analog signal or a digital 

signal. 

 

The source encoder efficiently converts the signal source into a sequence of binary digits 

(message). One of the important objectives of source encoder is to represent the message 

by as few binary digits as possible, subject to the need to reconstruct the input adequately 

at the output. Hence, source encoding is data compression procedure. 
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The channel encoder is used to introduce some redundancy in the binary information 

sequence in a controlled manner. The redundancy is then used at the receiver to overcome 

the effects of noise and interference encountered in the transmission of the signal through 

the channel. Repeating the messages is the simplest form of redundancy. However, it is 

not efficient. In a digital communication system, forward error correction (FEC) is often 

used, in which encoding permits error correction without the necessity of the receiver 

asking the transmitter for additional information.  

 

The carrier modulator modifies the channel encoder output signal in a manner that 

matches the characteristics of the channel. It usually produces an analog waveform that 

permits multiple use of the channel by several transmitters and that is transmitted 

efficiently through the channel. In a digital communication system, there are two kinds of 

modulations: binary modulation, where each bit from the channel encoder is transmitted 

separately, and M-ary modulation (M > 2), where b coded information bits are transmitted 

at a time by using M = b2  distinct waveforms is (t), i = 0, 1, …, M-1, one waveform for 

each of the b2  possible b-bit sequence. The modulated waveform consists of signal 

segments corresponding to the discrete symbols at its input. 

 

Spread spectrum is a technique for providing some immunity to frequency-selective 

effects such as interference and fading. A signal is spread over a wide range of 

frequencies so that single-tone interference affects only a small portion of the signal. 

Spread spectrum also has other advantages, related to simplified methods of sharing a 

channel among multiple users. 

 

Communication channel is the main source of errors. Its function and characteristics have 

been discussed in Chapter 1.1.2  

 

In Figure 2-1, the blocks before the communication channel compose the transmitter; the 

blocks after the communication channel compose the receiver. The function of each block 

in the receiver is simply a mirror image of the function of the corresponding block in the 

transmitter. The receiver must undo each operation that is performed at the transmitter. 
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As can be seen from the above discussion, the communication channel can introduce 

noise and cause some errors, while channel encoding mechanisms are needed to eliminate 

or reduce the error. It can also be seen that various modulation schemes also provide a 

mechanism to improve the performance of a digital communication system. A measure of 

how well the demodulator and decoder perform is the rate with which bit errors occur in 

the decoded sequence. In general, BER performance is determined by the code 

characteristics, the types of waveforms used to transmit the information over the channel, 

the transmitter power, the characteristics of the channel (e.g., the amount of noise, the 

nature of the interference), and the method of demodulation and decoding.  

 

2.1.2 BER and SNR  

Among the factors discussed in Chapter 2.1.1, noise is the main enemy of BER 

performance. The noise introduced by a communication system is usually described by a 

Gaussian probability density function. Representing the function mathematically makes it 

possible to predict the BER performance of the system. 

 

As the ratio of the number of incorrect and the total number of received bits, BER is 

related both theoretically and practically (by measurements) to the signal-to-noise ratio 

(SNR). SNR is the fundamental input quantity that determines the channel capacity C for 

a given bandwidth B, according to the fundamental Shannon law:  

)1(log2 SNRBC +=  

In practice, communication system designers balance between bandwidth and SNR to 

maximize the channel capacity for an acceptable BER performance. There are several 

types of communication systems in which this balancing act is played in different ways.  

 

2.1.2.1 BER Performance of Digital Baseband 

In baseband transmission, the data and clock are transmitted as digital waveforms, and 

different waveforms are used to transmit 1’s and 0’s. Baseband schemes, such as 

commonly used non-return-to-zero (NRZ) CDR encoding, combine clock and data 

signals on the transmitting side and decouple them at the receiver. Careful timing 
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extraction leads to a reduction in the number of transmission errors, which is equivalent 

to an increase in the system SNR. 

 

In a baseband transmission system, the receiver in the system has two tasks: one is to 

keep synchronization, sampling the received bit stream at an appropriate time point and 

speed; the other is to decide whether the sampled value represents a binary one or zero.  

Assuming that synchronization is always kept, the following discussion introduces the 

“one or zero” decision principle and evaluates the BER performance of a binary matched 

filter receiver in digital baseband communications.  

 

In order to recover the signal from the background noise in a receiver, we may wish to 

maximize the output SNR without regard to preserving the shape of the signal waveform. 

A matched filter is a linear system that significantly alters the shape of both the signal and 

the noise in a way that increases the SNR. Figure 2-2 shows the structure of a binary 

matched filter receiver [13], [14].  

 

∫
T

dt
0

∫
T

dt
0

∑

)(1 ts

)(0 ts
 

Figure 2-2: Binary Matched Filter Receiver 

 

The receiver includes two filters, and each of the filters consists of a multiplier and an 

integrator. The receiver compares the output of the two filters, one matched to )(0 ts  and 

the other matched to )(1 ts . The difference of these two filters is then compared to a 

threshold value. In the case the threshold value is zero, the receiver is detecting which 
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matched filter output is larger. If the top filter output is larger than the bottom, y is 

positive; if the bottom filter output is larger, y is negative. 

   

The output of each integrator is a number composed of a deterministic part (due to the 

signal) and a random part (due to the additive noise). The additive noise is assumed to be 

zero-mean Gaussian and its frequency spectrum is flat. Suppose the input signal to the 

receiver is ),()( tntsi + where i is either zero or unity, depending on which signal is being 

transmitted. The input to the comparator is then given by 

∫ ∫ −+−= s sT T

i dttststndttststsy
0 0 0101 )]()()[()]()()[(  

 

The average value of y is obtained by adding together the average values of the two 

integrals, where the average of the second integral is zero since the noise is zero mean. 

Therefore, the mean value of y is 

∫ −= bT

iy dttststsm
0 01 )]()()[(  

The mean value depends upon which signal is being transmitted. 

 

The variance of y is the expected value of the square of the difference between y and its 

mean. The variance is 

                         }]{[ 22
yy myE −=σ  

                               ∫ −= bT
dttststnE

0

2
01 }])]()()[({[  

= })]()([)]()()[()({ 010 0 01 dtdvvsvststsvntnE
b bT T

−−∫ ∫  

 

The expected value of a sum is the sum of the expected value, so the expected value 

symbol can be moved within the range of the integral signs. The only random part of the 

integral is that containing noise n. As the noise is assumed to be white with power 

spectral density 2)( on NfG = , the autocorrelation of the noise is the inverse Fourier 

transform of the power spectrum, or .2)()( tNtR on δ=  Taking this and 

)()}()({ vtRvntnE n −=  into account, we have 
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∫ ∫ −−−= b bT T
o
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2

{ δσ  

By the sampling property of the impulse, the above equation is equal to  

∫ −= bT

y dttsts
N

0

2
01

02 )]()([
2

σ  

As can be seen, this result is independent of which signal is sent. 

 

Based on the mean and variance of y, the probability density of y, under the assumption 

that a 0 ( 0m ) or 1 ( 1m ) is being transmitted, is drawn and shown in Figure 2-3. The 

probability density fits into one of the two probability density functions labeled with 

)(0 yp and )(1 yp , depending on what is being transmitted. The two functions have the 

same variances but different mean values.  

 

Figure 2-3: Probability Densities of y 

 

In the comparator, the threshold is chosen as the point at which the two probability 

density functions cross. It is labeled as 0y  on the diagram. If y is greater than 0y , we 

assume that )(1 ts is being sent; if y is less than 0y , we assume )(0 ts is being sent. Due to 

the symmetry, 0y  is the midpoint between the mean values of the two probability density 

functions. Thus, 

                                              
2
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0
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y

+
=  



 13

                  ∫ −+=
bT

dttstststs
0 0101 )]()()][()([

2

1
 

∫ −= bT
dttsts

0

2
0

2
1 )]()([

2

1
 

As the integral of the square of the signal is the signal energy over the bit period, the 

threshold is 

2
01

0

EE
y

−
=  

where 1E  and 0E  are denoted as the energy for the two signals )(0 ts  and )(1 ts , 

respectively.  

 

Next, the probability of error for the binary matched filter receiver is evaluated. The 

probability density of the comparator input follows one of the two Gaussian curves shown 

in Figure 2-3.  It follows the curve labeled )(0 yp if a 0 is being transmitted, and follows 

the curve labeled )(1 yp  if a 1 is being sent. The probability of mistaking a transmitted 1 

for a 0 is the integral of )(1 yp  between [- ∞ , 0y ], and the probability of mistaking a 

transmitted 0 for a 1 is the integral of )(0 yp  between [ 0y , ∞ ]. Hence, the error 

probability is given by the area under the tail of the Gaussian density function. 

 

Assuming that the two signals, )(0 ts  and )(1 ts , have equal energy, the probability of an 

error is 

dy
my

Pe ]
2

)(
exp[

2

1
0 2

2
0∫

∞ −
=

σσπ
 

               = )
)1(

(
oN

E
Q
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where Q( ) is the Q-function (its definition will be discussed in Chapter 2.2.2), E is the 

average energy of the two signals, ρ  is the correlation coefficient of the two signals, and 

0N  is the noise power per Hz . E, 0N  and ρ  are defined as 

          
2

10 EE
E

+
=  
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As can be seen from the equation about eP , the BER is determined by three factors: the 

average energy per bit E, the correlation of the two signals ρ , and the noise power per 

hertz 0N . The BER decreases when either ρ  decreases, or oNE increases. The above 

principle applies to the general case of unequal energies.  

 

In order to investigate the relationship between BER and ,oNE  we consider three cases 

where each correlation coefficient ρ  is different. The first case assumes that )(0 ts  = 

)(1 ts . The correlation coefficient is then ρ  = 1, and BER becomes  

2
1)0( == QPe  

This result is easily explained, since the same signal is used to transmit both 0 and 1, 

which means no information is supplying and the receiver can only randomly guess the 

information. 

 

The second case assumes that )(0 ts  = - )(1 ts . The correlation is then ρ  = 1, and BER is a 

minimum at  

)
2

(
o

e N

E
QP =  

The third case assumes that  )(0 ts = 0 and )(1 ts =1. The correlation is then ρ = 0, and 

BER becomes 

)(
o

e N

E
QP =  
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Figure 2-4 shows the relationship between the BER and the signal to noise ratio, oNE , 

for the above three values of correlation: -1, 0 and 1. Note that the abscissa is in dB, 

which is 10 times the logarithm of oNE . 

 

Figure 2-4: BER vs SNR for Baseband Transmission 

 

2.1.2.2 BER Performance of Modulated Transmission 

Another class of communication systems employs modulation schemes for 

communication over a given portion of spectrum. The modulator at the transmitter 

performs the function of mapping the digital sequence into sinusoidal signal waveforms. 

The BER performance of receivers varies widely, depending on the modulation schemes. 

As an example of the relationship between BER and SNR for different modulation 

schemes, we briefly discuss the probability of an error for M-ary Phase Shift Keying 

(PSK) modulation. 

 

In communication systems where carrier phase tracking is possible (coherent 

demodulation), PSK is often used. Although many other modulation systems are in use, 
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PSK systems are very common. In M-ary PSK modulation scheme, the frequency of the 

carrier stays constant while the phase shift takes on one of M constant values. Digital 

phase-modulated signal waveforms may be expressed as 

)],1(
2

2cos[)( −+= m
M

tftgs cm

ππ      ,1 Mm ≤≤       Tt ≤≤0  

 

For binary phase shift keying (BPSK) modulation (M = 2), the two signals )(1 ts  and 

)(2 ts  are antipodal, hence the error probability is  

)
2

(2
o

b

N
QP

ε
=  

 

When M = 4, M-ary PSK becomes Quadrature Phase Shift Keying (QPSK). In such 

modulation schemes, as the baseband digital signal is modulated by a complex 

exponential (sine and cosine waves), two real-valued data streams appear and have to be 

processed separately. They are referred to as I channel (In phase) and Q channel 

(Quadrature). The symbol error probability for QPSK is  

)]
2

(
2

1
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2
(24
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b
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N
Q

N
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For M > 4, the symbol error probability does not reduce to a closed-form equation and 

must be evaluated numerically. The detailed analysis of the probability of an error for M-

ary PSK can be found at [13], where the probability of a symbol error for PSK signal is 

approximated by 

)sin2(2
MN

kQP
o

s
M

πε
≈  

with Mk 2log= . This approximation is good for all values of M. 

 

Figure 2-5 illustrates the symbol error probability as a function of the SNR per bit for M = 

2, 4, 8, 16, and 32. This figure clearly illustrate the penalty in SNR per bit as M increases 

beyond M = 4. For example, at 510−=MP , the difference between M = 4 and M = 8 is 
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approximately 4 dB, and the difference between M = 8 and M = 16 is approximately 5 dB. 

For large values of M, doubling the number of phases requires an additional 6 dB/bit to 

achieve the same performance [13]. 

 

Figure 2-5: Probability of a Symbol Error for PSK Signals 

 

The relationship between the symbol error probability and the bit error probability is not 

straightforward for M-ary PSK due to its dependence on the mapping of k-bit symbols 

into the corresponding signal phases. When a Gray code is used in the mapping, the 

equivalent bit error probability for M-ary PSK can be approximated as 

Mb p
k

P
1≈  

 

Spread spectrum technique is yet another implementation of the Shannon law by which 

the transmitted signal bandwidth B is much greater than the information bandwidth C. 

This excess bandwidth is used for “coding gain” to protect the signal from interference 

caused by multiple users in the same channel, as well as from the intentional jamming.  

Coding gain is usually defined as the difference between the required SNRs with and 

without the spread spectrum technique to achieve a certain BER requirement. Hiding a 
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signal by transmitting it at low power, spread spectrum techniques make it difficult for an 

unintended user to detect transmitted signal in the presence of noise. In addition, spread 

spectrum achieves message privacy in multiple users environment. For these reasons, 

spread spectrum techniques are widely used in digital communication.   

 

In all such implementations, the theoretical and practically achieved BER vs. SNR curves 

serve to evaluate the overall capacity and coding gain that is equivalent to the increase in 

the system SNR. It is desirable to quickly obtain the BER performance of a manufactured 

device in all the cases. 

 

2.2 BER Testing 

All BER testers use the same basic principle: known test patterns (e.g. PRBSs, or 

PRWSs) are sent to a DUT, and the patterns are compared bit by bit with the output of the 

DUT after a certain period of time. The comparison process is synchronized at the start of 

the measurement. BER testing methods include software simulation and hardware 

emulation. In software simulations, each component of the communication system, 

including the communication channel, is built using software models; while with 

hardware emulation, all components are built in hardware. 

 

2.2.1 AWGN Channel Model 

Communication channels provide the connection between the transmitter and the 

receiver. There are different types of physical communication channels. It is convenient 

to construct a mathematical model to capture the most important characteristics of the 

transmission media. The model of the channel is used in the optimal design of the channel 

encoder and modulator at the transmitter and the demodulator and channel decoder at the 

receiver. 

 

Additive white Gaussian noise channel model is the predominant model used in 

communication system analysis and design. The mathematical model of the additive 

white Gaussian noise (AWGN) channel is shown in Figure 2-6 [13]. This model applies 

to a broad class of physical communication channels.  
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+s(t)
r(t) = s(t) + n(t)

n(t)

Channel

 

Figure 2-6: AWGN Communication Channel Model 

 

In the AWGN channel model, the transmitted signal s(t) is corrupted by noise n(t). The 

noise is introduced by the channel, as well as by electronic components, including 

amplifiers at the receiver. This type of noise is most often characterized as a thermal 

noise, or statistically as a Gaussian noise process. The output of the communication 

channel is the sum of the deterministic signal and the random noise, which is expressed as 

r(t) = s(t) + n(t) 

where s(t) is an analytical signal with amplitude A and n(t) is a complex-valued, zero-

mean, Gaussian noise. The real and imaginary parts of n(t) are assumed to be mutually 

independent, each with variance 2σ . Therefore the input signal-to-nose ratio is 2A  / 

(2 2σ ). 

 

According to the AWGN communication channel model, an AWGN generator is the key 

to build a channel emulator. Once the AWGN generator is available, it can be scaled to 

emulate the channel with different SNR conditions.   

 

2.2.2 AWGN Theoretical Properties 

Before characterizing the theoretical properties of AWGN, let us first have a look at the 

characteristics of random variables and the definitions of probability distribution function 

and probability density function. 

 

Random variables are most often described by their statistics, whose most important 

properties are the mean, the mean-square, and the variance [13]. The definitions of these 

parameters are introduced in the following, where E[..] is the expectation operator. 
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Mean                  ∑=
n

nnx xPxm ][  

Mean-Square     ∑==
n

nnx xPxxEm ][][ 222  

Variance           =−= 22 )[( xmXEδ  22 ][ xmXE −  

 

Given a random variable X, for the event {X ≤ x }, where x  is any real number in the 

interval (-∞, ∞), the probability of this event is written as P(X ≤ x ) and denoted simply 

by F( x ), i.e., 

F(x) = P(X ≤ x ),    -∞ < x  < ∞ 

The function F( x ) is called the probability distribution function of the random variable X. 

It is also called cumulative distribution function (CDF). 

 

The derivative of the CDF F( x ) , denoted as p( x ), is called the probability density 

function (PDF) of the random variable X. Thus, the following express is derived: 

p( x ) = 
dx

xdF )(
,  -∞ < x  < ∞ 

Or, equivalently 

F( x ) = ∫ ∞−

x
duup )( ,   -∞ < x  < ∞ 

 

When the random variable is discrete or of a mixed type, the PDF contains impulses at 

the points of discontinuity of F( x ). In such cases, the discrete part of p( x ) may be 

described as  

∑
=

==
n

i
ixXPxp

1

)()( )( ixx −δ  

where ix , i = 1, 2, …, n are the possible discrete values of the random variable; P(X= ix ), 

i = 1, 2, …, n are the possibilities; and δ( x ) denotes an impulse at x =0. 

 

Of all the probability functions in digital communication systems, Gaussian density 

function is by far the most important. Gaussian distribution is also called normal 
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distribution. The probability density function (PDF) of a Gaussian random variable is 

written by 

e xmx
xp δ

πδ

22
2)(

2

1
)( −−=  

where xm is the mean and 2δ is the variance of the Gaussian variable. The PDF plot of a 

Gaussian-distributed random variable is shown in Figure 2-7.  
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Figure 2-7: The PDF of a Gaussian Variable 

 

The cumulative distribution function (CDF) of a Gaussian random variable is  
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where erf( x ) denoted the error function, defined as 

dtexerf
x t∫ −=

0

22
)(

π
 

 

The CDF F )(x  may also be expressed in terms of the complementary error function, 

which is 

F )(x = 1- )
2

(
2

1

δ
xmx

erfc
−

 

where 

erfc )(x = ∫
∞

−

x

t dte
22

π
 

= 1-erf )(x  

 

Note that erf(-x) =-erf )(x , erfc )( x− =2-erfc )(x , erf(0)=erfc( ∞ )=0, and erf( ∞ )=erfc(0)=1. 

For x  > xm , the complementary error function is proportional to the area under the tail of 

the Gaussian PDF. The CDF plot of a Gaussian-distributed random variable is shown in 

Figure 2-8. 

xm

 

Figure 2-8: The CDF of a Gaussian Variable 
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Another important function used to characterize Gaussian destitution is Q function, which 

represents the area under the tail of the Gaussian density function. Q )(x  is the most 

important in computing the probability of error in communication systems. Normalized to 

zero mean and unit variance, Q )(x  is defined as 

∫
∞ −=
x

t
dtxQ e

22

2

1
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π
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e
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Hence we have 

Q )(x = )
2

(
2

1 x
erfc  

F )(x +Q )(x =1 

 

2.2.3 Software Simulation 

In the development of a digital communication system, a first evaluation of the 

performance is usually done mathematically based on very basic principles. However, 

since a digital communication system suffers from a wide variety of effects that are often 

difficult to analyze accurately, gaining confidence by software simulation is an essential 

part of the early development stage. Simulation tools like MATLAB and Simulink [15] 

are therefore being used for this purpose. In software simulations, each component of a 

digital communication system, including the communication channel, is represented by a 

software model which exhibits the characteristics of the represented component. In this 

case, BER testing is performed based on these software models.  

 

Figure 2-9 shows the software model of a BPSK communication system in MATLAB and 

Simulink [15]. The Modules in this system include a binary generator that produces 

information to be transmitted, a BPSK modulator, an AWGN channel, and a BPSK 

demodulator that recovers the transmitted binary information. All the modules are 

included in the Simulink library. When building the system, the user can take these 

models from the library. The BER performance is evaluated by comparing the transmitted 

information with the information received. 
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Figure 2-9: Software Model of a BPSK Communication System [16] 

 

In a real digital communication system, the modulator and the demodulator can be real 

hardware implementations. The AWGN channel is the medium of the communication 

system, which might be the free space or the combination of several communication 

media. In the simulation setup in Figure 2.9, each model has many parameters that the 

user can set when using the model according to the simulated real communication system. 

The following is a brief introduction of the AWGN Channel block from [16]. 

 

The AWGN Channel block adds white Gaussian noise to a real or complex input signal. 

When the input signal is real, this block adds real Gaussian noise and produces a real 

output signal; when the input signal is complex, this block adds complex Gaussian noise 

and produces a complex output signal. This block inherits its sample time from the input 

signal. The AWGN Channel block uses the DSP Blockset's Random Source block [15] to 

generate the noise. The dialog box of the AWGN Channel block is shown in Figure 2-10.  

 

In Figure 2-10, the initial seed parameter in this block initializes the noise generator. 

Initial seed can be either a scalar or a vector whose length matches the number of 

channels in the input signal. The variance of the noise generated by the AWGN Channel 

block can be specified using one of four modes [16]. 

 

As can be seen, in a software-based BER testing scheme, a communication channel is 

built using a software model. The BER performance of the communication system can 

easily be evaluated by running the simulations under different conditions of SNR.  
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Figure 2-10: Dialog Box of AWGN Channel Simulation Block [16] 

 

2.2.4 Hardware Emulation 

Although software simulations are easy to set up to evaluate the BER performance of a 

digital communication system, they are very time consuming. Execution is done using 

workstation CPU processors or using acceleration methods. Execution speed depends on 

the level of abstraction of the simulation models. Due to vast amounts of data and run-

time overhead, simulations generally are only suitable for the evaluation of a 

communication system with low BER performance (such as BER > 610− ).  For example, 

910 calculation iterations are needed to get an accurate (+-3.3%) estimation of a BER 

around 610− [17]; a simulation of BER= 810−  with 10 errors takes days on a personal 

computer equipped with a 1 GHz Pentium 4 processor. In contrast, acceptable BERs in 

digital commercial communication systems go below 10 out of 910 in many cases, such as 

data transmission. Moreover, many design variables, such as sampling frequency, digital 

format, carrier resolution, rounding, quantization and etc., have to be optimized while 

satisfying the best trade-off between performances and complexity, which would further 

lengthen the simulation process. 
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In order to speed up the BER evaluation process and final parameter optimization of a 

digital communication system design, performing direct hardware simulation (emulation) 

is proposed. As an alternative to simulation, emulation utilizes a different technology, 

such as FPGAs, to re-target all or parts of a design. Many software tools and dedicated 

hardware [18], [19] have been developed in the aim of automating this re-targeting 

process. In emulation, performance evaluation takes place in hardware, rather than in the 

virtual environment of a simulator.  

 

Emulation enables performance evaluation done at system operating frequencies that 

exceed 20 MHz. A system operating at 20 MHz clock rate processes data 610  times faster 

than workstation-based simulation [6]. Emulation also makes it possible to run a design at 

a real time system. This feature is especially important for applications such as 

compression and decompression, where the final output (video or audio) needs to be 

observed in real time due to the subjective nature of the receiver (the human eye/ear). If 

such systems run in real time, the performance and quality of the system can be evaluated 

on the fly; otherwise, large vector sets need to be captured and replay mechanisms need to 

be created. 

 

Overall, emulation can greatly reduce the design time for communication applications 

because of the real time test capacity. Additionally, it can enhance the quality of the final 

design by evaluating the subjective nature of a product under live tests, hence covering a 

much larger set of test conditions. For these reasons, hardware emulation is widely used 

in the development of communication applications for performance evaluation [20]-[23]. 

Hardware emulation can greatly speed up the whole design process. 

 

For hardware-based BER testers, besides expensive standalone BER testing equipment, 

there are some FPGA-based BER testing solutions available. To evaluate the BER 

performance of a digital communication in hardware, a high-speed channel emulator and 

a BERT are essential.  In [61], a BER testing solution is presented based on Xilinx 

RockIO FPGAs, but it does not include the channel emulator.  Though a hardware-based 
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solution combining a BERT and an AWGN can be found in [62], it needs software 

involvement and the cost is still very high. There is an urgent need to develop a low-cost 

hardware-based BER testing scheme that combines an AWGN generator and a BERT. 

 

2.2.5 BER Confidence Level 

As can be seen in BER testing, BER is derived by calculating the ratio of the number of 

errors to the number of transmitted bits. But how many bits need to be transmitted in 

order to get a confident test result? BER confidence level is used to define how reliable 

the test result is. 

 

For a given digital communication system or component, there usually is a minimum 

specification for the BER, )(ep . In practice, )(ep  is often estimated by calculating the 

ratio of detected bit errors ( l ) to total bits transmitted (n) in a fixed length test sequence, 

where the ratio is denoted by )(' ep . The accuracy of the estimation improves with the 

increase of the number of bits in the sequence, which is demonstrated in the following 

equation: 

)()(' ep
n

l
ep n  →= ∞→  

 

In real BER testing, it is impossible to transmit infinite number of bits to get )(ep , as the 

test time would be infinite.  The number of bits in the transmitted sequence depends on 

the desired BER confidence levels. Based on a set of measurements, BER confidence 

level is defined as the probability that the actual )(ep  is better than a specified BER level 

y (such as 1210− ). Confidence level (CL) is mathematically expressed as 

],|)([ nlyeppCL <=  

where p[] indicates probability, y is a specified BER level, and nl,|  denotes a system 

where n bits are transmitted and l bits of errors are detected. 

 

One interpretation of the confidence level is that, if the BER test is repeated many times 

and the value nlep =)('  is recomputed for each test period, we expect )(' ep  to be better 
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than the BER level y for CL percent of the measurements. To measure BER with a 

constant confidence level, we need to use a variable length of test sequence [24], [60]. 

 

The BER confidence level can be calculated based on the binomial distribution function 

[25], [26] which models events that have only two possible outcomes, such as 

success/failure or error/no error. The binomial distribution function is generally written as 

knk
n qp

k

n
kp −= )()( , where 
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!
)(

knk

n

k

n

−
=  

 

The above equation gives the probability that k events (i.e., bit errors) occurs in n trials 

(i.e., bits transmitted). In this equation, p represents the probability that an event occurs in 

a single trial (i.e. a bit error), and q represents the probability that the event does not occur 

in a single trial (i.e., no bit error); hence p + q = 1. Figure 2-11 represents the graph of 

binomial distribution with 810=n  and 710−=p .  

 

 

Figure 2-11: Graph of the Binomial Distribution ( )10,10 78 −== pn  
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When Figure 2-11 is used for BER confidence level calculation, the n can be treated as 

total number of bits transmitted, p as the BER, and )(kpn as the probability that k bit 

errors will occur. We are interested in the probability that N or fewer events (bit errors) 

occur in n trials (transmitted bits). The probability is the cumulative binomial distribution 

function, which is written as 

∑ ∑
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In terms of the cumulative binomial distribution function, the confidence level can be 

expressed as 

∑
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In BER confidence level calculations, a hypothetical value of p and a desired confidence 

level (CL)  are first chosen, then solve the above CL equation to determine how many bits 

(n) must be transmitted through the system with N or few errors to prove the hypothesis. 

It is difficult to directly solve n and N. Poisson theorem [25], which provides a 

conservative estimate of the binomial distribution function, can be used to simplify 

solving n and N. Poisson theorem is written as 
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Table 2-1 shows an example of the solutions for N and n for a communication system 

[27]. In this system, p is specified to 1010− . It is impossible to achieve 100% confidence 

as it requires infinite test time. If the confidence level CL is set to 99%, for various values 

of N, corresponding values of n are solved. 

 

Table 2-1: An Example of BER Estimation (CL=99% and p = 1010− ) [27] 

Bit Errors N 0 1 2 3 4 

Required transmitted bits 4.61* 1010  6.64* 1010  8.40* 1010  1.00* 1110  1.16* 1110  

Test time @ 622Mbps (s) 74.1 106 135 161 186 
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As can be seen from Table 2-1, in a 622Mbps system, if no bit errors are detected in 74.1s 

of testing, one bit error occurs in 106s, or two bit errors occur in 135s, we have a 99% 

confidence level that 1010)( <ep . 

 

Theoretical analysis shows that test time is proportional to –ln(1-CL). Figure 2-12 shows 

this relationship. As it is impossible to achieve 100% confidence level in BER testing, the 

BER measured by BERT equipment is only an estimate of the true BER. If we want to 

achieve higher confidence level, the test must take longer time. We are hence forced to 

play tradeoff between confidence level and test time.  

 

∞

 

Figure 2-12: Test Time vs Confidence Level (CL) 

 

2.3 Proposed BER Testing Scheme 

As can be seen from the above of this Chapter, it is critical to quickly and precisely test 

the BER performance of a communication system. Traditional software simulation 

methods for BER testing are very time consuming to conduct. Though there exist 

hardware BER testers, they are very expensive and few of them include instrumentation 

that can emulate the communication channel which introduces the real-world impairment 

–noise, hence they are difficult to set up for BER testing under the presence of noise. To 

overcome these problems of existing methods of BER testing, a new BER testing scheme 
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is proposed and shown in Figure 2-13. This method can facilitate BER testing of various 

communication interfaces. 

 

Pattern
Generator

Noise
gain AWGN

Generator

BERT
Error

Detection

DUT +

Built in single FPGA
 

Figure 2-13: Proposed BER Testing Scheme 

 

As shown in Figure 2-13, the solution combines a BERT and an AWGN generator in a 

single FPGA device. The scalable AWGN may be added or not according to applications. 

The proposed scheme can easily be set up to test the BER performance of a real DUT in 

different SNR conditions in real operations.  

 

The DUT can be any communication interface or system that receives bit or word 

sequences and then restores the sequences after some signal processing or format changes, 

such as a transceiver (a transmitter and a receiver), the combination of a modulator and a 

demodulator, or the integration of an encoder and a decoder. Parameterized design 

enables the tester to interface a DUT either in serial, parallel or CDR format. 

 

The detailed implementation and function of the BERT core and the AWGN core are 

discussed in the next two chapters. 
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Chapter 3 - BERT Core Design 

 

3.1 Overview 

As discussed in Chapter 2, the basic concept of BER measurement is simple: send a data 

stream to a DUT, compare the output of the DUT with its input, and differences are 

registered as errors and evaluated. However, the design of a BER tester is not trivial; the 

following issues must be addressed: 

•  Test sequences generation: Over an infinitely long period of time, we can assume 

that a data transmission is a random process. In BER measurement, a 

pseudorandom data sequence is used, as we can not create a truly random signal 

using deterministic methods. 

•  Test synchronization: When a test sequence is sent to a DUT, it takes some time 

for the DUT to process the data and then send the sequence out. The sequence to 

the input of the DUT should wait for a proper period of time when it is compared 

with the output sequence of the DUT. The waiting time is the delay of the DUT, 

and this process is called test synchronization. The synchronization process is 

conducted at the start of the BER measurement. 

•  Bit slip detection: The synchronization process is achieved at the start of a BER 

measurement. However, the synchronization may lost during the measurement 

process because of a bit slip or a bit repetition. In this case, synchronization 

should be re-built to get the true BER. A BER tester should be able to distinguish 

between a bit slip and an error burst. 

 

Besides the above three issues, BER calculation and test result display are also needs to 

be addressed in a BER tester (BERT) design. In this Chapter, the detailed design of 

BERTs is presented. First, the design of a serial BERT is introduced. Then, the design of 

a parallel BERT is presented based on the design of the serial BERT. Finally, experiment 

results of the BERTs are given. 



 33

 

3.2 Serial BERT Design 

A serial BERT sends bit sequence patterns to a DUT and then conducts bit-by-bit 

comparison of the received signal from the DUT. Based on the principle of the BERT, the 

structure of a serial BERT is proposed and shown in Figure 3-1.  The serial BERT can 

test the BER performance of a serial digital communication link. 

 

 

Figure 3-1: The Structure of the Serial BERT 

 

In this scheme, the shift register shift_reg1 and the gate XOR1 form a linear feedback 

shift register (LFSR). The LFSR generates a pseudo random bit sequence (PRBS), and 

the sequence is sent to the DUT. Before a measurement begins, the load/measure switch 

is set to be in load state. When BER measurement begins, the switch is changed to 

measure state. The shift register shift_reg2, the switch and the gate XOR2 are used for 

synchronization by replicating a delayed PRBS as the reference pattern. The gate XOR3 

serves as a comparator, comparing the pattern from the DUT with the reference pattern. 
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The shift register shift_reg3 and the two gates XOR4 and XOR5 serve for the purpose of 

bit slip detection. The detail of the BERT core is introduced in the following.  

 

3.2.1 PRBS generation 

In a real serial digital communication link, the bit states of the digital signal change 

frequently and unpredictably between one and zero. A BERT must provide facilities for 

simulating real operating conditions. For this reason, PRBSs are used to simulate the 

transmitted signals. The PRBSs are generated by a LFSR as shown in Figure 3-2. This 

structure is also shown in Figure 3-1, represented by shift_reg1 and XOR1.  

XOR

…... 12n-1n

clk

PRBS

 

Figure 3-2: The Circuit for PRBS Generation 

 

The sequence repeats periodically after a certain number of bits. In Figure 3-2, n, the 

stage number of the shift register, determines the length of the PRBS. The maximum 

period of the sequence is n2 -1. The longest continuous sequence of ones within the 

sequence is n; the longest continuous sequence of zeros within the sequence is n-1. The 

bigger the n is, the closer the PRBS simulates the real transmitted data. More details 

about the principle and performance of the LFSR are discussed in Chapter 4-1. 

 

In order to simulate real data transmission, it is necessary to choose a big number for n. 

However, a big number for n would result in long synchronization time, especially at low 

bit rate, as a BERT needs several periods of the PRBS to achieve synchronization. The 

synchronization principle is discussed in the next section. In the parameterized BERT 

core, users can set the value of n according to applications by balancing the 
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synchronization time and quality of randomness of the sequence. Some suitable values of 

n are 2, 3, 4, 6, 7 …. 

 

3.2.2 Testing Synchronization 

Basically, the synchronization between the transmitted and reference patterns is achieved 

by loading the shifter registers (shift_reg2 and shift_reg3 in Figure 3-1) with the 

transmitted PRBSs before the switch is turned to measure state from load state in Figure 

3-1.  The detailed principle is discussed in this section. 

 

In order to easily demonstrate the serial BERT working process, we assume the length of 

all the shift registers in Figure 3-1 is 3, and assume the DUT is an adjustable shift 

register, which exhibits manageable outputs and delays. The delay and the output of the 

shift register are controlled by a 2-bit signal named err_slip. In this section, we only 

consider the normal state, in which err_slip is set to be “00”, and the output signal of the 

shift register is the input signal delayed by three clock cycles. The other states will be 

discussed in the next section. In this case, the circuit related to synchronization is shown 

in Figure 3-3. 

 

 

Figure 3-3: Synchronization Circuits ( n =3, DUT delay = 3 ) 
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At the start of the BER measurement, the switch in Figure 3-3 is in load state. Assuming 

the initial state of the shift registers is not “000”, the sequence sent to the DUT (DUTin) 

would repeat every 7 clock cycles after the reset signal is asserted. According to the 

circuit of Figure 3-3, each bit of the sequence DUTin is the XOR operation of the two bits 

that are immediately two bits before the bit. If the sequence DUTin is denoted by 

1x 2x 3x 4x 5x 6x 7x 1x 2x 3x 4x 5x 6x 7x …., we have 

4x = 1x ⊕ 2x   

5x = 2x ⊕ 3x   

6x = 3x ⊕ 4x   

7x = 4x ⊕ 5x  

1x = 5x ⊕ 6x   

2x = 6x ⊕ 7x   

3x = 7x ⊕ 1x  

 

Table 3-1 shows the outputs of the circuit in Figure 3-3 for the first 16 clock cycles after 

the reset signal is asserted. 

 

Table 3-1: The Outputs of the First 16 Clock Cycles in Figure 3-3  

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

DUTin 1x  2x  3x  4x  5x  6x  7x  1x  2x  3x  4x  5x  6x  7x  1x  2x  

DUTout -- -- -- 1x  2x  3x  4x  5x  6x  7x  1x  2x  3x  4x  5x  6x  

q2 -- -- -- -- -- 1x  2x  3x  4x  5x  6x  7x  1x  2x  3x  4x  

q3 -- -- -- -- -- -- 1x  2x  3x  4x  5x  6x  7x  1x  2x  3x  

XOR2 -- -- -- -- -- -- 4x  5x  6x  7x  1x  2x  3x  4x  5x  6x  

XOR3 -- -- -- -- -- -- 0 0 0 0 0 0 0 0 0 0 

 

As can be seen from Table 3-1, after a certain number of clock cycles, XOR2 = DUTout, 

so XOR3 = 0, where XOR3 = XOR2 ⊕  DUTout. The number equals to the sum of n and 
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the delay of the DUT. In the above case, both are 3; therefore, the number equals to 6. 

The above analysis is verified by the simulation waveform shown in Figure 3-4.  

 

 

Figure 3-4: Simulation Waveforms of the Synchronization Circuit 

 

As can be seen from the above figure, the output of XOR3 is zero after 6 clock cycles. 

The glitches are due to the delays of the XOR gates and the shift registers. All registers 

update their values at the rising edge of the clock signal. 

 

In Figure 3-3, When the shift register shift_reg2 is fully loaded with the transmitted 

PRBS, the output of XOR2 equals to DUTout, so the switch can be changed to measure 

state without affecting the work state of the whole circuit. In this case, shift_reg1 and 

XOR1 form a LFSR, 1LFSR , and shift_reg2 and XOR2 constitute another LFSR, 2LFSR . 

The two LFSRs generate the same PRBS, but the sequence from 2LFSR  is d clock cycles 

later in timing than that from 1LFSR , where d is the delay of the DUT in terms of the 

number of clock cycles. Therefore, if the test patterns from 1LFSR  are correctly 

transmitted by the DUT, then the two inputs of XOR3 should be the same value in each 

clock cycle. In a real BER measurement, when the serial BERT is in measurement state, 

the output of XOR3 is the comparison result and is monitored every clock cycle: if a ‘1’ 

is detected, a transmission error is counted; otherwise, the transmission is error-free. 

 

3.2.3 Bit Slip Detection 

In the above analysis, we assume that all the data is being correctly transmitted by the 

DUT in the synchronization process; otherwise, the process should be repeated. However, 
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a real communication system may encounter transmission errors. The errors can take the 

form of single errors, error bursts, or bit slips. 

 

A single error can be caused by noise or mismatch between a transmitter and a receiver 

for specific data sequences. Single errors happen sporadically, and are the main form of 

errors for most data transmission systems. 

 

An error burst can be caused by an event that leads to a large number of errors in a short 

period, such as poor contact, carrier fading in a radio link transmission or brief 

electromagnetic interfaces (e.g. switching).  

 

Both the bit loss and the bit repeat are called bit slip. A bit slip results from the loss of 

certain sections of transmitted bit stream or the repeat transmission of some bits. The 

event causing bit slips may be an overflow of a digital buffer or clock problems at 

gateways. Bit slips lead to a phase shift between the transmitted and received sequences 

from the point view of the BERT. 

 

After the synchronization process, both error bursts and bit slips can result in a large 

number of errors. For errors resulting from error bursts, they should be counted in BER 

calculation. For errors resulting from bit slip, they should not be totally counted in BER 

calculation; only the bits lost or repeated should be counted as errors. When bit slips   

happen, the number of bit errors measured will be infinite due to the phase shift between 

the received and reference patterns. In this case, the measurement must be interrupted and 

the BERT must be resynchronized. 

 

When a large number of errors are encountered, the BERT must be able to determine 

whether the errors are caused by bit slips or error bursts. If bit slips happen, the BERT 

should be interrupted and resynchronized; otherwise, the measurement should continue.  

 

A patented solution to the problem of distinguishing between error bursts and bit slips is 

offered by a few manufacturers of test equipment [43]. The solution is based on the fact 
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that the addition or superimposition of two PRBSs that are shifted in phase relative to 

each other produces another PRBS. Based on this principle, the bit slip detection circuit is 

devised and shown in Figure 3-5. We discuss how it works in the following.  

 

 

Figure 3-5: Circuit for Bit Slip Detection 

 

In Figure 3-5, the DUT is revised on the base of the DUT in Chapter 3.2.2 for bit slip 

experiments. In Chapter 3.2.2, the signal err_slip is set “00”; the DUT is in normal state 

and exhibits a delay of 3 clock cycles, and the synchronization of the BERT is done in 

this state. Here another three states are added to the DUT to demonstrate the bit slip 

detection function: when err_slip = “10”, the DUT exhibits a delay of 2 clock cycles, so it 

emulates a bit loss; when err_slip = “01”, the DUT exhibits a delay of 4 clock cycles, so 

it emulates a bit repeat; and when err_slip = “11”, the output of the DUT is always set to 

be 1s, so it emulates an error burst.  

 

After the synchronization process, the BERT works in measure state. As discussed in 

Chapter 3.2.2, if all bits are correctly transmitted, the output from XOR2 and the output 
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from the DUT (DUTout) are the same PRBS in terms of both the value and the phase. 

Therefore, the outputs from XOR3 and XOR5 are all zero. 

 

If a bit slip happens, the two patterns from XOR2 and the DUT are shifted in phase. To 

illustrate this case, we assume that in measure state err_slip is switched from “00” to 

“10” in clock cycle t, which emulates a bit loss. From clock cycle t on, the output 

sequence of XOR2 is set to be 1x 2x 3x 4x 5x 6x 7x 1x 2x 3x 4x 5x 6x 7x ….. The output of 

XOR2, the DUT and XOR3 are listed in Table 3-2. Please recall that 4x = 1x ⊕ 2x , 

5x = 2x ⊕ 3x  and so on are from Chapter 3.2.2. 

 

Table 3-2: The Output of the Comparator 

Cycle t-2 t-1 t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 …. 

XOR2 6x  7x  1x  2x  3x  4x  5x  6x  7x  1x  2x  …. 

DUTout 6x  7x  2x  3x  4x  5x  6x  7x  1x  2x  3x  …. 

XOR3 0 0 4x  5x  6x  7x  1x  2x  3x  4x  5x  …. 

 

As can be seen from Table 3-2, when a bit slip happens, the output of XOR3 is the same 

PRBS value as the transmitted PRBS value, but may have different phase. The above is 

for the situation that only one bit is lost. It is easy to understand that when more bits are 

lost or bit repeat happens, the output of XOR3 is always the PRBS value, but with 

different phase. According to the synchronization principle as discussed in Chapter 3.2.2, 

when DUTout is a PRBS and the switch is in load state in Figure 3-5, the pattern from the 

output of XOR2 is the same as DUTout after n clock cycles, which results in zeros from 

the output of XOR3. Applying this principle, we know that, if the output of XOR3 is a 

PRBS, the two sequences from the outputs of XOR3 and XOR4 in Figure 3-5 are the 

same after n clock cycles, where n is the length of the shift registers. Therefore, the output 

of XOR5 is all zeros.    

 

When error bursts happen, as the real bit errors are random and the synchronization is still 

maintained, the output of XOR3 is random. The output of XOR3 cannot be in phase with 
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the output of XOR4, so the output of XOR5 is not all zeros. During the measurement, the 

shift register shift_reg3 is loaded continuously, and bit slips and error bursts are 

differentiated by adding two counters, counter1 and counter2, as shown in Figure 3-5. 

 

The counter counter1 counts the number of bits that have been continuously correctly 

transmitted. In each clock cycle, the output of XOR3 is monitored. Once a 1 is detected, 

indicating an error happens or a bit slip happens, counter1 is reset to zero; otherwise, it is 

increased by one until it reaches an upper bound threshold, upper1.  

 

The counter counter2 counts the number of consecutive zeros appearing in the output of 

XOR5. Consecutive zeros from XOR5 indicate the DUT is either in correct transmission 

state or in bit slip state. In each clock cycle, the output of XOR5 is monitored. Once a 1 is 

detected, indicating an error burst may happen, counter2 is reset to zero; otherwise, it is 

increased by one until it reaches an upper bound threshold, upper2.  

 

A bit slip is assumed and indicated by setting slipflag to be high when counter2 reaches 

upper2 and counter1 does not reach upper1. In this case, the synchronization is lost and 

needs to be rebuilt, and the measurement should be repeated. Both the thresholds should 

be set at least bigger than the sum of the delay of the DUT and the length of the shift 

registers. The special synchronization monitor mechanism ensures that the measurement 

result is the actual number of errors, and is not influenced by the BERT itself. This 

feature also provides a way to search for the source of errors. 

 

With the structure shown in Figure 3-5, when the thresholds upper1 and upper2 are all set 

to be 48, the above discussion regarding the bit slip detection principle is further verified 

by simulations. The waveforms are shown in Figure 3-6. 

 

In Figure 3-6, the BERT works in measure state. Before the moment of time = 7.46us, 

err_slip is set to be 00, and the data is correctly transmitted. In this case, the output of 

XOR3 is all zeros, no errors occurring; both counter1 and counter2 reaches 48, so slipflag 

is low, no bit slip alarm signaled. After the moment of time = 7.46us, err_slip is set to be 
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“10”, a bit slip occurring. In this case, the output of XOR3 is a PRBS, lots of errors 

appearing; the output of XOR5 is all zeros after 3 clock cycles; counter1 is reset to zero 

frequently and counter2 is increased by one continuously. Once counter2 reaches the 

threshold 48, considering that counter1 does not reach the threshold, the signal slipflag is 

asserted, indicating a bit slip occurs and the measurement should be interrupted and 

resynchronized. The glitches in the waveforms can be removed by adding a register 

before the output of each signal if necessary. 

 

 

Figure 3-6: Simulation Waveforms of Bit Slip Detection 

 

The method of distinguishing between error bursts and bit slips is also further verified by 

the simulation waveforms shown in Figure 3-7. The waveform is based on the design 

shown in Figure 3-5. 

 

 

Figure 3-7: Waveforms of the Serial BERT (Error Burst and Bit Slip) 
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In Figure 3-7, before the moment of time = 10us, err_slip = “00”, all the PRBS data is 

correctly transmitted and the signal slipflag is inactive. During the period of 10us ~ 18us, 

err_slip = “11”, an error burst is created by setting DUTout to be one. Though a large 

number of errors occur during this period, the signal slipflag is still inactive, so the errors 

are considered as real transmission errors. During the period of 22us ~ 29us, err_slip = 

“01”, a bit slip is created by transmitting a bit twice. In this case, the signal slipflag is 

activated, indicating a bit slip occurs. During the periods of 18us ~ 22us and 29us ~ 35us, 

err_slip = “00”, the system goes back to correct transmission state, so the signal slipflag 

is inactive. 

 

3.2.4 State Control and BER Calculation 

In the above discussion, the BERT shown in Figure 3-1 is first set to be in load state to 

achieve synchronization before the measurement begins. After the synchronization is 

acquired, the switch can be changed to measure state.   

 

The load/measure switch is controlled by a counter. When the reset signal is activated, 

the counter is reset to zero. Once the reset signal is inactive, the counter is increased by 1 

each clock cycle until it reaches an upper bound threshold, cntload. According to Chapter 

3.2.2, the threshold cntload should be greater than the sum of n (the length of the shift 

register) and the delay of the DUT. The switch is in load state only when the output of the 

counter does not reach to the threshold cntload. When the output of the counter reaches 

the threshold cntload, the switch is set to be in measure state, and will be kept in this state 

until the reset signal of the whole system is activated once again, such as for 

resynchronization of the current measurement or for a new measurement 

 

Once the switch is in measure state, BER calculation is performed and the BER 

measurement begins. The BER calculation process is to continuously calculate the ratio 

of the number of error bits and the number of transmitted bits. In measure state, the 

number of error bits is calculated by a counter, whose content is increased by one if a 1 is 

detected from the output of the gate XOR3 at the rising edge of each clock cycle; the 

number of transmitted bits is calculated by another counter, whose content is increased by 



 44

one in each clock cycle. The minimum measurement time varies with applications and 

BER confidence requirements. Both counters are reset to zero in load state.  

 

3.2.5 Output Display 

The BER testing results from the counters are in binary form. The output display part 

enables the user to access the result more directly. This part is independent of the BERT 

core, and there are different means to realize it according to available hardware and 

software resources; therefore, the output display part is not included in the BERT core. 

Based on the available hardware resources, we have developed a VGA display core to 

directly display the BER measurement results on a monitor in decimal form.  

 

VGA interfaces are included in many FPGA development boards, including the UP-1 

board from Altera. With VGA format, the interface between the testing design and the 

display device is greatly simplified, only needing five signal lines. 

 

3.3 Parallel BERT Structure 

As discussed in Chapter 3.2, a serial BERT can be used to test the BER performance of a 

communication interface that transmits serial data. If a communication interface transmits 

parallel data, a parallel BERT is needed to test its BER performance. 

 

3.3.1 Design Strategies 

The design of the parallel BERT is based on the serial BERT presented in Chapter 3-2. 

Basically, a k-bit parallel BERT, where k is the width of the parallel data (bit0 ~ bit(k-1) )  

can be built using k independent serial BERTs that have the same load time. The parallel 

BERT sends pseudo-random word sequences (PRWSs) to the DUT. In order to qualify 

randomness of the generated sequences, the independence of each of the serial BERTs is 

very important. That means the length of the shift registers in each of serial BERTs 

should be different.  

 

In the design, the width of the parallel BERT is parameterized, which ranges from 1 to 

10. It can also be easily expanded to a width more than 10.  For all the lengths of the shift 
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registers in the serial BERTs, being prime to each other can achieve a maximum period of 

the PRWS, 12 −m , where m is the sum of all the lengths.   

 

When k independent serial BERTs are directly put together to build a parallel BERT, each 

of the serial BERTs has circuits for the load/measure switch control and bit slip detection. 

The circuits for the load/measure switch control of each bit of the parallel data should 

change load/measure state at the same time, and the parallel BERT should be capable of 

distinguishing between error bursts and word slips instead of bit slips in a serial BERT. 

Therefore, only one of the k such control circuits is needed for switch control and word 

slip detection. For this reason, redundancies resulted from building a k-bit parallel BERT 

by directly combining k independent serial BERTs should be removed.  

 

3.3.2 System Architecture 

Based on the parallel BERT design strategies discussed in Chapter 3.3.1, the structure of 

the parallel BERT is developed and shown in Figure 3-8.  In the parallel BERT design, 

the serial BERT circuitry for bit0 is used to control all the load/measure switches in 

synchronization circuits and to detect word slip.  
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Figure 3-8: The Structure of the Parallel BERT 
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In Figure 3-8, the blocks Bit0 PRBS, Bit0 Sync, Bit0 ErrDet, Load/Measure Control and 

Word Slip Detection can be considered as a serial BERT which has the same circuit as 

shown in Figure 3-1. The blocks Bit[1..k-1] PRWS, Bit[1..k-1] Sync and Bit[1..k-1] 

ErrDet are the combination of k-1 independent modules. Figure 3-9 gives the circuit of 

one of the modules. Each module has the same structure, but the length of the shift 

registers in each module is different in order to maintain the randomness of generated 

word sequences. 

 

Figure 3-9: Sub-module Circuit of the Parallel BERT 

 

In Figure 3-9, the structure is the same as that of a serial BERT discussed in Chapter 3.2. 

The shift register shift_reg1 and the gate XOR1 serve as PRBS generation; the switch, 

shift_reg2 and XOR2 constitute a 1-bit synchronization block; the gate XOR3 is a 1-bit 

error detector. 

 

In Figure 3-8, the Load/Measure Control block is used to control all the switches in Bit0 

Sync and Bit[1..k-1] Sync blocks. The control principle is the same as that in the serial 

BERT. The load time is greater than the sum of the delay of the DUT and the longest 

length of the shift registers. In the parallel BERT, the BER Calculation block deals with a 

k-bit word in each clock cycle. Therefore, the counter counting error bits may be 
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increased by a number between 0 to k each clock cycle, depending on the number of error 

bits in the transmitted word. The counter counting transmitted bits is increased by k each 

clock cycle.  

 

A parallel BERT interfaces a DUT with parallel data, which requires lots of connection 

wires and stringent timing specifications. The connection interface can be greatly 

simplified by inserting serial data transceivers between the parallel BERT and the DUT. 

A serial data transceiver consists of a transmitter and a receiver. A transmitter serializes 

the parallel data and encodes the clock signal into the serialized data, and a receiver 

recovers the clock signal and the transmitted parallel data (de-serialization) by dedicated 

clock data recovery (CDR) circuitry. If each side of the BERT and the DUT is appended 

with a serial transceiver, the parallel transmission between the BERT and the DUT can be 

simplified to serial transmission, which makes the interface more economical and easier 

to implement. More details about the CDR circuitry are discussed in Chapter 5 as a case 

study of an application of the BERT.  

 

3.3.3 Function Verification 

The functions of the parallel BERT are clearly demonstrated by the simulation waveforms 

as shown in Figure 3-10 and Figure 3-11. In the simulations, the parallel BERT is set to 

be 8 bits in width, and the DUT setting is the same as that in Chapter 3.2 except that a 

serial shift register is replaced by an 8-bit parallel shift register. In the waveforms, the 

signal tmeasure controls the state of the switches: when tmeasure = 0, the switches are in 

load state; when tmeasure = 1, the switches are in measure state. The signal tdetout 

represents the output of the error detector in the BERT. The signal errnum represents the 

number of error bits, and the signal samples represents the number of transmitted bits. 

 

Figure 3-10 demonstrates how the parallel BERT responses when the switch is changed 

from load state to measure state. As discussed in Chapter 3.2.4, as soon as the switch 

counter in the BERT reaches the threshold, the switch is changed to measure state. As 

shown in Figure 3-10, the BERT is switched to measure state at 1.04us. In this state, the 

BER measurement begins, and the number of transmitted bits (samples) is increased by 8 
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every clock cycle. All the data is correctly transmitted before 1.3us (errslip = 00), so the 

number of error bits (errnum) remains zero. During the period of 1.3us -1.42 us, errors 

are injected (errslip = 11),  so errnum is increased: reaching 8 in the first cycle, 13 in the 

second cycle, 19 in the third cycle, 22 in the fourth cycle of the injection, and remaining 

22 as the error injection is removed (errslip = 00) after 1.42 us. Please note that there is a 

delay of two clock cycles between errslip and errnum due to the data processing time.   

 

 

Figure 3-10: Waveforms of the Parallel BERT (Load  Measure) 

 

As also can be seen from the signals DUTin and DUTout in Figure 3-10, the DUT 

exhibits a delay of three clock cycles in normal operation. When errors are injected, 

DUTout is set to be B11111111  ( D255 ), and the output of the error detector (tdetout) is 

determined by the values expected to appear at DUTout in normal operation. For 

example, in the first clock cycle of error injection, DUTout is expected to be 00000000 in 

the normal state, so errnum is increased by 8; in the second clock cycle, DUTout is 

expected to be B00001011  ( D11 ), so errnum is increased by 5 and reaches 13. The 

randomness of the transmitted data is also demonstrated by the contents of the signal 

DUTin.  

 

Figure 3-11 demonstrates the ability of the parallel BERT to distinguish between a error 

burst and a word slip. During the period of 2.0us~6.0us, an error burst is injected (errslip 

= 11) and a lot of error bits (401) are generated. As the slip indicator slipflag is not 
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asserted, it demonstrates that errnum indicates real errors. During the period of 

8.0us~12.0us, a word slip occurs (errslip = 10), and the BERT also detects a lot of error 

bits (818 – 401 = 417). Because the slip indicator slipflag is asserted shortly after the slip 

happens, it indicates that a word slip has happened and the synchronization should be 

reinitiated. 

 

Figure 3-11: Waveforms of the Parallel BERT (Error Burst and Word Slip) 

 

3.4 Synthesis Results 

The BERT designs are built in VHDL, and can target almost any FPGA devices. The 

synthesis has been done using Quartus II tools by Altera. Table 3-3 shows the synthesis 

results of the parallel BERT design based on the Altera Mercury FPGA EMP120. 

 

Table 3-3: Synthesis Results of the BERT 

Function Block Logic Elements ESB Bits fmax 

BERT 384/4800 ( 8% ) 0/49152 ( 0 ) 160.3 MHz 

BERT + CDR* 837/4800 ( 17% ) 320/49152 ( <1% ) 160.3 MHz 

* CDR circuitry is discussed in Chapter 5. 

 

As can be seen from Table 3-3, the BERT only occupies a small part the FPGA device. 

There are enough resources in the FPGA to implement other application-specified 

functions in a real BER testing, such as data storage, protocol implementations, special 

test controls, and user logic circuits.   
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Chapter 4 -AWGN Core Design 

 
As discussed in Chapter 2.2.4, hardware-based BER testers are much faster than software 

solutions. For a hardware-based BER testing solution, a high-speed communication 

channel emulator is essential.  A new method of implementing AWGN 

generator/generators in FPGAs is presented in this chapter. The whole scheme is 

implemented as an IP core, suitable for a single FPGA device. In this chapter, the detailed 

implementation of the AWGN core and its performance are presented. 

 

4.1 AWGN Generation Method Overview 

Existing methods are based on a variety of statistical techniques. After reviewing existing 

methods and their drawbacks in Chapter 4.1.1, we present our method in Chapter 4.1.2. 

 

4.1.1 Existing Methods 

4.1.1.1 CLT Method 

The CLT method is based on Central Limit Theorem (CLT). According to CLT, if X is a 

random real variable of mean xm  and standard deviation xδ , the random variable NX  

defined as 

N
X

x

N δ
1= ∑

−

=

−
1

0

)(
N

i
xi mx  

tends toward the Gaussian distribution of zero mean and the unity standard deviation, 

when N tends toward infinity. In the above expression, ix , are N independent instances 

of the variable X.  

 

Traditionally, the CLT method is implemented using an accumulator. The AWGN 

generator in [28] is based on this method. This generator consists of four M-sequence 

generators, three adders and an accumulator. The M-sequence generators are linear 
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feedback shift registers (LFSRs) of lengths 28, 29, 30 and 31. By treating the last 10 bits 

of the shift register as a signed binary integer, a random number is generated. The AWGN 

generator produces one output every 12 system clock cycles by adding 48 10-bit random 

numbers. The output rate is 1 MHz. 

 

If only the CLT method is used to generate Gaussian distribution, the convergence is very 

slow. Numerous independent random variables are needed to implement a high accuracy 

AWGN generator. In this case, either a very larger number of LFSRs and adders are 

needed or the output rate is very slow. So the CLT method is not suitable for high-speed 

applications. 

 

4.1.1.2 Box-Muller Method 

As a key tool in statistics, the Box-Muller algorithm can be applied to generate Gaussian 

distribution. This generator is shown in Algorithm 4-1. 

 

 

 

This method has the advantage of maintaining a one-to-one correspondence between the 

random numbers used and the Gaussian random variables produced, with every group of 

random values generating in line 1 producing one output in line 3 in Algorithm 4-1.  

 

1.  Generate two independent random values 1x  and 2x , uniformly 

distributed over [0,1]. 

2.    Obtain: 

f ( 1x ) = )ln( 1x−  

g( 2x ) = 2 cos(2π 2x ) 

3.   Generate Gaussian variable 

n =  f ( 1x ) g( 2x ) 

Algorithm 4-1: Box-Muller Method 
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4.1.1.3 Mixed Method 

A mixed method used to implement an AWGN generator in FPGAs is proposed in [17]. 

This method is based on the combination of the Box-Muller algorithm and Central Limit 

Theorem. The detailed hardware implementation and performance evaluation of the 

generator are presented in [17].  Figure 4-1 shows the block diagram of the mixed 

method. 

 

G
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F1
ROM1

F1
ROM1

F1
ROM1

F1
ROM1

F1
ROM1
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(2.7)

Trun
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AWGN
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(3.6)

 

Figure 4-1: Block Diagram of Mixed Method [17] 

 

In terms of speed and accuracy, the proposed implementation is very efficient and has 

been adopted by industry to generate AWGN [29], [30]. However, the Box-Muller 

method needs to implement both ln and cos functions. The methods of sampling and 

quantization for these functions need lots of considerations, such as number of recursions, 

relative position of the sample in a segment, etc. The efficient implementation is hence 

not straightforward. Moreover, the implementation of Central Limit Theorem in [17] 

greatly slows down the output speed. 
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4.1.1.4 Cellular Automata Based Method 

The above existing methods all use LFSRs to produce pseudo-random numbers. LFSRs 

are very popular and effective for pseudo-random number generation, and have long been 

relied for generation of random numbers [31], [32]. However, when many sequences of 

random numbers are needed, the area consumed by LFSRs is large. One good alternative 

is using cellular automata to generate a large number of random numbers. In 1986, 

Wolfram [33] suggested that cellular automata could be used for efficient hardware 

implementation for random number generators. The generated random numbers can be 

transformed to Gaussian variables [34]. 

 

Cellular automata can be thought of as dynamic systems, discrete in both time and space 

[35]. The principle of cellular automata is that the next value of each register is calculated 

by a Boolean function from the current values of immediate neighbours and itself. The 

Boolean function is called computation rules and categorized by Wolfram [35]. One of 

the setups that can generate m-sequences is a careful mix of Rule 90 and Rule 150 as 

shown bellow: 

                       
)()()()1(:150

)()()1(:90

11

11

tatatataRule

tatataRule

iiii

iii

+−

+−

⊕⊕=+−
⊕=+−

 

where )(tai is the content of register i at time t. The positions of Rule-90 and Rule-150 in 

a register array can be determined according to [36], [37]. 

 

Due to its simplicity and regularity of design, cellular automata have been widely used for 

uniformly distributed random number generators [38], [39], [40], [41]. The 

transformation from uniform variables to Gaussian variables can be done based on CLT 

method. Another method for this transformation is illustrated in Figure 4-2 [34].  

 

 

Figure 4-2: Transformation from Random Variables to Gaussian Variables 
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In Figure 4-2, an n-bit uniform variable is compared with the numbers in a Gaussian 

cumulative distribution function (CDF) conversion table and then encoded to an l-bit 

Gaussian random number. This process is equivalent to grouping all points in the area 

under a Gaussian PDF to several columns, randomly picking a point, and substituting the 

point with the one number that is the average value of the numbers in the column. 

 

However, this transformation is usually difficult to implement for applications where high 

speed and high precision are required.   

 

4.1.2 Our Method 

In order to overcome the disadvantages of the existing methods, we propose a novel 

method to implement AWGN generators. Our method consists of Polar method as shown 

in Algorithm 4-2 and our CLT method.  

 

  

 

1.   Do  

2.  Generate two independent random variables, 1U  and 2U , 

uniformly distributed over [0,1].  

3.             Set:    1V =(2* 1U )-1 

                         2V =(2* 2U )-1 

4.             Set:   2
2

2
1 VVS +=  

5.             If S >=1, go back to line 2 and get new values for 1U  and 2U  

6.     Loop until S < 1 

7.     Set:  W = 
s

s)ln(2−  

8.     Generate two independent Gaussian variables 

          1X = 1V * W 

          2X = 2V * W 

Algorithm 4-2: Polar Method 
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As an improvement to the Box-Muller algorithm, Polar algorithm eliminates the 

trigonometric calculations. Polar algorithm provides a method to generate two 

independently distributed Gaussian variables with zero mean and the unity standard 

deviation [42]. For single channel emulation, we only need to generate one Gaussian 

variable ( 1X  or 2X ). The proof of the validity of this method is elaborated in [42]. 

 

Polar algorithm is faster than the Box-Muller algorithm because it uses few 

transcendental functions, even though it throws away, on average, 21% of numbers 

generated in the Do loop.  

 

Our CLT method adopts pipelined architecture instead of an accumulator adopted by the 

traditional CLT method; therefore, our CLT method eliminates speed penalty while 

improving the accuracy of the AWGN generator.  

 

4.2 Generating Random Variables  

According to Algorithm 4-2, the first step to generate a Gaussian variable is to generate 

two independent random variables, 1U  and 2U , uniformly distributed over [0,1]. In the 

past, the random variable generation was mostly done by software. The software-based 

methods are well understood [44], [45], [46], but they frequently require complex 

arithmetic operations and thus are not feasible to be constructed in hardware. In this 

section, some techniques suitable for random number generation in hardware are first 

discussed, then the method used to generate  1U  and 2U  is introduced. 

 

4.2.1 One Bit Random Number Generator 

Ideally, the generated random variables should be uncorrelated and satisfy any statistical 

test for randomness. True randomness can be derived from certain physical phenomena, 

such as thermal noise in electronic circuit because of its well-qualified spectral and 

statistical properties. Figure 4-3 shows a representative implementation of a 1-bit true 

random variable generator [47]. In this circuit, the source Vnoise, which is the thermal 

noise of a precision resistor, is amplified and then passed to a high-speed comparator. The 
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reference voltage of the comparator, Vref, corresponds to the mean voltage of the 

amplified noise signal. The output of the comparator is sampled and latched to a register. 

The latched 1-bit signal exhibits true randomness.   

 

 

Figure 4-3: A True 1-bit Random Variable Generator 

 

The true random variable generator consists of mainly analog components and cannot be 

implemented by pure digital circuitry. The mixed-signal implementation significantly 

increases the system complexity and is relatively slow, so this method is not suitable for 

high-speed digital circuit design.  

 

One common solution is to use linear feedback shift registers (LFSRs) [48] to generate 

pseudo random variables. The sequence of a LFSR is based on specific mathematical 

algorithms. Though the generated pattern is repetitive and predictable, the sequence 

appears to be random if the cycle period of the LFSR is very large. 

 

An LFSR uses feedback from the various stages of an m-bit shift register, connected to 

the first stage by means of XOR gates. The LFSR generating a single bit random number 

is based on the recurrence equation: 

nx = 1a · 1−nx ⊕ 2a · 2−nx ⊕ ··· ⊕ ma · mnx −  

Here, ix  is the thi  number generated, ia  is a pre-determined constant that can be either 0 

or 1, · is the AND operator, and ⊕  is the XOR (exclusive-OR) operator. This implies that 

a new number )( nx  can be obtained by utilizing m previous values ( 1−nx , 2−nx ,···, mnx − )  

through a sequence of AND-XOR operations. 
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In an LFSR, the maximum achievable period is determined by m, which is m2 -1.  In 

order to achieve the maximum period, a special set of ia s has to be used. In these sets, 

most ia s are 0; only two to four of them are 1. Thus, the actual recurrence equation is 

fairly simple, and the recurrence equations are different for different values of m. Many 

books, such as [48], [49], have tables that list the recurrence equations exhaustively. 

Table 4-1 lists the recurrence equations for m with values from 2 to 8. 

 

Table 4-1: Sample Recurrence Equations 

M Recurrence equation 

2 
1−nx 2−nx  

3 
1−nx 3−nx  

4 
1−nx 4−nx  

5 
2−nx 5−nx  

6 
1−nx 6−nx  

7 
1−nx 7−nx  

8 
2−nx 3−nx 4−nx 8−nx  

 

As an example of the recurrence equation implementation in hardware, the circuit of an 

LFSR with m = 4 is shown in part (a) of Figure 4-4. A four-bit shift register, with the 

signals from the first and fourth stages fed back through an XOR gate, generates 15 

different patterns during successive clock cycles. If the initial value of the shift register is 

set to 3q 2q 1q 0q =1000, then the output of each register and the generated 1-bit output 

can be determined. The results are shown in part (b) of Figure 4-4. As can be seen from 

Figure 4-4, in an LFSR implementation, an initial seed is needed to set the initial 

condition of the registers. The seed can be any state except for all 0 combinations, which 

causes the random sequence to be stuck at zero forever. 
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(a) Circuit 

 

3q  1 1 1 1 0 1 0 1 0 0 1 0 0 0 1 ··· 

2q  0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 ··· 

1q  0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 ··· 

0q  0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 ··· 

Output 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 ··· 

(b) Generated Sequence 

Figure 4-4: LFSR-based Pseudo Random Number Generator 

 

As can be seen from Table 4-1 and Figure 4-4, an LFSR-based random number generator 

only needs an m-bit shift register and 1 to 3 XOR gates and thus the resulting circuit is 

very small and its operation is extremely fast. The generated sequence patterns have the 

characteristics of randomly created numbers. Furthermore, since the period grows 

exponentially with the size of the registers, large non-repetitive sequences can be easily 

generated. For example, with a 64-bit generator running at 1 GHz, the period is more than 

500 years. 

 

4.2.2 Multiple-Bit Random Number Generator 

It is also possible to generate multiple-bit random numbers using a LFSR. For example, 

one can use the LFSR in Figure 4-4 to generator 4-bit random variables (i.e. 3q 2q 1q 0q ). 

However, the generated random variables are highly correlated and fail many statistical 

tests since a new random number keeps most bits from the old number and contains only 

1-bit new information. To over the correlation problem, it is necessary to replace all bits 
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in the random number rather than just one bit.  One solution is to use parallel-LFSR 

method to generate multiple-bit random numbers. In this method, m independent LFSRs 

are used to generate m-bit random numbers. 

 

Besides the parallel-LFSR method, there are other methods more efficiently utilizing 

FPGA resources to generate multiple-bit random numbers. For example, multiple-bit 

leap-forward LFSR method [50] is suitable for a small number of bits, and multiple-bit 

lagged Fibonnaci method [45], [50], [51], [46] is suitable for a large number of bits. 

However, their implementations are not as simple as the parallel-LFSR method.  

 

In addition, as discussed in Chapter 4.1.1.4, cellular automata can also be used to generate 

random numbers, and is especially suitable for generating a large number of random 

variables.  

 

In our AWGN generator design, the parallel-LFSR method is used to generate random 

numbers 1U  and 2U . The FPGA resources taken by implementing 1U  and 2U  is very small. 

In the design, each of the two variables in line 2 of Algorithm 4-2 is set to be four bits in 

width, so four single bit random number generators are used to form a four-bit random 

generator. There are totally eight independent LFSRs used to generate the two 4-bit 

independent random variables ( 1U  and 2U ) in Algorithm 2. The length of each of the 

LFSR is different, and all the LFSRs produce maximum periods. In this case, 1U  and 2U  

are uniformly distributed between “0000” and “1111” (binary form). All these four bits 

represent the fractional part, so we get two independent random variables, 1U  and 2U , 

uniformly distributed over [ 0, D9375.0 ]. The maximum period of 1U  and 2U  is 

determined by the sum of all the lengths of the LFSRs, which can be adjusted to meet a 

required period. 

 

4.3 Gaussian Variable Generation 

In this section, the detailed implementation of AWGN generators is elaborated based on 

the generated random numbers 1U  and 2U . First the structure of a single AWGN generator 
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is presented, then the structure of two AWGN generators is derived. Finally, a novel 

accuracy improvement method is introduced. 

 

4.3.1 Implementing a Single Generator 

Algorithm 4-2 shows that the Polar method can generate two independent Gaussian 

variables with a single iteration. It can also be simplified to fit the structure of a single 

AWGN generator. Figure 4-5 shows the block diagram of a single AWGN generator. In 

this implementation, pipelined structure is adopted to optimize the output speed. 

 

 

Figure 4-5: Block Diagram of a Single AWGN Generator 

 

4.3.1.1 Generating 1V  and S  

1V  is generated using signed adders performing the computation 

1V = 1U + 1U -1 

Before the addition, 1U  is converted to a 6-bit signed number.  

 

Computing S involves lots of additions and multiplications, which are very time-

consuming. Most modern FPGAs include embedded RAM blocks. These blocks enable 

us to implement complex arithmetic operations with ROM-based designs, which are 
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faster than the traditional arithmetic circuit implementations. Generating S takes 

advantage of this FPGA feature. ROM-based computation is used to implement the 

function 
2

2
2

1 )1*2()1*2( −+−= UUS  

The concatenation of 1U  and 2U  is set to be the address of the ROM and the values of S are 

set to be the data stored in the ROM. Both the address and data S are 8 bits in width. All 

the 8 bits for S represent its fractional part. If computed S ≥ 1, the value of S stored in 

ROM is set to “00000000”. As data “00000000” is only used to control the w_en signal of 

the FIFO (discussed in the next section), the effective range of data S is between 

“00000001” and “11111111” in binary form. In other words, the effective range of data S 

is over [0.00390625, 0.99609375] in decimal form. 

 

4.3.1.2 FIFO Implementation 

In Algorithm 4-2, a Do loop (line 1 to line 6) is used to generate qualified S, 1V  and 2V  

for line 7 and line 8. On the average, line 1 to line 6 are executed 1.3 times of line 7 and 

line 8. To achieve a constant output rate, a synchronizing FIFO is used. The job of the 

FIFO is to synchronize the implementation of the loop and the implementation of line 7 

and line 8 in Algorithm 4-2 without losing or corrupting data. The width of the FIFO is 14 

bits, 6 bits for 1V  and 8 bits for S. The loop implementation logic sends data to the FIFO 

receiver and the FIFO transmitter sends out data to the implementation logic of line 7 and 

line 8. The structure of the synchronizing FIFO is show in Figure 4-6. 

 

The FIFO uses two clocks, clk for the receiver and clk2 for the transmitter. When S is not 

equal to “00000000”, w_en is enabled, the FIFO receiving 1V  and S at the rising edge of 

clk. Otherwise, no data is written to the FIFO and the next value of S is checked. In this 

case, the receiving data rate is a variable. In order to let the FIFO send data out at a 

constant rate (clk2), clk2 must be smaller than the average rate of receiving data. By 

setting the depth of the FIFO to be 16 and clk2 to be half of clk, a constant output rate is 

achieved.   
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Figure 4-6: Structure of the Synchronizing FIFO 

 

In the FIFO design, four extra parameters (read_pointer, write_pointer, counter and full ) 

are used to deal with the issues of synchronization, overflow and underflow. The 

parameter counter indicates how many locations have been filled with data in the FIFO 

according to the equation 

counter = write_pointer - read_pointer 

In situation of write_pointer = read_pointer, we do not know whether we have an empty 

FIFO or full one. To prevent this problem, we consider the FIFO full when 15 out of the 

16 locations are occupied with unread data. When counter =0, it indicates the FIFO 

underflow. When counter = 15, it indicates the FIFO overflow.  

  

The FIFO is guaranteed not to overflow by the following mechanism: when counter >= 

14, full signal is asserted and the LFSRs are disabled. The FIFO w_en is disabled one 

clock cycle later. In this case, the FIFO can still receive one group of data, so no data is 

missing. As the LFSRs are disabled, they stop generating data and no more data will be 

sent to the FIFO until counter < 14. Once counter < 14, LFSRs are enabled again and the 

FIFO w_en is enabled one clock cycle later if S does not equal to “00000000”. By this 

way, the counter will always be smaller than 16. The FIFO will never really overflow. 

  

With the above mechanism, the FIFO begins to send out data once counter reaches 14. 

On average, the possible rate of writing data to the FIFO is around 1.5 times faster than 

the rate of reading data from the FIFO when the clock rate of clk2 is set to be half of 
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the clock rate of clk. In this case, the FIFO, with a depth of 16, can still send data out even 

no data is written to it in 28 consecutive clk cycles. From the simulations, 5 was the 

maximum number of clk cycles in which no data was written to the FIFO (this number 

depends on the lengths and taps of LFSRs). In fact, a FIFO with depth of 8 is enough. We 

choose 16 to make our design more reliable. From the simulation results of 1 million 

clock cycles, the counter is always bigger than 10. It is concluded that the design is 

reliable enough to prevent underflow from happening. 

 

4.3.1.3 Generating W 

ROM-based design is also used to implement the function in line 7 in Algorithm 4-2  

W = 
s

s)ln(2−  

S denotes the address of the ROM. The width of S is 8 bits and all represent the fractional 

part. W denotes the data stored in the ROM. The plot of W as a function of S is shown in 

Figure 4-7.  

 

Figure 4-7: Plot of Function W(S) 

 

As S is between 0.00390625 and 0.99609375, according to Figure 4-7, W is between 

54.2835 and 0.0886. To represent W in binary form, 6 bits are needed to represent its 
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integer part. In our design, we use 14 bits to represent W, 6 bits for the integer part and 8 

bits for the fractional part. 

 

As the absolute value of 1V  from the FIFO is always smaller than 1, 1V  from the FIFO is 

clamped to 5 bits, 1 bit for the sign and 4 bits for the fractional part.  The register reg3, 

which stores the values of W and clamped 1V , is clocked by clk2, the clock rate of 

reading data from the FIFO. 

 

4.3.1.4 Generating Outputs 

The last step of implementing the AWGN generator is to implement the function 

1X = 1V * W 

This step is completed by a single signed multiplier. Before performing multiplication, 

one ‘0’ is concatenated to the most significant bit of W to convert W to signed form. The 

output of the multiplication is 19 bits in width, 1 bit for sign, 6 bits for the integer part 

and 12 bits for the fractional part. This output is sent to the output register reg4. The 

output of the reg4 is what we need, which behaves like a Gaussian random variable.  

 

The output of the AWGN generator can however be truncated to different widths, 

depending on application needs. 

 

4.3.2 Implementing Two Generators 

Figure 4-5 shows the structure of a single AWGN generator. For modulated data like 

QPSK signals, two noise generators might be needed for I and Q channels. According to 

Algorithm 4-2, the proposed one generator structure can be easily modified to implement 

two AWGN generators by adding 2V  implementation and another multiplier. The block 

diagram of two AWGN generators is shown in Figure 4-8.   

 

In this structure, the width of the registers for each stage should be increased accordingly. 

As can be seen, the hardware cost is very small to add another AWGN generator based on 
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the structure of a single generator. The proposed method of AWGN generation is 

especially suitable for multi-channel emulation. 

 

 

Figure 4-8: Block Diagram of Two AWGN Generators 

 

4.3.3 Accuracy Improvement 

In our implementation, Central Limit Theorem method can also be used to smoothen the 

variation of the distribution when high accuracy is need. As discussed in Chapter 4.1.1.1, 

CLT method traditionally uses an accumulator. However, the accumulator will slow 

down the speed of the output. For example, when N = 4, where N is the number of 

random variables to be accumulated, the output rate after the accumulator is only one-

fourth of that before the accumulator. As our implementation can produce two AWGN 

generators with little hardware cost, we can achieve one AWGN generator with better 

performance by simply adding the outputs from the two AWGN generators shown in 

Figure 4-8. This implementation does not incur the speed penalty. 

 

To overcome the speed penalty problem, we propose a new CLT method for accuracy 

improvement. The block diagram of this method is shown in Figure 4-9, which 

implements the case when N = 4. The proposed scheme does not exhibit the speed 

penalty while improving accuracy. 
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Figure 4-9: New CLT Method 

 

4.4 Experimental Results 

In this section, the statistical results based on the outputs of our AWGN generators are 

presented and compared with the theoretical properties of Gaussian distributions and 

other methods. The AWGN theoretical properties are discussed in Chapter 2.2.2. 

Experimental results demonstrate the suitability of our AWGN generators for channel 

emulation. 

 

4.4.1 Experimental Statistical Properties  

As the outputs of an AWGN generator are random variables with a mean of xm  and a 

standard deviation of δ , its performance evaluation should be based on statistics of the 

real outputs of the AWGN generator. According to the lengths of the LFSRs used to 

generate 1U  and 2U , the period of the generator may reach the range of n2 , where n is the 

sum of the lengths of the LFSRs. When n is equal to 50, the period is greater than 1510 . In 

this case, the complete verification of the AWGN generator should be based on the 

statistics of a very large number of samples, at least greater than 1510 . Statistically 

evaluating the performance of such larger number of samples needs a lot of hardware 

resources and time. Our experiments show that statistical results of thousands samples are 

a good approximation for the performance evaluation of the real AWGN generator. In this 

part, we show the statistical properties of 10,000 and 500,000 samples from the output of 
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our AWGN generator. The process of getting the statistical properties consists of the 

following four steps:  

 

1) Write the AWGN generator (VHDL top-level design) binary outputs to a text file.    

 

2) The output data is imported to a C program that generates the probability density 

function (PDF) of the outputs from the generator by sorting the outputs and computing 

the probability density ][ nxP  of each output. 

   

3) The mean xm  and standard deviation δ  of the AWGN generator are calculated from its 

PDF according to the following definitions. 

Mean                  ∑=
n

nnx xPxm ][  

Mean-Square     ∑==
n

nnx xPxxEm ][][ 222  

Variance             ])[( 22
xmxE −=δ 22][ xmxE −=  

 

4) Q( x ) of our AWGN generator is obtained according to  

∑
=

=
n

i
ii xPxxQ

1

][)(  

where ix , i = 1, 2, …, n are the possible discrete values from our AWGN generator that 

meet the condition of ix ≥ x ; P( ix ), i = 1, 2, …, n are the possibilities of ix . 

 

In this evaluation process, Q( x ) is the area under the tail of Gaussian PDF. It represents 

the probability that the Gaussian variable is between  x  and +∞. The theoretical value of 

Q( x ) is computed according to 

∫
∞ −=
x

t
dtxQ e

22

2

1
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π
 

        )
2

(
2

1 x
erfc=  

where )(xerfc is the complementary error function. 
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Table 4-2 shows the mean, variance and standard deviation of our generator. Displayed 

are the cases of 10,000 and 500,000 samples, respectively. 

 

Table 4-2: Performance of our AWGN Generator  

Samples 10,000 500,000 

Mean 0.015835 0.008649 

Variance 0.867620 0.866119 

Standard Deviation 0.931461 0.930655 

 

As we can see from Table 4-2, the relative error of mean and standard deviation of our 

AWGN generator is very small. For 500,000 samples, the relative error of mean is 

0.008649 and the relative error of standard deviation is 0.069345. We can also see from 

the above table that the relative error of the mean decreases when the number of samples 

increases.  

 

The relative error of Q( x ) of our AWGN generator is shown in Table 4-3. Relative errors 

are computed according to  

              
)(

)()(

xTheoryQ

xTheoryQxOurQ
errorrelative

−=  

 

Table 4-3 shows the results of Polar algorithm only implementation (Figure 4-5) with 

10,000 samples and the implementation combining Polar algorithm and Central Limit 

Theorem (Figure 4-5 + Figure 4-9) with 10,000 and 500,000 samples. 

 

As can be seen from Table 4-3, our method with the parameters shown in Figure 4-5 

implements a high precision AWGN generator even with a limited number of samples. 

Our proposed CLT method shown in Figure 4-9 can further smoothen the variation of the 

distribution. We can also see from the above table that the relative error of Q( x ) 

decreases when the number of samples increases.  
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Table 4-3: Q( x ) Relative Error of our AWGN Generator 

Q( x ) Relative Error of Our Generator  

Figure 4-5 + Figure 4-9 

 

x  Theory Q( x ) Figure 4-5  

10,000 samples 10,000 samples 500,000  samples 

0 0.5000 2.76 % 1.02 % 0.24% 

0.2 0.4207 -2.50 % 0.50 % 0.42% 

0.4 0.3446 1.69 % 0.26 % 0.55% 

0.6 0.2743 -0.10 % 1.06 % 0.80% 

0.8 0.2119 1.88 % 1.74 % 1.09% 

1.0 0.1587 4.70 % 3.21 % 1.20% 

1.2 0.1151 -7.17 % 3.99 % 1.49% 

1.4 0.0808 -4.29 % 4.95 % 1.85% 

1.6 0.0548 -3.06 % 6.57 % 2.37% 

 

4.4.2 Synthesis Results 

Table 4-4 shows the synthesis results obtained with the parameters and structure shown in 

Figure 4-5. The synthesis has been done using Quartus II tools by Altera. 

 

Table 4-4: Synthesis Results of the AWGN Generator 

FPGA Device Logic Elements ESB Bits Output Rate * 

EP1M120F484C7 336/4800 (7%) 5856/49152 (11%) 73.48MHz 

* Output rate is counted in words.  The output is 19 bits in width.  

 

As seen from Table 4-4, the AWGN generator only takes a small part of the FPGA. It is 

possible to emulate a whole communication system or a test scheme, where a 

communication channel emulator is needed, in a single FPGA device. 

 

4.4.3 Comparison 

Table 4-5 shows the performance comparison of our method shown in Figure 4-5 and 

Figure 4-9 with the mixed method in [17]. The statistical properties are based on 500,000 
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samples. The mean, variance and standard deviation properties of the mixed method are 

from our design based on [17]. The output rate of the mixed method is from [17], where 

the FPGA device is 10K100EQC240-1. 

 

Table 4-5: Comparison of our Method with Mixed Method 

Implementation Our Method Mixed Method 

Mean 0.008649 0.001009 

Variance 0.866119 2.065968 

Standard Deviation 0.930655 1.437347 

Output Rate 73.48MHz 24.5MHz 

 

As can be seen from Table 4-5, both methods are suitable for implementing high accuracy 

AWGN generators, but our method exhibits higher speed; especially, when N increases 

for higher accuracy, the output rate of the mixed method will further decrease while ours 

keeps constant. 
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Chapter 5 – Case Studies 

 
This chapter addresses the applications of the proposed BERT core and the AWGN core. 

Two cases are studied: one is testing a gigabit clock data recovery (CDR) circuitry 

included in Altera Mecury FPGAs; the other is testing the BER performance of digital 

baseband transmission under different noise conditions. We demonstrate through the case 

studies that the proposed BER testing solutions exhibit advantages in cost and speed over 

existing test methods.  

 

5.1 CDR Circuitry Testing 

5.1.1 Significance of the Serial Communication Interface 

Serial communication interfaces support multi gigabit data transmission. In recent years, 

the rapid development of two technologies makes the high-speed communication 

available. The first one is differential I/O standards, such as low-voltage differential 

signaling (LVDS), low-voltage positive emitter coupled logic (LVPECL) and pseudo-

current mode logic (PCML). Typically, single-ended I/O standards, such as in PCI and 

VME bus standards, are noise limited and load limited to about 200 Mbps. They reach 

noise limitations at frequencies of about 250 MHz before signal integrity deteriorates. 

Differential I/O standards break the frequency barrier of single-ended I/O standards with 

common mode rejection and allow data transmission at higher speed, though the clock 

skew issue arises for differential I/O standards when the frequency nears 1 gigabit per 

second.  

 

Another technology enabling high-speed serial communication is CDR. Removing clock 

skew concerns by encoding the clock into every data stream, CDR circuitry guarantees 

that the clock and data are always perfectly in phase. Hence, it eliminates frequency 

barriers faced by source-synchronous systems.  Figure 5-1 shows the CDR functionality: 
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a transmitter embedding the clock in the data stream and a receiver recovering the clock 

from the data. 

 

 

Figure 5-1: CDR Transmission Mechanism 

 

At the present time, many serial transceivers, which employ the CDR technology and 

differential signaling, support applications that run up to 3.125 gigabits per second. The 

roadmaps of many companies point to 5 and 10 gigabits per second on each pair of wires. 

In addition, a wider pipe or datapath can be built by gluing multiple multi-gigabit 

transceivers. Figure 5-2 shows an example of transmitting 64 bits of data at 125 MHz 

through 8 transceivers, for an aggregated data rate of 8 Gbps. 

 

Figure 5-2: Applications of Multiple Transceivers 

 

Besides the high-speed capability, the serial communication also provides simplified 

routing. In serial communication, data is transmitted one bit at a time down one wire. In 
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multi-gigabit transceivers, differential I/O standards are used and two wires are needed 

for each connection. But the wires are still much reduced from the parallel approach. 

Furthermore, in serial communication, the clock signal is embedded in the data and no 

clock skew exists. All these factors greatly simplify the routing of serial communication. 

Routing for parallel communication is always very channeling. Such as in an 8-bit 

parallel communication system, 8 or 16 wires are needed for data signals and another one 

or two wires are needed for the clock signal. Routing 9 or 18 wires across a board and 

keeping them all synchronized are hard, especially for long distance connections.  

 

Because much less wires are used in a serial communication system compared with a 

traditional parallel system, this makes it possible to put more and more circuitry on one 

die or in one package. Serial communication greatly relieves the package pin count 

“bottleneck” problem for system-on-chip (SOC). 

Ω

 

Figure 5-3: Current-Mode LVDS Driver [52] 

 

Finally, a significant advantage of serial communication is the lower power requirement. 

For a 3.125 Gb link, it only consumes 300 mW. Low power consumption is mainly 

achieved by using low voltage differential signaling technologies, such as LVDS. As 

shown in Figure 5-3, LVDS technology uses a constant-current line driver rather than a 
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voltage-mode driver, so the supply current remains constant as the operating frequency 

increases, whereas the supply current for CMOS and GTL technology increases 

exponentially as frequency increases. The low power consumption of serial 

communication interfaces eliminates the need for either heat sinks or special packaging. 

Hence, serial communication reduces the system cost. 

 

5.1.2 Structure of the Serial Communication Interface 

A gigabit transceiver consists of two parts: a transmitter and a receiver. For most 

transceivers, the two parts are separated. They can function independently for half-duplex 

operation, or can be combined for full-duplex operation. The block diagram of a 

transceiver is shown in Figure 5-4. 

 

 

Figure 5-4: Block Diagram of a Transceiver 

 

The transmitter receives parallel data and converts it into a serial format. The transmitter 

needs a clock input, which is synchronized with the parallel data. This clock is used to 

latch the parallel data and generate the internal high-speed serial clock for the serializer 

by a PLL circuit.  The serialized data is sent to a differential line driver, which drives the 

serial data to the transmission media. 

 

The receiver accepts high speed serial data and restores it to the original parallel format. 

The internal CDR circuit generates a recovered clock derived from the received serial 
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data, and re-times the data. Then the re-timed serial data is restored to parallel format by 

the deserializer.  

 

In the above transmission mechanism, special encoding logic and decoding logic are 

needed to manipulate the transmitted data to make sure that the CDR circuit can function 

correctly. On the transmitter side, the clock is embedded in the serial data; on the receiver 

side, the CDR circuit extracts clock information by monitoring the transitions of the 

received data. Therefore, the data must have enough transitions on the transmitter side, no 

matter what data sequences are transmitted through the serial link. Otherwise, the clock 

information may be lost. For example, if we want to transmit an 8-bit word consisting of 

all zeros and the word is directly serialized to 8 consecutive zeros in the serial link, the 

receiver will have trouble to recover the clock as no transition exists.  

 

One solution to guarantee enough transitions is to encode the original parallel data using 

an 8B10B encoder.  An 8B10B encoder converts 8-bit words into 10-bit words, so it can 

always make sure there are bit transitions, regardless of what pattern you send. In the 

8B10B encoding scheme, there are four different symbols for the zero character which 

gets interpreted as zero. This ensures that there are enough transitions for the clock 

recovery network to keep the system synchronized. On the receiver side, 8B10B decoding 

logic is used to convert the 10-bit format to the original 8-bit format. Before the decoder, 

a frame or word alignment block is needed to recognize the word boundary to correctly 

restore the transmitted parallel sequences. The restored sequences after the 8B10B 

decoder are presented on the output ports of the receiver. 

 

When the transceiver is included as a macro cell integrated in an ASIC or FPGA, the 

parallel data input ports of the transmitter and the parallel data output ports of the receiver 

are connected to the internal circuit of the chip, while the serial port is interfaced to the 

outside media, such as an SMA cable, an optical link, a twisted pair wire, etc., depending 

on applications. 
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In the transmitter structure shown in Figure 5-4, The Encoding Logic block and Decoding 

logic & Frame Alignment block can be built with digital circuits; all other blocks can only 

be built with analog circuits. For transceivers embedded in FPGAs, the analog blocks are 

usually hard cores, but the users can set some parameters, such as PLL frequency boost 

factors and differential signaling formats. For digital blocks, the users have the freedom 

to use IP cores or develop their own designs. 

  

5.1.3 Mercury Gigabit Transceiver 

In this thesis, all the designs and testing schemes are implemented in an Altera Mercury 

FPGA. Its high performance and availability make the Mercury FPGA an ideal target 

device for the work.  

 

Mercury devices seamlessly integrate a high-speed CDR-optimized programmable logic 

core, which provides speeds of up to 1.25 Gbps per channel and total CDR bandwidth of 

45 Gbps to power next-generation high-speed connections that use standard protocols 

such as Gigabit Ethernet and SONET/SDH. The Mercury CDR circuitry is an ideal 

candidate for the case study of the serial communication testing.  

 

In addition to the CDR function, there are many other excellent features in Mercury 

devices. These features also make Mercury devices suitable for implementing the AWGN 

core, the BERT core, and the whole testing scheme. For example, ESBs and distributed 

multiplier circuitry have already been used in the development of the AWGN core. More 

features will be used in the CDR transceiver testing setup. In Mercury family, there are 

two members, EP1M120 and EM1M350, which are shown in Table 5-1. The BER testing 

scheme can be implemented in any FPGA device, but we specifically target EP1M120 

devices. 

Table 5-1: Mercury Device Family 

Device Gates Pin / Package I/O Pins 
CDR 

Channels 

Logic 

Element 

RAM Bits 

(ESB Bits) 

EP1M120 120,000 484-Pin BGA 303 8 4,800 49,152 

EP1M350 350,000 780-Pin BGA 486 18 14,400 114,688 
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The Altera Mercury gigabit transceiver is implemented in the high-speed differential 

interface (HSDI). The HSDI is dedicated to transmitting and receiving high-speed serial 

data streams between the Mercury device and other devices on a circuit board or across a 

backplane. Each HSDI transceiver consists of a transmitter and a receiver. Figure 5-5 

shows the block diagram of one of the HSDI receiver and transmitter channels (channel 

4) of a Mercury EP1M120 device. 

 

J

1

J

1

 

Figure 5-5: HSDI Circuitry Block Diagram 

 

Each EP1M120 device contains 8 transceivers. Each channel has the same structure as the 

general transceiver as shown in Figure 5-4. But in Figure 5-5, more details are included. 

The transmitter channel has a dedicated synchronizer and a serializer; The receiver 

channel has dedicated circuitry consisting of a clock recovery unit (CRU), a deserializer, 

and a synchronizer. The HSDI PLL circuitry is dedicated to providing clock signals for 

the transceiver. The following gives a brief introduction about how the PLL and CRU in 

the Mercury HSDI circuitry work. The other parts in the CDR circuitry and extra logic 

needed to build a system, such as 8B10B coding and frame alignment, have already been 

discussed in Chapter 5.1.2. 
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In CDR mode, an external reference clock is fed to one of the two dedicated HSDI PLLs, 

HSDI PLL1 or HSDI PLL2. The PLL multiplies the reference clock by a factor W. W is 

determined by the ratio of the reference clock frequency and the rate of transmitted data 

stream. The two dedicated HSDI PLLs are separated from the general-purpose PLLs in 

the Mercury device. Figure 5-6 shows a diagram of a HSDI PLL. 

 

÷

 

Figure 5-6: HSDI PLL Block Diagram 

 

At each rising edge of the reference clock (HSDI_CLK), the phase/frequency detector of 

the HSDI PLL detects the phase difference between the reference clock and the clock 

generated by the voltage controlled oscillator (VCO) and divided by W. A voltage is 

generated in the charge pump by filtering the high-frequency changes in the phase 

difference, and this voltage drives the VCO. By taking outputs from the VCO, the PLL 

generates eight clocks with the same frequency as the serial input data. Each clock has a 

81  period phase shift. 

 

There are no phase-relationship requirements between the reference clock and the serial 

input data.  On each receiver channel, a CRU uses the multiplied reference clocks to 

generate a recovered clock in-phase with the received data. Figure 5-7 shows the CRU 

block diagram.  
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Figure 5-7: CRU Block Diagram 

 

On each data transition, the phase detector decides if the current recovered clock is early 

or late. The decision of the phase detector is sampled and averaged by the phase detection 

averaging circuit. The averaging circuit drives two multiplexers to select the two clock 

phases that are closest to the ideally recovered clock. The interpolator uses the 

interpolation factor from the averaging circuit to generate a clock that is between the two 

clocks. Each of the eight equally-spaced phase clocks is divided into seven fractions; 

therefore, the resulting best-case clock granularity is 561  of the clock period. Then, the 

recovered clock is used to deserialize and synchronize the data. The recovered clock can 

be driven to the global clock lines from channels 4 and/or 5. 

 

5.1.4 Testing Setup 

Based on the structure of the Mercury HSDI transceiver as discussed in Chapter 5.1.3 and 

the BERT core presented in Chapter 3, a setup to test the functionality of a Mercury 

HSDI transceiver is developed and shown in Figure 5-8.  

 

The setup consists of four parts: a PLL, a HSDI transceiver, a BERT, and glue logic 

blocks. All the components are implemented in a Mercury FPGA, EP1M120. The BERT 

is the parallel BERT core presented in Chapter 3, and the data width of the BERT is 8 

bits. 

 



 80

 

Figure 5-8: Testing Setup for the Mercury HSDI Transceiver 

 

The PLL is one of the four general-purpose PLLs with programmable multiplication in 

the Mercury device, and it generates a stable core clock signal. In the testing setup, the 

PLL is implemented using the MegaWizard Plug-In Manager by instantiating the mega 

function ALTCLKLOCK. A mega function is a complex or high-level building block that 

can be used together with gate and flip-flop primitives in Quartus II design software [53]. 

Altera provides a library of mega functions, and MegaWizard Plug-In Manager is a 

procedure used to instantiate the mega functions in Quartus II development tool. Based on 

the required core clock frequency, the PLL block generates the core clock signal 

(CoreClk) by multiplying and dividing the input clock signal RefClk by proper factors. 

For examples, if the available input clock signal is RefClk = 25 MHz and we need a core 

clock signal which is CoreClk = 50 MHz, we set the clock multiplication factor to be 2 

and the clock division factor to be 1 when instantiating the mega function 

ALTCLKLOCK. The core clock signal, CoreClk, is used by all other blocks. 

 

The transmitter and the receiver in the HSDI transceiver can be any one of the eight 

channels included in a Mecury EP1M120 device. In the test setup, we set both the 

transmitter and the receiver to be channel 5 when assigning input and output pins. The 

HSDI transmitter is implemented by instantiating the megafunction ALTCDR as a CDR 
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transmitter, and the HSDI receiver is implemented by instantiating ALTCDR as a CDR 

receiver [54]. The deserialization factor J is the width of the parallel data, which is set to 

be 10. The inclock boost factor W is set to be 20 when the input clock rate is 25 MHz and 

the core clock rate is 50 MHz, resulting in a 500 MHz clock signal for the serial data. 

 

In this testing setup, the PLL, the HSDI transmitter and the HSDI receiver can only be 

built by instantiating the mega functions. These functions are hard macros in Mercury 

FPGA devices. They are not programmable logic cores, but we can set some parameters 

according to our applications.  

 

The glue logic blocks are developed to interface the BERT and the transceiver. In the 

testing setup, the BERT sends 8-bit PRWSs to the glue logic blocks. The glue logic 

encodes the 8-bit sequences to 10-bit sequences. It also inserts synchronization words 

(comma words) at the start of the testing for word alignment. A FIFO is used to make 

sure that there is always data ready for transmission after a testing begins. The Error/Slip 

Injection block is used to inset errors or word slips for the purpose of testing the BERT. 

The Word Alignment block is used to make the received parallel data in phase with the 

parallel data in the input of the transmitter. The 8B10B Decoder block recovers the 8-bit 

PRWSs sent by the BERT from the received 10-bit sequences, and then feeds the 

recovered 8-bit data back to the BERT for error detection. 

 

The Error/Slip Injection block is built using an 8-bit parallel shift register controlled by a 

2-bit control signal, err_slip, in a way similar to the control signal of the DUT described 

in Chapter 3.  When err_slip = 00, the shift register delays the input by 3 clock cycles, 

emulating the normal operation; when err_slip = 01, the shift register delays the input by 

2 clock cycles, so it emulates a bit loss; when err_slip = 10, the shift register delay the 

input by 4 clock cycles, so it emulates a word repeat; when err_slip = 11, the output of 

the shift register is set to be 1s, so it emulates an error burst.  

 

The 8B10B Encoder block encodes 8-bit data into 10-bit codes, and the 8B10B Decoder 

performs the reverse. In this design, we use Altera 8B10B Encoder/Decoder MegaCore to 
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implement the encoding and decoding logic [55]. The encoding/decoding process is 

shown in Figure 5-9. In serial transmission, the least significant bit (LSB) is always 

transmitted and received first, while the most significant bit (MSB) is transmitted and 

received last. 

 

0123456789

7 56 4 3 2 1 0

abcdeifghj

ABCDEFGH

8B10B Conversion

MSB LSB

8-bit data

10-bit code

 

Figure 5-9: 8B10B Coding Process 

 

As can be seen from Figure 5-9, the eight bits named A, B, C, D, E, F, G, and H, are split 

into two group: the five-bit group A, B, C, D, E, and the three-bit group F, G, H. A is the 

LSB and H is the MSB. The coded 10 bits named a, b, c, d, e, i, f, g, h and j, are also split 

into two groups: the six-bit group a, b, c, d, e, i, and the four-bit group f, g, h, j. The order 

of the 10 bits code is not alphabetical.  

 

The 8B10B encoder/decoder core maintains a neutral average disparity. Disparity is the 

difference between the number of 1s and 0s in the encoded word. Neutral disparity 

indicates the number of 1s and 0s are equal, while positive disparity indicates more 1s 

than 0s and negative disparity indicates more 0s than 1s; therefore, average disparity 

determines the DC component of a serial line. Running disparity, which is done by the 

encoder, is a record of the cumulative disparity of every encoded word. To guarantee 

neutral average disparity, a positive running disparity must be followed by a neutral or 

negative disparity; a negative running disparity must be followed by a neutral or positive 

disparity. Details on running disparity rules can be found at [56]. 
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 In the coding scheme, in additional to the 256 data characters, the 8B10B codec defines 

twelve out-of-band indicators, which are also called special control (K) characters. 

Special K characters can be used for word alignment (packet delimiters), idle indicators, 

or other special purposes. In the testing setup, only the comma character (K28.5 in 10-bit 

special K code) is used for alignment purposes. The Comma Word block generates 

comma characters. 

 

The FIFO can be built using the method as presented in Chapter 4. It can also be built 

using the FIFO mega function provided in Quartus II software. 

 

The Word Alignment block realigns the received parallel data to generate parallel data in 

phase with the data in the input of the transmitter. The block diagram of the Word 

Alignment Block is shown in Figure 5-10. 

 

 

Figure 5-10: Block Diagram of Word Alignment 

 

The deserialized 10-bit parallel data rx[9..0] from the output of the HSDI receiver is not 

certainly in phase with the input parallel data of the transmitter. The data rx_d[9..0] is 

generated by delaying rx[9..0] by one clock cycle. Based on rx[9..0] and rx_d[9..0], the 

phase shifter generates 10 parallel words. Each of the word is shifted by one serial clock 

cycle from the next one. For the 10 10-bit data words, there must be one and only one 
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word that is in phase with the transmitted data.  This word is detected by comparing each 

of the ten words with the comma character K28.5 at the beginning of the transmission. 

The comparator generates control signals of the multiplex based on the comparison 

results. The multiplex locks onto the first received comma character and keeps the same 

alignment until a new transmission begins. The output of multiplex is sent to the 8B10B 

decoder to restore the 8-bit data sent by the BERT. 

 

All the blocks in Figure 5-8 are implemented in VHDL, targeting the Mercury 

EP1M120F484C7AES device using Quartus II development tool.  The synthesized results 

are downloaded onto an Altera Mercury HSDI CDR Demo board. The outputs of the 

transceiver are connected to the inputs of the receiver by two SMA cables, and LVDS 

format is used for the transmission. The delay of the transceiver and the glue logic is 42 

clock cycles. Both simulation results and zero BER (when err_slip = 00) obtained from 

the real test running in hardware demonstrate the functional correctness of the HSDI 

transceiver and the feasibility of the testing setup.    

 

5.2 Baseband Transmission Testing 

In this section, we present the baseband transmission testing setup and its test results in 

terms of BER as a function of SNR. The test setup mainly consists of the BERT core 

presented in Chapter 3 and the AWGN core presented in Chapter 4. The test results are 

very close to the theoretical values. The proposed BER test scheme presented in Chapter 

2.3 is verified through the experiment. 

 

5.2.1 Baseband Signal Formats 

In digital baseband transmission systems, there are various time domain signal formats. 

Figure 5-11 illustrates return zero (RZ), non return zero (NRZ) and non return zero 

inverted (NRZI) signaling for the binary information data sequence 10011011. The NRZ 

and NRZI formats are commonly used in digital baseband transmission. 
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Figure 5-11: Baseband Signal Formats 

 

In a RZ transmission system, the binary information digit 1 is encoded as a high signal 

represented by 1, but the high signal returns to zero state before reaching the end of the 

bit interval. For illustrative purpose, it is assumed that the return occurs at the midpoint of 

the interval in Figure 5-11. In a RZ transmission system, the binary information digit 0 is 

encoded as a low signal represented by 0.   

 

In NRZ format, the binary information digit 1 is encoded as a high signal represented by 

1, and the binary information digit 0 is encoded as a low signal represented by 0. NRZ is 

the simplest baseband signal format. The NRZ modulation is memoryless and is 

equivalent to a binary pulse amplitude modulation (PAM) or a binary PSK modulation in 

a carrier-modulated system [13].  The NRZ signaling format is more bandwidth efficient 

than RZ, as the pulses of NRZ signaling are wider than the RZ format. 

 

However, there are two particular problems associated with NRZ transmission. First, 

when the transmitted data is static, which means there is no change from one bit interval 

to the next, there is no transition in the transmitted waveform. This causes timing 

problems when establishing bit synchronization. The second problem occurs with data 
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inversion. If the levels of transmitted waveform are accidentally inverted during 

transmission, all the data is inverted, hence every bit is in error. Inversion can occur in 

several ways, such as a phase shift or losing track of the number of inversions. 

 

To overcome these problems, NRZI format is introduced. NRZI signaling adopts 

differential techniques, in which the data is represented as changes in levels, rather than 

particular levels, of the signal.  In NRZI format, the binary information digit 1 results in a 

signal transition, which can be either a low-to-high or a high-to-low; the binary 

information digital 0 results in no signal transition, which means the signal amplitude 

level remains unchanged. This type of signal encoding is called differential encoding. The 

coding operation is described mathematically by the relation 

1−⊕= kkk bab  

where ka is the binary information sequence into the NRZI encoder, kb  is the output of 

the encoder, and ⊕  denotes the exclusive-OR operation (addition modulo 2). Based on 

the mathematical model, it is easily to get the structure of the NRZI encoder, as shown in 

Figure 5-12 (a), where 1−Z  denotes one-cycle delay. 

 

⊕

1−Z

ka
kb

1−kb

⊕

1−Z

ka
kb

1−ka

 

                  (a) Encoder                                                     (b) Decoder 

Figure 5-12: The Structure of a NRZI Encoder and Decoder 

 

The NRZI decoder can be implemented as shown in Figure 5-12 (b). It compares the 

NRZI encoded signal to a delayed version of itself. If the two signals are the same in an 

interval, we know that 0 is being sent; if the two are different, a 1 is being sent. An 

exclusive-OR gate performs this decision process. 
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5.2.2 SNR Setting 

Recall that from Chapter 2.1.2.1, when the correlation ρ = 0 in baseband transmission, 

we have )(
o

e N

E
QP = , where eP  is BER, and 

0N

E
 is SNR. In other words, the theoretical 

relationship between BER and SNR is characterized by 

)( SNRQBER =  

 

As can be seen from the above equation, BER is only determined by SNR . In NRZ 

transmission systems, one (high level signal) is used to transmit data ‘1’ and zero (low 

level signal) is used to transmit data ‘0’. We assume that data 1s and 0s have equal 

occurring probability, the average energy of two signals is  

2
10 EE

E
+

= = 0.5 

 

In an AWGN communication channel, the noise is Gaussian and characterized by a mean 

of zero and a variance of 2δ . The energy of the noise can be represented by 

22δ=oN  

 

Though the above equations are derived from NRI signaling, they are also applicable to 

NRZI signaling. This is verified at the end of this case study. Combining the equations for 

E  and oN , we can get the equation for the SNR of baseband transmission. The SNR is 

determined by the variance of the noise and expressed as 

24

1

δ
=SNR            (5.2-1) 

 

In Chapter 4, an AWGN generator with zero mean ( 0=xm ) and unity variance ( )12 =δ  

has been developed. The variance of the generator can be changed to any value by adding 

a divider at the output of the generator. Suppose the original output is denoted by x , and it 

is divided by a , then the new variance of the generator becomes 
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Combining equations 5.2-1 and 5.2-2, we have  

4

2a
SNR =  

where a  is the scaling factor of the AWGN generator with zero mean and unity variance. 

By changing a , we can get different SNR conditions for the AWGN communication 

channel. 

 

5.2.3 Testing Setup and Results 

Based on the AWGN communication channel model discussed in Chapter 2.2.1, the 

testing setup for digital baseband is developed and shown in Figure 5-13. 

 

÷

 

Figure 5-13: BER Testing Setup for NRZ Digital Baseband 

 

In the testing setup shown in Figure 5-13, the AWGN generator block and the BERT 

block are the IP cores introduced in Chapter 3 and Chapter 4, respectively. This testing 

setup also constitutes a digital communication system. In this system, the transmitter 

consists of the pattern generator; the communication channel consists of the AWGN 
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generator, the divider and the adder; the receiver consists of the comparator and output 

decision block. The error detection block is used for performance evaluation. 

 

The output from the pattern generator is PRBSs. The output sequence, denoted by s(t), is 

the data signal to be transmitted. The data signal s(t) is corrupted by the noise signal n(t) 

in the AWGN communication channel. The noise signal n(t) is derived from g(t) by 

dividing g(t) by the scaling factor a , where a  is six bits in width, five for integer and one 

for fraction. By setting the value a , the SNR condition of the communication system can 

be set. The noise signal g(t) is the output of the AWGN generator with zero mean and 

unity variance. As discussed in Chapter 4, the noise signal g(t) is 19 bits in width, 1 bit 

for the sign, 6 bits for the integer and 12 bits for the fraction.   

 

The noise corrupted data signal r(t) is compared with a threshold to determine the output 

of the receiver. In NRZ transmission system, 0s and 1s are transmitted and they have 

equal occurring probability; therefore, the threshold is set to be 0.5. If r(t) is bigger than 

0.5, r`(t) is set to be 1; otherwise, r`(t) is 0. Finally, the received bit sequence r`(t) is 

compared with a delayed transmitted sequence s(t) bit by bit, and errors are counted. The 

measured BER is the ratio of the counted errors and the number of transmitted bits.  

 

Table 5-2 lists the BER test results. The measurements are taken while running the 

AWGN core and the BERT core in an Altera Mercury FPGA board at the speed of 25 

MHz.  

 

Table 5-2: BER Measurements for Digital Baseband 

Scaling Factor a  2 3 4 5 6 7 8 

Variance 2δ  1/4 1/9 1/16 1/25 1/36 1/49 1/64 

SNR 1 2.25 4 6.25 9 12.25 16 

SNR (dB) 0 3.52 6.02 7.96 9.54 10.88 12.04 

Error Count 2024 819 289 113 1195 176 162 

Transmitted Bits 12448 12448 12448 20000 1000000 1000000 10000000 

Measured BER 1.62e-1 6.58e-2 2.32e-2 5.65e-3 1.20e-3 1.76e-4 1.62e-5 
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In Table 5-2, the following equations are used. These equations have been discussed 

previously. 

2δ =
2

1

a
 

4

2a
SNR =  

dBitsTransmitte

ErrorCout
BERmeasured =  

 

In the above digital baseband testing, the signal format is NRZ. For a NRZI baseband 

communication system, the testing setup shown in Figure 5-14 is used to test its BER 

performance.  

 

In Figure 5-14, the structure of the NRZI encoder and the NRZI decoder is the same as 

these shown in Figure 5-12. The other blocks have already been introduced in the NRZ 

digital baseband testing setup. The NRZI testing results are the same as the test results 

shown in Table 5-2. 
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Figure 5-14: BER Testing Setup for NRZI Digital Baseband 
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Figure 5-15 shows the plot of the measured BER and theoretical BER of digital baseband 

as a function of input SNR. Recall from Chapter 2.1.2.1, the theoretical BER of digital 

baseband is given by  

)
2

(
2

1
)(

SNR
erfcSNRQBER ltheoretica ==  

 

 

Figure 5-15: Plot of Measured BER and Theoretical BER for Digital Baseband 

 

As can be seen from Figure 5-15, the measured BER closely matches the theoretical BER. 

This match can be further improved by optimizing the threshold voltage setting or 

increasing the number of samples. The plot demonstrates that the proposed AWGN core 

is suitable for communication channel emulation and that the BER testing results using 

the BERT core are reliable. In the above testing, it takes less than one second to generate 

the point at 1.62e-5 BER; in software simulations, this usually takes days. The proposed 

BER test scheme exhibits astronomical advantage in speed over traditional software 

simulation methods. 
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Although the experiment is based on testing a digital baseband system, the proposed BER 

testing scheme applies to any digital transmission system using AWGN communication 

channels. Only glue logic might need to be changed for different applications. For other 

communication channels, the proposed AWGN core can be modified to emulate the 

channels. 
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Chapter 6  - Conclusions 

 

6.1 Conclusions  

In this thesis, an FPGA-based BER testing scheme is presented. The scheme can measure 

the BER performance of a wide range of digital communication systems. Compared with 

traditional software simulations, the proposed BER testing scheme is a few orders of 

magnitude faster. Compared with traditional standalone BERT and ATE equipment, the 

proposed solution is much cheaper. It is also easy to set up for BER testing under 

different noise conditions as a novel implementation of an AWGN communication 

channel emulator is included in this scheme. In addition, FPGA-based solution makes it 

easy to interface different DUTs. 

 

The proposed BER testing scheme mainly consists of two independent IP cores: a BERT 

core and an AWGN core. The two cores can also be used separately for different 

applications. In this thesis, two challenging testing cases were successfully conducted 

using the proposed IP cores. We demonstrate through case studies that the proposed BER 

testing scheme exhibits excellent performance in speed and cost.  

 

6.2 Future Work 

One can note that the DUT of the BER testing system must be the combination of an 

encoder and a decoder, or the combination of a modulator and a demodulator. If we want 

to test the performance of a decoder, a reference module (e.g. an encoder) needs to be 

added in the testing setup. It would be more convenient to test the BER performance of a 

receiver using the IP cores if a parameterized reference encoder and/or modulator can be 

included in the testing scheme.  

 

In addition, as BER and jitter are closely related, jitter testing and jitter separation 

schemes can be devised based on BER testing schemes [57], [58], [59]. Jitter testing is a 
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very challenging issue and its importance has been widely recognized as the transmission 

speed is becoming higher and higher. The proposed BERT core and the AWGN core can 

be used as a good start point for jitter testing research. With the continuing enhancement 

of FPGA performance, it is possible to build a jitter testing scheme in a single FPGA, 

especially in a SoC or DSP oriented FPGA device.   
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