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Abstract: 

Post-silicon debugging process is aimed at locating errors that 
concealed themselves during the process of pre-silicon 
verification. Although in the post-silicon validation engineers 
can exploit the high speed of hardware prototype to exercise 
huge amount of test vectors, low level of real-time observability 
and controllability of signals inside the prototype is too big an 
issue.  Various Design for Debug (DFD) techniques aim to 
improve the observability of signals and expedite the root cause 
analysis of errors. Typical practical DFD approaches are based 
on the Embedded Logic Analysis (ELA), using a trigger unit 
that can effectively control when to acquire the debug data. In 
this paper, we propose ZiMH a hierarchical trigger generator 
that builds a trigger unit. Additionally, it provides resourceful 
and compact trace information for root cause analysis. Major 
advantages over traditional trigger units are: 1) by keeping the 
trace of interactions that leads to the failure, it facilitates the 
process of failure localization and root-cause analysis 2) it can 
be tuned for the specific location of a design to avoid the huge 
cost related to interfacing with trace signals 3) it can get 
parameterized to generate several units that can be placed 
inside the limited area in multiple debug rounds using a time-
multiplex fashion. 
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1. Introduction 
Due to the rapid increases in the design complexity of modern 

Microprocessors and SoCs, existing pre-silicon verification 
techniques can no longer satisfy the unquenchable demands of 
customers for faster, cheaper and more reliable hardware devices 
that materialize many of features. Verification process is 
nowadays divided into two separate tasks: pre-silicon verification 
and post-silicon validation. Although comprehensive pre-silicon 
verification gets applied to a hardware model prior to the silicon 
fabrication, the first prototypes of a system with ever increasing 
complexity are increasingly not fully functional. 

Failures in first hardware prototype mostly emanate from 
Design errors (Errata) and Electrical errors [1][2]. Design errors 
are associated with designer’s mistake in interpreting or 
implementing high level expected behaviors of a design to RTL. 
Electrical errors, however, are partially related to the transient 
errors inside storage elements of a system [1].  

Several factors, including crosstalk, low voltage levels, high 
frequency and small noise margins contribute to the increases in 
electrical bugs. An electrical error is a hard-to-catch error during 
pre-silicon verification [20]. One task of a verification team is to 

ensure that a product can be released to the market on time without 
any unexpected errors.  

 Pre-silicon verification techniques are formal or dynamic 
(simulation-based). Formal methods suffer from scalability 
limitations, and are not feasible for the full-chip verification of 
complex SoC designs. However, in practice, few parts of a design 
such as the floating-point units of processors are verified using 
formal methods [2]. 

Functional verification techniques are not only subject to 
missing corner cases of a complex design, but also they have to 
keep up with the limited speed of software-oriented RTL 
simulators. Therefore, the demanding guarantees that the first-
silicon is fault free and works perfectly is not achievable using 
pre-silicon methods.  

Post-silicon validation promises to complement the task of 
pre-silicon verification teams. Once an SoC design passes all the 
checks within pre-silicon verification, post-silicon validation 
begins its mission on a fabricated prototype of a system. Because 
post-silicon validation caries out on the actual hardware, larger 
number of functional tests can be applied at speed. Moreover, 
hard-to-reach states and corner cases would more likely be 
exercised and thus there will be a better chance to catch hard-to-
detect bugs. In general, post-silicon validation involves four steps: 
failure detection, failure localization, root cause analysis and 
fixing or bypassing the problem by patching [20].  

Directed or random generated test vectors are applied to a 
hardware prototype during the failure detection phase. 
Specifically, during failure detection of processors, prototype 
validation engineers usually boot up a different Operating System 
(OS) and try to experience various OS features [7].  However, 
once a failure is observed, the process of localizing the problem to 
a small region and then identifying the root cause of the failure is 
time-consuming, easily accounting for about 35% of the chip 
development cycle [1]. In fact, although the post-silicon validation 
techniques offer raw performance in terms of the execution speed 
of test cases, they need to get improved when it comes to real-time 
observability. To facilitate failure detection and root cause analysis 
of a hardware prototype, various Design-for-Debug (DFD) 
techniques have emerged [1][6][18].  

Embedded Logic Analysis (ELA) that adopts a trigger unit and 
trace buffers to capture debug data in real-time has been 
considered in several studies [5][6]. However, ELA has limitation 
in terms of the amount of data that can be acquired in a debug 
experiment. Since trace memory itself is subject to electrical bugs, 
we need to deal with this resource carefully. In this paper, we 
propose ZiMH, a trigger generator that builds an RTL model of the 
trigger unit. The generated circuit provides compact trace 
information for root cause analysis and error localization. Plus, it 



has fine control over the signals to capture. To the best of our 
knowledge, this work is the first study that exploits the 
hierarchical properties of the system to generate a trigger unit. 

The remainder of this paper is organized as follow. Section 2 
reviews the related work in this domain. Some terminologies and 
basics will be introduced in section 3. Section 4 explains our 
proposed method for hierarchical trigger generation. The 
experimental results will be shown in Section 5. Finally, Section 6 
concludes the paper. 

2. Prior Work and Motivation 
Achieving real-time observability of internal signals during 

post-silicon validation is difficult. DFD techniques come to 
address this problem. One of the traditional DFD techniques is the 
scan-based debug [19].  The primary goal in scan-based debug is 
to reuse resources that were used for the manufacturing test. In 
general, once a specific trigger or hardware checker fires the 
internal state elements of a system using the available scan chains 
are captured in parallel. Afterwards, the captured data will be 
offloaded serially using scan-out operation. Finally, post-
processing algorithms analysis offloaded data. Due to consecutive 
stops and resumption during scan dump, there is a need to 
investigate better DFD approaches [3].  Integration of assertion 
checkers is appealing in scan-based run-stop debug infrastructure. 
The authors in [10] investigate a method for clustering assertion 
checkers inside the design; however, they have not integrated these 
clusters of checkers inside a trigger unit. Our trigger generator can 
be used to solve the issues related to integration of assertion 
checkers inside trigger units.  

One of the newer DFD methods is embedded logic analysis 
(ELA), which utilizes on-chip trace buffers and trigger unit to 
capture debug data in real-time[5].  The amount of data that one 
can acquire in a debug experiment is limited. As a result, a number 
of solutions have been investigated to use the on-chip buffers more 
efficiently. For example, trace compression techniques reduce the 
amount of data stored for each sample [5]. Another approach to 
better utilize the on-chip trace buffers is to have a fine control over 
when to acquire the debug data. In [6] authors suggested an ELA 
with a programmable trigger unit. However, their approach has 
limitation in detection of complex sequences; plus, their proposed 
trigger unit provides no accurate details to facilitate root cause 
analysis. Since our proposed trigger unit keeps track of the 
sequences that lead to activation of a trigger, as we will show later 
on the root-cause analysis will be expedited.  

In [15] authors presented a Time-Multiplexed Assertion 
Checking (TMAC) scheme for post-silicon bug detection. In their 
method, assertion checkers are instantiated in an on-chip 
reconfigurable block in a time-multiplex fashion and post-silicon 
debugging are carried out by only utilizing assertion checkers. 
However, in some cases the root cause analysis is not achievable 
unless we have access to internal signals of a design. ELA utilizes 
a trigger unit to capture internal signal inside the design. Here, the 
proposed tool generates a hierarchical trigger unit that can be used 
inside an ELA. ELA can exploit the hierarchical trace information 
generated by the proposed trigger unit to facilitate root cause 
analysis.   

3. Preliminaries 
3.1 Assertions 

Assertion is a statement that indicates how a given circuit 
should behave under different circumstances. Assertion-Based 

Verification (ABV) is one of the most important and efficient RTL 
verification techniques for pre-silicon verification. Assertions 
represent a complex range of behaviors.  System designers are able 
to define both expected and unexpected behaviors of a design 
using the temporal logic and the extended regular expressions that 
assertion languages such as PSL (Property Specification 
Language, IEEE 1850 standard) and the SVA (System Verilog 
Assertions). For example the PSL assertion below specifies that 
once the request signal goes high, the arbiter is expected to grant 
the bus to the client within three clock cycles. The client must also 
keep its request signal active until it receives control of the bus 
which is indicated by the ‘grant’ signal. This assertion will fire if 
any of these conditions not happen. 

assert always ({$rose(req)} |=>{req[*0:3] ; req&grant}); 
The |=> operator is a temporal implication, with pre and post 

conditions appearing as left and right arguments respectively. 
rose(b) is an operator that evaluates to true in case of any changes 
from false to true. In this example, the post-condition is a regular 
expression consisting of a temporal concatenation “;” of two sub-
expressions, the left of which contains a repetition range and the 
right expression is a Boolean expression. 

3.2 Checker generator 
Checker generator is in charge of producing assertion 

checkers. An assertion checker is synthesized from assertion(s). 
Here, we use MBAC for checker generation [8][11]. At the first 
step, a checker generator tries to match each assertion statement 
with its related automaton. Thereby, various automata for 
properties and sequences are generated using a checker generator. 
A generated automaton is a directed graph, where vertices are 
states, and edges among states shows the conditions for transitions 
among them. Fig. 1 shows the generated automata from the 
previous mentioned PSL assertion. Transitions are labeled with the 
Boolean expressions built over combination of signals involved in 
the property. It has been shown in [12] that every property in PSL 
and SVA can be converted to an equivalent finite automaton in a 
recursive manner [5]. Assertion violation has been activated 
whenever an automaton representing an assertion reaches its final 
state (S5). 

S1

S2
true

req

!Req &!grant

S3 S4!Req &!grant

!grant

req&!grant req&!grant

S5
 

Figure 1. Generated automata from the PSL statement 

3.3 Parallel Hierarchical Finite State Machine 
(PHFSM) 

Hierarchical Graph Scheme (HGS) associated with HFSM[16] 
has been used to describe the behavior of digital control units in 
[12]. The automatic synthesis algorithm from an HGS to HFSM 
also has been established in this study [16]. To represent existing 
parallelisms and dependencies among assertion checkers, we use 
particular version of HGS, Parallel Hierarchical Graph Scheme 
(PHGS)[17]. In fact, to pinpoint the cause of an error, a 
mechanism to quickly determine which signals and parameters 
influence the assertion output is an important aid. As we show 
later on PHGS will be utilized to expedite root-cause analysis.  
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 Figure 2.  PHGS and its implementation in PHFMS system 
 

Each macro operation is described by another PHGS of a lower 
level. For instance, z0, z1 and z2 represent another PHGS graph in Fig. 
2 (A).  

The proposed trigger generator maps the automaton of each 
assertion checker to one of the macro-operations (zi). For example, as 
Figure 2 illustrates, the automaton of the previously mentioned 
assertion is mapped to the z1.  Rhomboidal node contains one element 
from the set X, where X = {x1,…xn} is the set of logic conditions that 
represents the a trace signals.  Inside PHGS multiple Graph Scheme 
(GS) can be active at the same time plus hierarchical calls are allowed 
inside a GS. As shown in Figure 2, the level of parallelism in PHFSM 
is defined by k, and PHFSM incorporates two stacks (Module-Stack 
and FSM-Stack) for each level.    

PHFSM is defined as a six-tuple ),,,,,( 0aYXAS ΦΨ= , where 
},...,{ 10 MaaaA =  is a finite set of states, Aa ∈0  is an initial state, 
},..,{ 21 nXXXX =  is a finite set of input vectors, where 
},..,{ 21 Li xxxX = , },0,1{ −∈ix , ,...},{ 21 YYY = is a finite set of output 

vectors, },..,{ 21 ni yyyY = , },0,1{ −∈iy , the transition function Ψ  
which is defined as AXA ↔×Ψ : that maps XA× to a subset of A . 
Based on this function, the next state Ata ∈+ )1( depends on the 
current state Ata ∈)( , and the input vector XtX ∈)( . 

))(),(()1( tXtata Ψ=+ . The output function Φ defines output vector 
)(tY from the set Y . 
An Item from Module-stack and FSM-stack is subset of Π  and 

Θ  respectively, where },...,{ 21 kΘΘΘ=Θ  and },...,{ 21 kΠΠΠ=Π  and 
k is equal to the maximum parallel modules. We could state that 

))(),(),(),(()1( tttXtata ΘΨ=+ η ; however, as it was shown in Fig. 2 
(B), )()( tandt Θη  are calculated from the a(t). 
Therefore, ))(),(),(),(()1( tttXtata ΘΨ=+ η is equivalent to 

))(),(()1( tXtata Ψ=+ .  
It has been proven in [17] that every control algorithm defined by 

PHGS can be synthesised to the PHFSM which behaves in 
accordance with the given description. There are two ways of 
implementing PHFSMs[16] [17]:  

1) Flat combination-circuit such as the circuit in Fig. 2 (B) where 
all sub-algorithms are implemented inside one combinatorial block  

2) Bounded combinational circuit where synthesis for each sub-
module is performed independently. As a result, the combinatorial 
unit will be divided into autonomous segments in such a way that 
each segment implements only one sub-algorithm. Although first 
approach is easier to realize, we are subject to losing the modularity 
of the specification during a circuit implementation. In the second 
approach, sufficient hierarchy and modularity are maintained during 

the implementation. However, additional components are required to 
select and activate the correct combinatorial sub-circuit. Inherent 
characteristic of PHFSM that we exploit later on are: 

 1) Ability to trace back system: in order to trace the history of 
events and transitions that took place in a system we can investigate 
current state of PHFSM as well as its k level FSM-Stack and Module-
Stack.  

 2) Recursive calls: PHFSM allows recursive calls. Therefore, we 
can recognize overlapped sequences and their root-causes in checkers 
automata [11][8].   

4. Proposed Method 
In our proposed method, using MBAC checker generator[12], we 

generate synthesizable FSM automata for the checkers that we want 
to embed in the specific location of our design. Thereafter, we feed 
these automata to our proposed trigger generator ZiMH. 

 ZiMH then, based on the maximum allowable parallelism inside 
each checker generates a set of synthesizable PHFMS for the trigger 
unit. All the k-level FSM-Stack and Module Stack of all these 
PHFMS are chain together. 

4.1 Post-Silicon Trigger Generator 
Fig. 3 shows the required steps to build our hierarchical trigger 

unit as a core of ELA. First, for each SVA or PSL assertion statement, 
MBAC tool runs in generator mode to create Finite Automata (FA). 
The generated FAs can be tuned to either detect failure or acceptance. 
In failure mode the generated FAs can discover the sequences of input 
signals leading to assertion failures, while in acceptance mode FAs 
can find the sequences that cause an assertion get complete. In our 
case, we select the failure mode detection of MBAC. 
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Figure 3. The proposed trigger generator 

 



Our proposed post-silicon trigger generator, ZiMH, takes the set 
of failure detection FAs which have been generated by MBAC. The 
first task of ZiMH is to generate PHGS from these FAs.  To reach this 
goal, ZiMH first tries to discover the common failure patterns among 
these FAs. For example, assuming that we have a bus that supports 4 
masters and salves, properties that control request-acknowledge 
sequences and handshaking among masters and slaves mostly have a 
lot of common failure patterns. Having discovered these common 
failure patterns, ZiMH starts generation of PHGS from a set of 
automata. 

During PHGS generation, ZiMH actually prepares an 
intermediate representation of a group of automat that will be 
converted to the PHFSM-based trigger; therefore, ZiMH should also 
be aware of the locality of the checkers automata that can be 
clustered. Due to the overhead related to the interfacing of trace 
signals to the central trigger unit, it is not always feasible to place all 
FAs inside one trigger unit.  For example, assuming again bus 
example, a local trigger unit that monitors master transactions has 
lower overhead, in terms of wiring and interfacing, than one central 
ELA that monitors all transactions inside a Bus.   

Two parameters that ZiMH should consider during the process of 
PHGS generation are the maximum allowable parallelism (p) for each 
checker and maximum level of permissible hierarchy (h). 
Architectural limitation of the final PHFSM controller dictates higher 
limits of these two parameters.  

As Figure 2 (B) shows, ‘k’ represents the numbers of FSM-Stacks 
inside PHFSM. However, if PHGS cannot fit into k levels of 
parallelism, ZiMH will increase the level of pipelining to deal with 
the speed issues.  

On the other hand, stack size represents the depth of hierarchy 
that PHFSM can support. For example, by using a register file that 
has 32 registers for FSM-Stack, we can store 32 levels of hierarchies.  

In the worst-case condition, if ZiMH cannot restructure PHGS to 
need at most 32 function calls. Content of filled FSM-Stack and its 
related module-stack will be stored inside the trace memory in a 
specific segment. Consequently, when stack pointer of the FSM-Stack 
points to the location inside the trace buffer, trigger unit will be 
updated by previously stored data.  

In the last step, before generating PHFSM and its related trigger 
unit, PHGS is annotated with failure information. In other words, 
each micro operation from the set Y = {y1, y2, ..yn} will be assigned 
to one specific action.  

During the post-processing and error root-cause analysis, we use 
this information to find the root cause of errors immediately. Also, 
trace buffer controller can be programmed to capture data once it 
detects a specific vector of Y, providing fine control over the time to 
capture internal signals. 

As noticed,[13] the main burden in synthesizing checkers for 
debug purposes is the detection of overlapped patterns. Assertion 
threading has been proposed in  as a technique to deal with such issue 
[14]. Figure 4 illustrates how assertion threading works for the 
property mentioned previously. To utilize assertion threading to 
synthesis checkers with the ability to detect overlapped failure 
patterns, at first step a sequence automaton will be separated from its 
precondition automaton [8]. As it was shown in Fig. 4, the 
precondition automaton is a simple two state automaton.  

Due to the fact that the precondition automaton has a self-loop 
with the true condition in the initial state, it continuously triggers until 
it sees the req signal. The activated token from the precondition signal 
should be redirect to multiple sequences.   

Dispatcher works in a round robin manner and redirects this token 
to multiple sequences. Implementation details of assertion threading 
can be found in [8]. The disadvantages of this technique for 
synthesizing checkers that detect overlapped failure patterns are 1) the 
related hardware overhead for dispatcher unit as well as the recurrent 
flip-flops and combination circuits for each sequence 2) the 
synthesized checkers using this technique cannot work with the 
circuit frequency.  

Since our proposed hierarchical trigger generator uses PHFSM as 
a building block for synthesizing assertion checkers, the synthesis 
checkers using our mechanism can detect overlapped failure patterns 
at a circuit frequency with lower hardware overhead. 
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Figure 4. Assertion threading  

 
Figure 5, illustrates the process of failure root cause analysis 

inside the generated trigger unit. We assume that we have two 
modules inside the PHGS (z0 and z1). Z1 generated based on the 
automaton of the previously mentioned property. Inside this property 
we might have 3 overleaped failure patterns. Therefore, the required 
parallelism for this property is 3.  

As it was shown in this Figure 5, module and FSM stacks are set 
aside for this specific module (z1). Z0 is assumed to be the first active 
module inside this simple trigger. 

 Two overlapped failure patterns which activate failure status in 
z1 automaton are considered in this figure. As it was shown debug 
traces which involve the status of module and FSM stacks are 
sufficient to root cause failure inside the trigger. 

 When z1 is active any call to z1 (Figure 5 (a)) causes recursive 
and parallel activation of the same module utilizing the previously 
allocated module and FSM stacks (Figure 5 (b)). 

As Figure 5 depicts, once any parallel version of z1 reaches to its 
final state, assertion violation will be triggered and the root cause 
analysis will be started using the debug traced already inside the 
module and FSM stack. 
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4.2 Proposed Embedded Logic Analyzer (ELA) 
Fig. 4 illustrates the proposed embedded logic analyzer that 

involves our generated trigger unit.  In an ELA, trigger signals need to 
be monitored and the debug-data will be captured under the control of 
the trigger unit. 

The trigger control unit monitors the switching between serialized 
data of the trigger unit and the trace buffer. In some failure cases there 
is no need to transfer the data inside trace buffer. Throughout the 
debug phase, current status of trigger unit, which involves data inside 
Module-Stack and FSM-Stack along with current state of trigger unit 
are serialized and transferred through JTAG.  
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As shown earlier in Fig.4, trigger unit may have more than one 
PHFMS controller because in some cases ZiMH is not able to fit the 
PHGS into just one centralize PHFMS. In this case as it was shown in 
Fig. 4, the scan-out line of the first PHMS feeds the scan-in of the 
next one. It is also possible to compress the debug data.  

Because our main contribution is on the trigger unit, in our 
experimental part we focus on the area over head of the trigger unit.     

4.3 Debug Scheduling 
As Fig. 5 illustrates, during failure root-cause analysis, it is not 

always mandatory to transfer big chunks of data stored inside the 
trace buffer. Internal status of the proposed trigger unit includes data 
inside FSM and Module Stacks. Because the data stored in trace 
buffer is significantly larger in size than internal status of trigger unit, 
as we will show in the experimental result, the generated trigger unit 
reduces trace data that need to be transferred during the post-silicon 
failure root cause analysis. Plus, another benefit of our approach is 
that the post processing software can use the generated HPGS of 
ZiMH to facilitate and improve the failure root-cause analysis. 
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As Fig. 5 shows, assuming that we have reconfigurable block inside 
our SoC, we can generate trigger units that can get fit inside that 
reconfigurable unit. Thereafter, we can perform the process of post-

silicon validation in a time-multiplex manner [15]. ZiMH generates 
trigger units based on two parameters, stack-size (h) and maximum 
allowable parallelism (p); by forcing ZiMH to generate several 
PHFSMS that can get fit inside the reconfigurable blocks, we can 
achieve the required fault coverage in several steps.    

5. Experimental Results  
To verify effectiveness of our method, we consider two case 

studies, and using ZiMH, we build automatically trigger units for two 
case studies. In our first experiment, trigger units for AMBA-slave 
and AMBA-AHB interface has been generated; Details of assertions 
that have been used by ZiMH can be found in [22] pages 182-190.  

 To find area overhead of trigger units that involves packs of 
checkers as well as the control unit; first, we build checkers and 
synthesize them with Xilinx ISE 9. After that we run MBAC in 
generator mode and feed ZiMH with FAs of these individual 
checkers. Thereby, ZiMH generates two separate trigger units for 
AHB-Interface and AMBA-slave. We run ZiMH(h, p) four times with 
different parameters related to stack-size (h) and maximum allowable 
parallelism (p). Table 1 represents the area overhead of the generated 
trigger units with different parameters. #T shows the numbers of 
HPFSM generated by ZiMH. For example, forcing ZiMH to have 
stack size (h = 4) and parallelism (p= 2) leads to two separated 
HPFSM.  
 Table 1. Trigger unit area overhead 

ZiMH (10,4) (8, 3) (16,3) (4, 2) 
FF LUT #T FF LUT #T FF LUT #T FF LUT #T 

AHB-Interface 197 285 1 133 290 1 229 294 1 138 310 2 
AHB-Slave 190 202 1 126 203 1 222 201 1 140 312 2 

 
The general rule about the trigger unit generated by ZiMH is that 

the higher the level of parallelism (p), the larger is the area overhead 
and the higher the frequency. On average, the generated trigger unit 
with its controller has 18% area overhead in comparisons to the 
central unit that packs all the checkers.  For example, in the case of 
ZiMH (10,4), we have 30% area overhead in comparison to the case 
that we have one central monitor involves all the checkers. Another 
important consideration is that since the generated trigger unit has 
more hierarchical information there is no need to feed ZiMH with all 
the checkers’ FAs. However, increasing the level of parallelism leads 
to more area overhead. When we have limited area aside for the 
trigger units, we can have the slow trigger unit with lower area 
overhead. Considering the fact that the major duty of the trigger unit 
is to discover error and provide root-cause analysis, we can easily 
deal with slow trigger unit by adding pipeline stages. 

In the second experiment, we applied ZiMH trigger generator to 
create trigger unit for AXI Bus protocol from ARM[21]. 

 The AMBA AXI is targeted at high-performance, high-frequency 
system designs. AXI protocol has five independent channels, and 
each channel uses a two-way valid and ready handshake mechanism. 
Each channel has particular set of assertions that monitors its related 
transactions.  

The most distinctive feature of AXI protocol in contrary to AHB 
protocol signals is that multiple master devices can access to different 
slave devices simultaneously. In AHB system only one master can 
occupy the bus at one time. There are 85 assertions in the AMBA 3 
AXI protocol; we generate two trigger units Master-side and Slave-
side. In this case, it turns out that ZiMH could find a lot of explicit 
hierarchical overlaps during the process of PHGS generation. As a 
matter of fact, assuming two level of parallelisms (p=2) and sixteen 
level of hierarchies (h=16) inside trigger unit master-side trigger unit 
has 5% lower area overhead than central monitor unit which packs all 
the checkers [10].  

Fig. 6 shows our experimental fault injection environment. We 
place the ELA that has our generated trigger unit as a core inside this 
experimental environment to detect fault and perform root cause 
analysis. 
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Figure 8. Fault Injections Environment 

  
The fault generator units shown in Fig. 6 inject incorrect 

transactions that boil down to failure such as hand-shaking error, X-
propagation and functional errors related to the AXI interface. The 
trigger unit as the core of ELA is in charge of discovering these faults. 
We also assume “Dependent Fault”, scenarios such as Master 1 will 
issue an incorrect transaction provided that Master 2 in previous 
transactions had issued an specific transaction.  

The proposed trigger unit manages to detect all the design faults 
(100% fault detection). In total, 65% of the time using its hierarchical 
information that has been stored in its stacks the process of root-cause 
analysis has done immediately. In other words, it was not necessary to 
transfer the content of trace buffer serially through the JTAG thanks 
to its internal stacks of data; our ELA in contrary to the central 
monitor unit in [10] performs the root-cause analysis of all the 
“Dependent Faults”. We do not consider electrical bugs in our 
environment, but X propagations can be detected using ELA. Plus, we 
can easily write properties to detect electrical faults and feed ZiMH 
with the FAs related to those properties. 

6. Conclusions 
In this paper, we proposed ZiMH, the trigger generator that builds 

a synthesizable trigger unit as the core of ELA. The generated trigger 
unit provides resourceful and efficient trace information for root 
cause analysis of error. By keeping the trace of interactions that lead 
to the failure, the proposed trigger unit facilitates the process of 
failure localization and root-cause analysis. Moreover the proposed 
trigger unit generator can be tuned for the specific location of a design 
to avoid the huge cost related to interfacing with trace signals and it 
can get parameterized to generate several trigger units that can be 
placed inside the limited area in a time-multiplex fashion and multiple 
debug rounds. Through injecting fault (considering design errors), 
100% of injected errors have been detected among them 65% of 
detected error could get localized without transferring the content of 
trace buffer.  

In our future work, we are planning to enhance ZiMH to ignore 
definition of some redundant FAs. Further, work such as [5] provides 
a technique for compressing debug data. Combination of these two 
approaches will be another interesting area for new research.  
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