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Abstract 

We  present  a  novel  idea  for  object  allocation, 
cache line reservation (CLR), whose goal is to re
duce data cache misses. Certain objects are alloc
ated  from  "reserved"  cache  lines,  so  that  they 
don't evict other objects that will be needed later. 
We discuss what kinds of allocations could bene
fit from CLR, as well as sources of overhead. Ba
sic prototypes were implemented in the IBM® J9 
Java™ virtual machine (JVM) and its Testarossa 
just-in-time (JIT) compiler. We present prelimin
ary results, which show that CLR can offer a be
nefit in specialized microbenchmarks, but not yet 
in  SPECjbb2005  and  SPECjvm2008.  Further
more, we discuss the limitations of the current im
plementation and suggest areas for improvement. 
CLR is not limited to Java applications, and we 
hope to see it developed for other compilers.

1 Introduction
The Java programming language offers the flexib
ility required for implementing large and complex 
programs,  and  the  object-oriented  nature  of  the 
language  allows  programmers  to  abstract  func
tionality into classes and packages. It is common 
in programming models such as this to instantiate 
an object and invoke one or more methods on the 
object in order to perform even a relatively simple 
computational  task.  Thus,  in  order  to  complete 
complex transactions,  modern server/middleware 
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applications typically end up creating a very large 
number of objects, many of which are only used 
for  a  short  duration.  Studies  have shown that  a 
significant  number  of  objects  die  young  [2],  or 
even instantly [3]; these are referred to as  short-
lived and zero-lifetime objects. With all these ob
jects  being allocated,  efficient  memory manage
ment is essential.

Locality  of  reference states  that  computer 
programs  usually  repeatedly  access  data  related 
either spatially or temporally.  If the program ac
cesses a certain memory location M, it can be ex
pected that  it  would access  some other  memory 
location close to memory location  M soon (spa
cial locality). There is usually also a strong likeli
hood that if a certain memory location is accessed 
once, it might be accessed again several times in a 
relatively  short  duration  (temporal locality).  A 
good overview of caches, locality, and other con
cepts presented in this paper is provided in [1].

A CPU cache is used by the processor to re
duce  the  average  time  to  access  main  memory 
(RAM).  The  cache  is  a  smaller,  faster  memory 
that stores copies of the data from the most fre
quently used main memory locations.  When the 
processor needs to read or write a location in main 
memory, it first checks whether that memory loc
ation  is  in  the  cache.  This  is  accomplished  by 
comparing the address of the memory location to 
all  the locations in the cache that might  contain 
that  address.  If  the  processor  finds  that  the 
memory location is in the cache, this is referred to 
as  a  cache  hit;  and if  it  does  not  find it  in  the 
cache, it is called a  cache miss. In the case of a 
cache  hit,  the  processor  immediately  reads  or 
writes the data in the cache line. If a program be
haves in accordance with the locality of reference 
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principle,  most  memory  accesses  would  be  to 
cached memory locations, and the average latency 
of memory accesses would be closer to the cache 
latency than to the latency of main memory. 

Addresses  in  both  kinds  of  memory  (main 
and cache) can be considered to be divided into 
cache lines.  A cache line refers  to a contiguous 
range  of  addresses  where  the size  of  this  range 
varies  on  different  computer  architectures  (e.g. 
from 8 bytes to 512 bytes). The size of the cache 
line is generally larger than the size of the usual 
access  requested  by  a  CPU  instruction,  which 
ranges from 1 to 64 bytes. When a memory access 
is to a location that is not found in the cache, the 
entire  cache  line  that  the  location  belongs  to  is 
read from main memory and brought to the cache 
memory. The prior data that was in the cache line 
is  evicted  from the cache,  so future  accesses  to 
that data would have to access main memory.

The  cache  line  replacement  policy  decides 
where in the cache a copy of a particular entry of 
main memory will go. If the replacement policy is 
free to choose any entry in the cache to hold the 
copy, the cache is called fully associative. At the 
other extreme, if each entry in main memory can 
go in just one place in the cache, the cache is dir
ect mapped. Many caches implement a comprom
ise,  and are described as set associative.  So,  N-
way set associative means that any particular loc
ation in main memory can be cached in either of 
N entries in the cache memory. The simplest and 
most commonly used scheme to decide the map
ping of a memory location to cache location(s) is 
to use some low order bits of the memory address 
as the index for the cache memory, and to have N 
entries for each cache location.

The  CPU  of  a  modern  computer  typically 
caches at least three kinds of information: instruc
tions, data, and physical-to-virtual address transla
tions. In  this paper,  we are concerned only with 
data caching. Java objects and arrays are allocated 
in the region of (RAM) memory called the heap. 
When these objects are created or accessed, load 
and store instructions reference memory addresses 
where  they are  located,  and  these  addresses  are 
brought into the data cache. A load or a store in
struction is also called a  data access. A data ac
cess  will  produce  either  a  cache  hit  or  a  cache 
miss.

In programs that create a large number of ob
jects (working set), performance can be highly de
pendent on the cost of accessing memory. Modern 

JVMs  employ  sophisticated  memory  allocation 
and management techniques to increase data loc
ality by laying out objects in memory such that 
cache  misses  are  reduced  (i.e.,  data  being  ac
cessed is available in cache memory most of the 
time). Memory allocation is usually performed by 
the native code generated on the fly by JIT com
pilers,  whereas  memory management  is  handled 
by the garbage collector (GC). The GC is a form 
of automatic memory management where the pro
grammer  is  responsible  for  indicating  when  the 
objects that require memory on the heap are cre
ated,  but not for freeing up that memory.  When 
heap  memory becomes  low,  the  GC determines 
which objects  are unreachable (and hence dead) 
and reclaims their memory.

This paper proposes a novel object memory 
allocation scheme, cache line reservation (CLR)1, 
which  ensures  that  a  selected  allocation  is  per
formed at a memory location chosen such that this 
location would be mapped to a specific cache line. 
This means that all of the selected allocations map 
only to a certain portion of the cache “reserved” 
for those allocations. The criteria for selecting al
locations as well as the amount of cache memory 
to reserve for those allocations could vary (espe
cially depending on the architecture), and we dis
cuss some of them. If the selected allocations are 
objects that are unlikely to be referenced within a 
short duration of each other, then it is likely that 
there would have been a cache miss when these 
objects are accessed, regardless of the allocation 
scheme. Therefore, we can improve cache utiliza
tion  for  other  (unselected)  objects  by  selecting 
and  allocating these  objects  such  that  when the 
expected cache miss occurs, they evict only other 
selected objects from the cache.

The general idea of CLR is shown to be pos
sible with a simple C proof-of-concept program. 
A prototype using CLR has been developed using 
the IBM J9 JVM and Testarossa JIT compiler. We 
present  preliminary  results  on  custom  mi
crobenchmarks where CLR proves to be benefi
cial,  and  discuss  SPECjbb2005  and 
SPECjvm2008 results, where CLR does not offer 
an improvement yet. The paper concludes with a 
discussion of the limitations of the current imple
mentation and ideas for future development.

1Patent pending (IBM Canada Ltd)
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2 Related Work
Cache  misses  have  been  thoroughly  researched 
[1]. There are three types: compulsory misses, ca
pacity misses and  conflict misses. Conflict misses 
can be reduced by changing the line replacement 
policy,  cache associativity,  or  the way in which 
data is organized [4]. These are the misses that we 
are trying to reduce in this paper. There is nothing 
we can do about compulsory and conflict misses 
for a fixed cache size. We now explore different 
software  and  hardware  approaches  that  can  be 
used to optimize cache performance.

2.1 Hardware Approaches
Cache parameters in terms of total size, line size, 
and associativity can be changed to see how they 
affect cache misses [2, 5]. This is typically done 
by collecting different  program traces,  and  then 
running  them through  a  cache  simulator  [6,  7]. 
Caches in embedded systems can be designed us
ing this technique, where another goal is also low 
power consumption [8].

More sophisticated  schemes of  caches  have 
been  suggested  in  hardware,  such  as  a  skewed 
cache, which  doesn't  have  a  fixed  associativity. 
For example, it could have two lines in each set; 
the first line is direct mapped, but the second line 
is  mapped using a hash function [9].  There  has 
also been work involving non-trivial line replace
ment policies [10].

Another related concept is using scratchpad 
memory.  Scratchpad memory  [11]  is  a  piece  of 
memory close to the CPU that acts similar to L1 
cache  memory.  However,  data  in  scratchpad 
memory  does  not  have  to  be  present  in  main 
memory. This makes scratchpad memory suitable 
for  allocation  of  short-lived  objects  [12].  Since 
they die soon after creation, they will not be writ
ten to main memory as they would be if they were 
allocated to the L1 cache. Objects that are longer-
lived but are accessed frequently can also benefit 
from  being  allocated  to  scratchpad  memory,  a 
process known as pretenuring [13].

2.2 Software Approaches
There  has  been  work done with code/procedure 
reordering to improve instruction cache perform
ance [14, 15]. The idea is to place frequently 
used procedures next to each other so that they do 
not map to the same part of the cache and conflict 

with each other. Graph coloring algorithms can be 
used to decide where exactly to place them. This 
approach can also be used to organize arrays  in 
data caches, as opposed to just instruction caches 
[16].

Software prefetching is a technique where the 
compiler  inserts  extra  prefetch  intstructions  in 
compiled code [17]. A prefetch instruction brings 
data to the cache similar to a load or a store, but it 
does not do anything with it. This way, when the 
data is needed later, it will already be in the cache. 
Prefetching  can  also  be  done  automatically  in 
hardware by looking at future memory requests.

In  the  area  of  scientific  computing,  where 
many computations on large amounts of data are 
performed,  cache  performance  of  specific  fre
quently executed loops is  important  (e.g.  matrix 
multiplication).  Various  schemes  to  restructure 
the loops to be more cache-friendly have been de
veloped [18, 19]. For example,  tiling reduces the 
volume of  data worked with in each loop itera
tion, so that it can fit into the cache.

Work has been done to allocate certain  ob
jects  to  specific  portions  of  main memory.  The 
full heap can be partitioned into multiple heaps, 
where each heap is used for some selected objects 
[20, 21]. Alternatively,  object layout  can be op
timized during garbage collection. The goal is to 
ensure that objects accessed within a short dura
tion of each other are laid out as close as possible 
in the heap [22, 23]. These schemes improve ob
ject locality in memory, which in turn has the ef
fect of improving cache performance.

Another way to improve object  locality and 
reduce the overhead of object allocation is to use 
a specific thread local heap (TLH) when allocat
ing objects from a specific thread [24]. This ap
proach primarily aims at eliminating the need for 
synchronization  at  every  allocation  in  the  pres
ence of multiple threads (as would be the case if 
there was one heap allocation area for all threads). 
This can be done because a chunk of memory is 
assigned for exclusive use by only one thread.

Our scheme differs from prior work in that it 
uses  the  mapping/associativity  of  the  cache 
memory to influence memory allocation with the 
goal  of  improving  locality  and  reducing  cache 
misses. To our knowledge, there is no prior work 
that mentions this approach of object allocation.
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3 Cache Line Reservation

Figure 1: An Overview of CLR

A simple allocation scheme used conventionally 
by JIT compilers is based on each thread allocat
ing objects  using  thread  local  heaps  (TLHs).  A 
TLH is a contiguous region of memory of a size 
controlled by the JIT. The TLH has two pointers 

that are of interest to us: an allocation pointer,  tl
hAlloc, and a pointer marking the end of the TLH, 
tlhTop. When an object (or an array of primitives) 
needs to be allocated, tlhAlloc is incremented by 
the size of the object, and the object header and 
fields  are  inserted  in  that  space.  If  tlhAlloc  is 
about  to  overshoot  tlhTop,  a  request  for  a  new 
TLH is made, and the object is allocated from the 
new TLH.

In the new allocation scheme we present  in 
this paper, the idea is to divide each TLH into an 
unreserved  section  and  one  (or  more)  reserved 
sections. Selected allocations are performed only 
from designated reserved sections whereas all oth
er allocations are done from the unreserved sec
tion. The size of the unreserved section and each 
reserved section within a TLH depends on the size 
and mapping of the cache  on the computer  that 
the program is being executed on and the propor
tion of the cache that is to be reserved for the se
lected allocations. Each TLH should be conceptu
ally  viewed  as  being  partitioned  into  smaller 
chunks, where each smaller chunk has a size rep
resented by chunkSize = (total size of the cache in 
bytes)/A  (where  A  is  the  associativity  of  the 
cache). Each such chunk has the property that ac
cessing a given memory location within the chunk 
would not evict any other memory location within 
the same chunk from the cache. In other words, 
each chunk can fit  exactly within the cache and 
different  memory locations within the chunk are 
mapped  to  different  memory  locations  on  the 
cache.  Reservation is  done by selecting specific 
memory locations within chunks such that  those 
memory locations always map to the same cache 
line(s) on the computer. Figure 1 visually shows 
the concept of CLR, when reserving a Java object.

A practical way to implement CLR with N 
reserved sections would be to define the following 
variables:

reservedSections
(the number of reserved sections)
sectionProportion[reservedSections]
(the proportion of each section in a chunk)
tlhAlloc[reservedSections+1]
(allocation pointers)
tlhTop[reservedSections+1]
(allocation section tops)
tlhHighestAllocIndex
(index of the highest tlhAlloc entry)
tlhStart
(start of the whole TLH)
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tlhEnd
(end of the whole TLH)

When a new TLH is obtained, these variables are 
initialized, as shown in Figure 2.

Figure 2: CLR pointer initialization

Allocations can be done by incrementing the cor
responding  tlhAlloc  pointer,  depending  on what 
section we want to use. We have to keep track of 
the  tlhTop  pointers  as  well,  so  that  we  do  not 
overshoot into another section. In cases where the 
size of the object is too large for its section, it can 
be  allocated  using  the  highest  of  the  tlhAlloc 
pointers  (which  is  what  tlhHighestAllocIndex  is 
used for).  The  number  of  reserved  sections  and 
their proportion of the chunks can be a dynamic
ally  changing  parameter.  Other  modifications 
might be needed, such as teaching the GC about 
CLR  when  moving  objects.  In  addition,  other 
levels of CLR could be implemented in L2 or L3 
caches.

3.1 Criteria for selecting objects
The  CLR  allocation  scheme's  goal  is  to  reduce 
cache misses in correct conditions. To do that, we 
have to identify what objects are eligible for CLR, 
and  assign  them to  a  specific  reserved  section. 
Here,  we  explore  the  possible  scenarios  where 
CLR could offer a benefit, and determine how to 
identify them so that we can (re)compile the alloc
ation code to use CLR.

Frequently instantiated types
If there are certain types of objects that are very 
frequently allocated (per unit of time of execution 
or relative compared to other objects), then these 

objects are likely to be short lived. One extreme 
would be allocating a lot of zero-lifetime objects. 
From the  cache  perspective,  without  CLR,  they 
would take up the whole cache, evicting anything 
that was there before. When longer lived objects 
are  accessed  in  the  future,  cache  misses  occur. 
With CLR, zero-lifetime objects would only oc
cupy  specific  cache  lines,  so  that  they  evict 
mostly themselves out of the cache (which is not a 
problem  because  they  will  die  and  will  not  be 
needed in the future anyway).  As a result, when 
other long-lived objects are accessed, there will be 
more cache hits.

Frequently executed allocation sites
If we have a section of code that allocates certain 
objects, and this section gets executed often, then 
these objects allocated from this site are likely to 
be short-lived, even though the same object types 
in general could not be. We could find this out by 
profiling during runtime, or by some sort of static 
analysis of code.

Objects that are unlikely to co-exist
If all of the objects that do not co-exist always oc
cupy the same part of the cache, then they would 
evict each other out of the cache, instead of other 
objects that will be needed during their lifetimes.

Objects accessed in infrequent bursts
Even if the objects are not short-lived, CLR could 
help.  If  a  large  group  of  objects  is  periodically 
read  from  or  written  to  in  isolation,  then  they 
would evict all the lines from the cache when this 
happens. If they occupy only a specific part of the 
cache,  then they would evict  fewer of  the other 
objects from the cache.

Mostly written objects
Objects that are typically only written to (such as 
log  buffers),  would  benefit  from  an  exclusive 
cache line state.  It is typically more expensive for 
a cache nest to be moved from a non-exclusive to 
an exclusive state. If these objects are all located 
in  certain  cache  lines,  then  whenever  they  are 
written to, the cost of turning the cache nest to an 
exclusive state has already been paid.

Objects in different threads
Objects  allocated  by  (and  potentially  only  used 
by)  a  certain  thread  can  be  allocated  such  that 
they are mapped to cache lines that are different 
from those that would be utilized for allocations 
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done by any other thread. This is useful in scen
arios where multiple threads running on a differ
ent processor are primarily operating on their own 
thread-local data.

3.2 Limitations of CLR
The CLR allocation  scheme  comes  at  a  certain 
cost. This cost will depend on how CLR is imple
mented, as well as how often reserved allocations 
occur. Although CLR is not necessarily limited to 
the  Java  programming  language,  from  the  per
spective of a JVM that uses THLs, some sources 
of overhead are as follows.

More garbage collection
If  reserved objects are being continuously alloc
ated, in order to satisfy the requirement of them 
occupying only one part of the cache, there will 
be  a  lot  of  unused  space  in  the  TLH  when  it 
reaches the top. For example, if the first 25% of 
the cache  is  reserved,  and  there  is  a  section of 
code that only allocates reserved objects, the TLH 
will fill up 4 times as quickly. As a result, GC will 
occur 4 times as often.

Fragmentation of the heap
After a GC, even though the space in the non-re
served areas will be reclaimed, now the free space 
is heavily fragmented, which might make future 
allocations  (reserved  or  non-reserved)  difficult. 
This effect will be minimized by GC schemes that 
compact the heap (move objects around to fill up 
the holes), such as generational GC.

Reduced non-reserved cache capacity
When  reserved  sections  are  allocated,  they  pre
vent  their  cache  lines  for  non-reserved  objects. 
This can actually increase cache misses.

More expensive allocation
Allocation of reserved objects is not as straight
forward  as  incrementing  the  tlhAlloc  pointer  in 
the TLH any more. In addition to more execution 
time, the size of the compiled methods that use re
served allocation will be bigger.

More frequent TLH requests
As the individual TLHs fill up more quickly, fresh 
TLH requests will happen more often, and more 
time will be spent in the JVM on memory man
agement instead of running useful code.

CLR-aware GC and VM
Since not all  allocations happen through the JIT 
compiled code, the allocations from the VM must 
be compatible with the CLR infrastructure. Simil
arly, in GC schemes that move objects (compac
tion or generational GCs), the GC might have to 
be  modified  such  that  the  reserved  objects  are 
moved so that they still  map to the reserved re
gions.

Extra instrumentation and compilation time
In a fully-automatic JVM with a JIT that supports 
CLR, extra instrumentation would have to be de
veloped to detect what objects to reserve.  Then, 
these  methods  would  have  to  be  recompiled 
(which takes time). Alternatively, it might be de
cided  that  some  objects  should  stop  being  re
served, which would trigger recompilation again.

The question is whether all these costs are justi
fied by the reduction in  cache  misses  that  CLR 
can provide, and under what circumstances. This 
is the topic of discussion of the rest of this paper.

4 Design & Implementation
The JVM we used is the IBM J9 along with the 
Testarossa (TR) JIT compiler. A program written 
in  the  Java  is  first  compiled  to  Java  bytecode. 
Then the bytecode is traditionally interpreted by 
the JVM.

Java objects are allocated when the following 
bytecodes  are  encountered:  new,  newarray, and 
anewarray (allocates an array of references). The 
allocations  can  happen  through  the  following 
paths: from methods that the JIT compiled, from 
the JVM when the JIT allocation fails (if the TLH 
gets full or the object is too large for TLH alloca
tion),  or from interpreted  methods by the JVM. 
We are interested in the JIT path.

The  JIT  compiler  helps  by  compiling  fre
quently executed methods to native instructions. 
Since CLR focuses on frequently allocated and/or 
frequently used objects, they are likely to be al
located  from the  compiled  code.  Therefore,  we 
have  modified  the  JIT  compiler  so  that  it  can 
compile  methods that  allocate objects  according 
to the CLR scheme. All three prototypes that were 
developed are a simplification of the CLR defini
tion outlines in Section 3.
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4.1 “Weak” CLR – Prototype 1
In  our first  prototype, we allocate  all objects so 
that their beginning is in a specific N% of the L1 
CPU cache. When the JIT compiles a new, newar
ray, or anewarray bytecode, instead of just incre
menting the tlhAlloc pointer,  we check  whether 
that pointer is in the reserved N% of the cache. If 
it is, then the allocation continues as before. If it 
isn't, then the heapAlloc pointer is bumped so that 
it  maps  to  the  beginning  of  L1  cache,  and  the 
space in between is marked as used (so that the 
GC does not get confused). We call this “weak” 
allocation because although we guarantee that tl
hAlloc will be in the reserved section, this is just 
the beginning of the object, and its end might ex
tend into the non-reserved section.

For example,  we can select  N to be 25,  so 
that  we try to  allocate  all  objects  from the first 
25% of the cache. Let us assume that we are using 
an  AMD  Opteron  (Shanghai)  processor,  which 
has 64 KB of L1 data cache, and is 2-way set as
sociative with a 64-byte line. This cache has 1024 
lines.  The  fact  that  it  is  2-way  set  associative 
means that there are effectively only 512 uniquely 
addressable sets, with 2 lines in each set. In rela
tion to CLR, this means that we can think of the 
TLH  as  being  made  up  of  64  KB/2  =  32  KB 
chunks, and we want to allocate objects in the last 
25% of them. The location where a physical ad
dress maps to the cache is determined by its ad
dress's  least  significant  bits.  In  this  case,  when 
CLR is enabled, tlhAlloc is forced to have bits 13 
and 14 set to 1. Bits 13 and 14 would determine 
which  quarter  of  the  cache  the  address  will  be 
mapped to (2^15 = 32 KB). This is done in the 
compiled assembly code using bitwise arithmetic. 
N, as well as the cache size and associativity are 
all constants that can be changed in the prototype.

One might ask why we would allocate all ob
jects in this way. The idea is for this to be used 
with  generational  GC that  is  unaware  of  CLR. 
The generational GC allocates new objects in the 
area  of  the  heap  known as  the  nursery.  As the 
nursery gets filled up by allocated objects, when it 
reaches half of its capacity, a collection is made. 
The GC copies all the live objects from one half 
of the nursery to the other. As a result, the heap is 
compacted,  but  it  also means that  all  objects,  if 
they survive a GC, will be spread evenly across 
the L1 cache. This makes sense in the context of 
CLR because if they survive a GC, then they are 

longer-lived objects anyway, and their place is not 
in the reserved area of the cache.

The advantage of this prototype is its simpli
city: it does not require any additional pointers in 
the TLH, and there is no modification outside the 
JIT. If  an object needs to get allocated from the 
VM, this can be done as before, by incrementing 
the  tlhAlloc  pointer.  The  disadvantage  of  this 
scheme is that objects might occupy non-reserved 
sections.  Other  limitations  include  having  only 
one reserved section and having no control over 
what  objects  to  reserve  (the  heap  will  fill  up 
quickly if the reserved section is small, because of 
constant bumping of tlhAlloc).

4.2 “Strong” CLR – Prototype 2
We developed a second prototype that guarantees 
that a reserved object will be in its entirety in the 
reserved region. We call this “strong” reservation. 
It comes at the expense of more overhead for al
location in compiled assembly code, but reserved 
objects do not pollute the non-reserved sections. 
This  also  means  that  we  can  safely  have  more 
than one reserved section.

In  addition  to  tlhAlloc,  we  add  the  tl
hReserved pointer. Then, non-reserved allocations 
can be done by incrementing the tlhAlloc pointer, 
and reserved allocations are done by incrementing 
the  tlhReserved  pointer.  tlhReserved  is  kept  at 
null if there are no reserved allocations. tlhAlloc 
is always kept above tlhReserved, so that if ob
jects need to be allocated from the VM (not the 
JIT),  the conventional  scheme of allocation will 
work  without  much  modification.  (The  tlhAlloc 
can  safely  be  incremented,  because  it  will  not 
overshoot tlhReserved.) Figure 3 shows the main 
steps that occur when a reserved object gets alloc
ated. Again, whenever a pointer is bumped inside 
the TLH, to prevent having a hole of unallocated 
space in the middle of the TLH, which confuses 
the GC, this space is marked as used and will be 
reclaimed at the next GC.

When the JIT is compiling a method that al
locates an object,  it  decides whether to generate 
code for reserved or normal allocation; it decides 
this based on the object name (or if it is an array, 
based on the name of the method that contains it). 
Even though Figure 3 might suggest that the over
head for reserved allocation is significant, most of 
that control-flow is for checking limiting cases. In 
most reserved allocations, what will end up hap
pening is that tlhReserved will simply get  incre

7



mented  (after  some  untaken  conditional 
branches),  just  as tlhAlloc is incremented in the 
non-reserved, conventional case.

4.3 “Strong” CLR/non-CLR – 
Prototype 3

The second prototype guaranteed that a reserved 
object will be in a reserved section, but it did not 
guarantee that the non-reserved object will not be 
in a reserved section. In the third prototype, as an 
extension  to  the  second  prototype,  we  allocate 
non-reserved objects  only to the non-reserved re
gions. Reserved allocations are done identically as 
in prototype 2. Also like in the second prototype, 
we can still allocate  non-reserved objects in the 
“weak” way. In that case, we only guarantee that 
the beginning of the non-reserved object is in the 
non-reserved section. The advantage of this proto
type is that it minimizes cache pollution.

5 Preliminary Results
We present a basic CLR proof of concept in C to 
show that it works. Then, we do the same with a 
custom benchmark in Java. Finally, we investigate 
CLR in  relation  to  SPECjvm2008 and  SPECjb
b2005.  Rather  than  publishing  actual  scores 
(lower is better), we offer a comparative analysis 
(CLR  vs.  no  CLR).  All  tests  were  done  on  an 
AMD Opteron (Shanghai) processor running Mi
crosoft® Windows® Server 2003. Its L1 cache is 
64 KBytes,  and is  2-way set  associative,  with a 
64-byte line size.  Although this processor  has 8 
cores, only 4 were used, to prevent non-uniform 
memory  access  (NUMA)  variations.  The  AMD 
Code Analyst was used to obtain data from hard
ware  counters.  The  miss  rate is  the  number  of 
memory  access  instructions  that  caused  an  L1 
cache miss, out of the total number of executed 
instructions.  The  miss  ratio is  the  number  of 
memory  access  instructions  that  caused  an  L1 
cache miss, out of the total number of memory ac
cess  instructions.  The  evicted  rate is  defined  as 
the number of evicted L1 cache lines divided by 
the number of total executed instructions. 

5.1 Proof of Concept
We have  created  a  proof-of-concept  C program 
that mimics what prototype 2 would do on a cus
tom Java benchmark. 

Figure 3: Processing a reserved allocation in 
the strong CLR prototype
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The  following  steps  were  performed  in  the 
program to emulate non-CLR allocation:

 Allocate  using  malloc  a  continuous  area  of 
memory (192 KB or 6 chunks), and assign it 
an integer pointer.

 Read and write to every 16th integer in the first 
chunk.  This  is  so  that  we  can  bring  in  one 
cache line with every access, because a single 
cache line holds 16 integers (of 4 bytes each).

 Read  and  write  to  every  16th integer  in  the 
second chunk.

 Read  and  write  to  every  16th integer  in  the 
third chunk.

 Repeat this loop of accesses multiple times and 
measure the time.

The second scenario is trying to mimic the CLR 
scheme  from  prototype  2  where  25%  of  the 
cache lines are reserved, and where the first array 
has been reserved (but not the second one):
 Allocate 192 KB with malloc and assign it an 

integer pointer.
 Read and write to every 16th integer in the first 

25% of the first chunk.
 Read and write to every 16th integer in the first 

25% of the second chunk.
 Read and write to every 16th integer in the first 

25% of the third chunk.
 Read and write to every 16th integer in the first 

25% of the fourth chunk.
 Read and write to every 16th integer in the fifth 

chunk.
 Read and write to every 16th integer in the sixth 

chunk.
 Repeat this loop of accesses multiple times and 

measure the time.

If we think about the steady state of these loops, 
then in the non-CLR case,  all  of these accesses 
will be cache misses. There are three chunks be
ing accessed. The first two will completely fill up 
the  cache  (because  it  is  2-way  set  associative), 
and when the third one is accessed and brought 
into  the  cache,  all  of  these  accesses  will  be 
misses. The third chunk will evict the first chunk 
out of the cache, and then when the first chunk is 
accessed again, we will have misses again.  This 
cycle will repeat to give us only misses.

In the case of CLR, in the steady state of the 
loop, the accesses from the first four chunks will 
be misses, but 75% of accesses in chunks 5 and 6 

will be hits. If we take into account the amount of 
accessed space in the chunks (chunks 3, 4, 5 and 6 
are only 25% filled with objects), this will mean 
that half of total accesses will be hits, and the oth
er half misses.

Test Time (s) Miss rate Miss ratio

no CLR 5.97 (100%) 0.209 0.7368

CLR (25%) 3.72 (62%) 0.114 0.4232

Table 1: Proof-of-concept cache profile.

Table 1 shows the results of the tests.  From 
the results, we can see that CLR can offer a signi
ficant improvement in performance. Due to over
head, the miss ratio and the miss rate might not 
have halved, but the results are close to this goal.

The C code was compiled using Microsoft's 
Optimizing Compiler Version 14.00, with the /O2 
option (maximize speed).

5.2 Custom Benchmarks
A microbenchmark  similar  to  the  one  from the 
proof of concept was developed in Java to test out 
the  Java  prototype  and  confirm  that  CLR  can 
provide a benefit. This is what was set up in the 
benchmark:

 A linked list class was created with nodes that 
were 64 bytes each, the size of one cache line. 
The nodes were padded with dummy data to 
increase their size.

 A number of linked lists was created and 512 
nodes (one chunk) were added to each of them. 
Some of them were set up so that nodes were 
allocated to the reserved areas, some of them 
not.

 The linked lists were traversed in a specific or
der (going from the first to the last element). If 
a reserved  linked list  was traversed  followed 
by a traversal of a non-reserved linked list, we 
denote this as “RN”.

 Optionally, the data in the nodes (an int) would 
be changed to create a write instruction (in ad
dition to the read).

 This traversal would be repeated many times in 
a timed loop.

This benchmark gives us the flexibility to discov
er whether CLR works in the expected way in the 
Java  environment,  according  to  the  physical 
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cache  structure.  As before,  we reserve  25% of 
the cache, and prototype 2 was used (strong CLR 
reservation). Table 2 summarizes the results.

read read/write

Traversal 
order

no CLR CLR 
(25%)

no CLR CLR 
(25%)

R 0.91 2.16 0.92 3.17

RR 1.97 4.19 2.05 6.22

N 0.89 0.94 0.92 0.99

NN 2.13 2.14 2.28 2.28

RN 2.25 3.28 2.38 4.75

NR 2.23 3.28 2.36 4.75

NNR 6.45 4.86 10.55 6.48

NRN 6.48 4.83 10.66 6.81

RNN 6.45 4.88 10.56 6.81

RRN 6.47 5.34 10.55 7.83

RRNN 8.42 7.00 14.36 9.95

RNRN 8.53 6.91 14.50 9.88
Values shown represent execution time in seconds.

Table 2: Custom benchmark performance

From Table 2, you can see all the variants of the 
benchmark that were performed. The results con
firmed what was expected. When we had only one 
linked list, CLR slowed things down significantly. 
(If  we look at  the R case,  the test  took 2 times 
longer to run with CLR when only reading, and 3 
times longer when both reading and writing.) We 
would expect that the order of traversal does not 
matter  in  steady  state  of  the  loops.  This  is  ob
served from the results, as RN and NR, NRN and 
RRN, as  well  as  RRNN and RNRN cases  have 
very close scores.  Next, it  is  confirmed that  the 
cache associativity is 2 because there is improve
ment only when we allocate 3 or more linked lists. 
(The two last ones fill up the cache entirely, and 
the  third  one  evicts  the  first  one.)  The  NNR 
read/write  benchmark  mirrors  the  proof-of-
concept  C  program,  with  the  results  also  being 
very similar. (Execution times were 10.55 seconds 
without CLR, and 6.48 seconds with CLR, which 
is 61% of the non-CLR case, compared with 62% 
in the proof-of-concept C program.) Profiling of 
the NNR case (Table 3) shows that the perform

ance improvement does indeed come from a re
duction in cache misses.

Executed Instructions 
(% of total ticks)

Miss 
Rate

Miss 
Ratio

no CLR 68943 (76.4%) 0.136 0.152

CLR (25%) 149884 (79.9%) 0.066 0.097

Table 3: Cache profile of the RNN read/write 
run on the custom benchmark

The  custom  benchmark  demonstrates  that  CLR 
can provide a measurable benefit in terms of exe
cution time using the Java prototype that we have 
created. The next step is to try to exploit oppor
tunities  similar  to  this  benchmark  in  official 
benchmarks, such as SPECjvm2008 and SPECjb
b2005.

5.3 SPECjvm2008  
SPECjvm2008 [25] is a suite of benchmarks that 
was designed to measure performance of the Java 
Runtime Environment (JRE). We have used pro
totype 1 so that all objects are allocated to the re
served areas,  in the hope of identifying any im
provement  that  CLR  can  bring.  Unfortunately, 
there were no results where CLR provided a bene
fit.  Reducing the size of the reserved region de
creased performance, because TLHs would fill up 
more quickly.

Next, we reserves specific objects, using pro
totype 2, in an attempt to perform more targeted 
reservations. We have reserved the following ob
jects:  Strings,  StringBuffers,  StringBuilders,  and 
BigDecimals.  The char[] array in String,  String
Buffer,  and StringBuilder  instances  was also al
located to a reserved section (instead of allocating 
just the container objects). Once again, CLR only 
hurt performance.

5.4 SPECjbb2005  
SPECjbb2005 [25] is a benchmark for evaluating 
server-side Java. Similar tests were performed as 
in  SPECjvm2008  with  all  three  prototypes,  but 
performance improvement was not seen.

It is clear that a more intelligent way of se
lecting objects to be reserved is needed if CLR is 
to yield an improvement in a real-life benchmark. 
In an attempt to find CLR opportunities, we have 
identified  a  method,  populateXML,  that  gets 
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called often during SPECjbb2008. It goes through 
a  2D char  array  (of  size  char[24][80]),  and  for 
each row in the array,  it creates a String object. 
Every time populateXML is called, 24 String ob
jects are created. Each of these String constructors 
has to create its own char[] array, of length 80. It 
does that by allocating a new array and  copying 
the contents from the 2D array to the new array. 
Therefore,  every  time populateXML allocates  a 
String,  a  new  array  has  to  be  allocated  and 
brought into the cache. These Strings are not zero-
lifetime objects,  but  they do consistently die  as 
they are used to fill up a buffer that has a limited 
capacity.  Our  diagnostic  measurements  indicate 
that for one warehouse (one thread) in SPECjb
b2005, 2% of the time is spent on the String alloc
ation, 7% on writing to the new char array in the 
String constructor and 2% on reading the contents 
of the 2D array.

Score Miss
Rate

Miss
Ratio

Evicted
Rate

no CLR 100% 0.0101 0.0238 0.0218

CLR 25% 85% 0.0098 0.0242 0.0214
Measured with 4 warehouses for 4 minutes, aver
age of 3 runs.

Table 4: Cache profiles of SPECjbb2005 when 
reserving Strings in populateXML

Table  4  shows what  happened  when String  ob
jects from the method populateXML and their re
spective char arrays were allocated to the reserved 
section  (using  prototype  2).  Compared  with  the 
“no CLR” run, the score with CLR was worse, but 
the  cache  performance  didn't  seem  to  improve 
much  (if  any).  Although  the  miss  rate  and  the 
evicted  rate  have  decreased,  it  was  only  slight, 
and the miss ratio (cache misses divided by the 
number of memory accesses) has gotten slightly 
worse.  We suspect  that  the reason  for  a  similar 
cache profile between the “CLR” and “no CLR” 
runs is as follows. One char in Java is 2 bytes, so 
an  80  character  array  is  160  bytes.  Every  time 
populateXML is called, 24 of those character ar
rays  are  allocated,  for  a  total  of  3840 bytes.  If 
each cache line is 64 bytes, that means that every 
time that populateXML is called, 60 lines worth 
of  reserved  objects  is  allocated  (and  the  whole 
cache contains 1024 lines, with an associativity of 
2).  These  objects  will  therefore  evict  60  cache 
lines. When CLR is disabled, these 60 lines will 

be random. When CLR is enabled, these 60 lines 
will be in the first 25% of the L1 cache. But they 
will still produce cache misses, no matter where 
they are. Before populateXML gets called again, 
the  previous  reserved  array  has  most  probably 
already been evicted,  and then we have another 
set of misses, no matter where they are. For CLR 
to work in this case, it needs to evict its  own re
served objects from the cache. This would be true 
if populateXML were called more often, or, if the 
array were bigger than 60 lines.

Score Miss
Rate

Miss
Ratio

Evicted
Rate

no CLR 100% 0.0093 0.0224 0.0351

CLR 25% 88% 0.0058 0.0157 0.0225
Measured with 4 warehouses for 4 minutes.
Table 5: Cache profiles of SPECjbb2005 when 

reserving larger Strings in populateXML

When the prototype was tested with a bigger ar
ray,  it  was  clear  that  the  cache  misses  had  de
creased, as Table 5 shows. Instead of being 24 by 
80, the size of the 2D character array was artifi
cially changed to be 120 by 320. However, there 
was still no improvement in the overall score. The 
reason for this is a large GC overhead that is in
curred.

To try  to  investigate  and  minimize the  GC 
overhead, we decided to try different GC policies 
(generational and conventional), as well as differ
ent sizes of the heap. Table 6 shows the results. 
We can reach  two conclusions.  First,  increasing 
the heap size from 1.77 GB to 3.54 GB has the ef
fect of decreasing the GC overhead introduced by 
CLR, so that the application thread has more time 
to run. The reason for this is that  a larger  heap 
will  run  out  of  memory  less  frequently  than  a 
smaller heap, assuming a constant rate of alloca
tions. Second, generational GC suffers from less 
overhead than optthruput GC. The reason for this 
is that optthruput does not compact the heap. (It is 
a  simple GC policy where  the  dead  objects  are 
simply reclaimed into the free  space  pool.)  The 
heap gets fragmented heavily, and new free space 
requests  become  more  difficult.  However,  even 
with a large heap and generational GC, the reduc
tion in cache misses due to CLR was not enough 
to yield a performance benefit.

To  eliminate  the  overhead  of  GC,  we  shift 
our  focus  from  reserving  objects  that  are  fre
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quently  allocated,  to  objects  that  are  frequently  
accessed. If objects are found to be allocated only 
once,  and  written  to  or  read  from many times, 
then they will not cause the heap to overfill if they 
are allocated to reserved sections. But, each time 
they are accessed, they will have to be loaded in 
the  cache  and  evict  other  objects.  If  these  re
served,  frequently  accessed  objects  are  large 
enough,  they  should  evict  themselves  from  the 
cache,  therefore  not  evicting as  many other  ob
jects. In Section 3.1, we have identified them un
der  the  “Objects  accessed  in  infrequent  bursts” 
heading.

Proportion of time spent in:
GC, applicationHeap 

Size optthruput generational

1.77 GB
no CLR 14% 83% 5.4% 91%

CLR 36% 60% 17% 80%

3.54 GB
no CLR 8.0% 89% 3.3% 93%

CLR 24% 72% 10% 87%

Performance gap (CLR vs. no CLR)

1.77 GB 68% 89%

3.54 GB 76% 94%
All tests with CLR showed a significant reduction 
in the miss rate/ratio, similar to Table 5.

Table 6: Investigating the effect of different 
GC policies and heap sizes on CLR

Unfortunately,  at the time of writing, we do 
not know of a suitable frequently accessed object 
in SPECjvm2008 or SPECjbb2005. But, we have 
tested the potential of this idea by introducing a 
linked  list  to  the  populateXML  method  in 
SPECjbb2005. Each time it allocates a String ob
ject in the normal benchmark, we make it traverse 
a linked list. We used the same linked list as from 
the  previous  custom benchmark,  only  with  256 
nodes this time (25% of the L1 cache – to match 
the size of the reserved section). So, instead of al
locating 24 Strings  and  their  char  arrays,  popu
lateXML now traverses the linked list 24 times.
Table 7 shows that CLR does indeed yield a signi
ficant  benefit  (around  30%)  in  this  specialized 
benchmark. The challenge is to identify these ob
jects  automatically.  This  improvement  is  only 
seen with the optthruput GC policy. With genera

tional GC, objects are moved during a collection, 
so  any  reserved  objects  get  scattered  randomly 
across the cache. Having a CLR-aware GC policy 
would solve this problem.

Score Miss
Rate

Miss
Ratio

Evicted
Rate

no CLR 100% 0.0369 0.0788 0.278

CLR 25% 130% 0.0196 0.0405 0.244
Measured with 4 warehouses for 4 minutes.

Table 7: Cache profiles and scores of SPECjb
b2005 where populateXML traverses a single 

linked list instead of allocating Strings

6 Conclusions and Future 
Work

This paper introduces a novel idea of cache line 
reservation (CLR) for allocating objects. Selected 
objects are allocated to a reserved section of L1 
cache  with  the  aim  to  reduce  cache  misses.  A 
proof  of  concept  of  CLR  was  presented  in  the 
form of a C program.

Three prototypes of CLR were developed in 
the J9 JVM and the Testarossa JIT compiler. They 
can serve as  starting points for  further  develop
ment. Some custom Java benchmarks do show the 
potential benefits of CLR, but the current imple
mentation has limitations. The garbage collection 
has  significantly  increased,  as  well  as  TLH  re
quests. The results seen in custom benchmarks in
dicate that CLR should concentrate on reserving 
long-lived objects that are allocated only once but 
accessed often because this will eliminate the GC 
overhead.

Future work should focus on trying to identi
fy  objects  suitable  for  reserved  allocation,  first 
manually,  and  eventually  automatically,  during 
runtime. In  addition, new GC schemes could be 
developed  that  would  be  CLR-aware  and  CLR-
friendly.

Traditionally, CPU caches were managed ex
clusively by the  hardware.  In  the  future,  as  the 
sizes  of  caches  increase,  it  will  become  worth
while for compilers to start using the internals of 
the cache for advanced optimizations. Cache line 
reservation is a simple idea that can offer benefits, 
but making it work on a consistent basis will be a 
challenge that is presented to the compiler com
munity.
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