
Cache Line Reservation: Exploring a Scheme for Cache-
Friendly Object Allocation

Ivan Bilicki Vijay Sundaresan Daryl Maier Nikola Grčevski Željko Žilic
McGill University IBM Canada IBM Canada IBM Canada McGill University

ivan.bilicki@mail.mcgill.ca; {vijaysun | maier | nikolag}@ca.ibm.com; zeljko.zilic@mcgill.ca

Abstract

We present a novel idea for object allocation,
cache line reservation (CLR), whose goal is to re
duce data cache misses. Certain objects are alloc
ated from "reserved" cache lines, so that they
don't evict other objects that will be needed later.
We discuss what kinds of allocations could bene
fit from CLR, as well as sources of overhead. Ba
sic prototypes were implemented in the IBM® J9
Java™ virtual machine (JVM) and its Testarossa
just-in-time (JIT) compiler. We present prelimin
ary results, which show that CLR can offer a be
nefit in specialized microbenchmarks, but not yet
in SPECjbb2005 and SPECjvm2008. Further
more, we discuss the limitations of the current im
plementation and suggest areas for improvement.
CLR is not limited to Java applications, and we
hope to see it developed for other compilers.

1 Introduction
The Java programming language offers the flexib
ility required for implementing large and complex
programs, and the object-oriented nature of the
language allows programmers to abstract func
tionality into classes and packages. It is common
in programming models such as this to instantiate
an object and invoke one or more methods on the
object in order to perform even a relatively simple
computational task. Thus, in order to complete
complex transactions, modern server/middleware

Copyright © 2009 Ivan Bilicki, IBM Canada Ltd., and
Zeljko Zilic. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

applications typically end up creating a very large
number of objects, many of which are only used
for a short duration. Studies have shown that a
significant number of objects die young [2], or
even instantly [3]; these are referred to as short-
lived and zero-lifetime objects. With all these ob
jects being allocated, efficient memory manage
ment is essential.

Locality of reference states that computer
programs usually repeatedly access data related
either spatially or temporally. If the program ac
cesses a certain memory location M, it can be ex
pected that it would access some other memory
location close to memory location M soon (spa
cial locality). There is usually also a strong likeli
hood that if a certain memory location is accessed
once, it might be accessed again several times in a
relatively short duration (temporal locality). A
good overview of caches, locality, and other con
cepts presented in this paper is provided in [1].

A CPU cache is used by the processor to re
duce the average time to access main memory
(RAM). The cache is a smaller, faster memory
that stores copies of the data from the most fre
quently used main memory locations. When the
processor needs to read or write a location in main
memory, it first checks whether that memory loc
ation is in the cache. This is accomplished by
comparing the address of the memory location to
all the locations in the cache that might contain
that address. If the processor finds that the
memory location is in the cache, this is referred to
as a cache hit; and if it does not find it in the
cache, it is called a cache miss. In the case of a
cache hit, the processor immediately reads or
writes the data in the cache line. If a program be
haves in accordance with the locality of reference

1

principle, most memory accesses would be to
cached memory locations, and the average latency
of memory accesses would be closer to the cache
latency than to the latency of main memory.

Addresses in both kinds of memory (main
and cache) can be considered to be divided into
cache lines. A cache line refers to a contiguous
range of addresses where the size of this range
varies on different computer architectures (e.g.
from 8 bytes to 512 bytes). The size of the cache
line is generally larger than the size of the usual
access requested by a CPU instruction, which
ranges from 1 to 64 bytes. When a memory access
is to a location that is not found in the cache, the
entire cache line that the location belongs to is
read from main memory and brought to the cache
memory. The prior data that was in the cache line
is evicted from the cache, so future accesses to
that data would have to access main memory.

The cache line replacement policy decides
where in the cache a copy of a particular entry of
main memory will go. If the replacement policy is
free to choose any entry in the cache to hold the
copy, the cache is called fully associative. At the
other extreme, if each entry in main memory can
go in just one place in the cache, the cache is dir
ect mapped. Many caches implement a comprom
ise, and are described as set associative. So, N-
way set associative means that any particular loc
ation in main memory can be cached in either of
N entries in the cache memory. The simplest and
most commonly used scheme to decide the map
ping of a memory location to cache location(s) is
to use some low order bits of the memory address
as the index for the cache memory, and to have N
entries for each cache location.

The CPU of a modern computer typically
caches at least three kinds of information: instruc
tions, data, and physical-to-virtual address transla
tions. In this paper, we are concerned only with
data caching. Java objects and arrays are allocated
in the region of (RAM) memory called the heap.
When these objects are created or accessed, load
and store instructions reference memory addresses
where they are located, and these addresses are
brought into the data cache. A load or a store in
struction is also called a data access. A data ac
cess will produce either a cache hit or a cache
miss.

In programs that create a large number of ob
jects (working set), performance can be highly de
pendent on the cost of accessing memory. Modern

JVMs employ sophisticated memory allocation
and management techniques to increase data loc
ality by laying out objects in memory such that
cache misses are reduced (i.e., data being ac
cessed is available in cache memory most of the
time). Memory allocation is usually performed by
the native code generated on the fly by JIT com
pilers, whereas memory management is handled
by the garbage collector (GC). The GC is a form
of automatic memory management where the pro
grammer is responsible for indicating when the
objects that require memory on the heap are cre
ated, but not for freeing up that memory. When
heap memory becomes low, the GC determines
which objects are unreachable (and hence dead)
and reclaims their memory.

This paper proposes a novel object memory
allocation scheme, cache line reservation (CLR)1,
which ensures that a selected allocation is per
formed at a memory location chosen such that this
location would be mapped to a specific cache line.
This means that all of the selected allocations map
only to a certain portion of the cache “reserved”
for those allocations. The criteria for selecting al
locations as well as the amount of cache memory
to reserve for those allocations could vary (espe
cially depending on the architecture), and we dis
cuss some of them. If the selected allocations are
objects that are unlikely to be referenced within a
short duration of each other, then it is likely that
there would have been a cache miss when these
objects are accessed, regardless of the allocation
scheme. Therefore, we can improve cache utiliza
tion for other (unselected) objects by selecting
and allocating these objects such that when the
expected cache miss occurs, they evict only other
selected objects from the cache.

The general idea of CLR is shown to be pos
sible with a simple C proof-of-concept program.
A prototype using CLR has been developed using
the IBM J9 JVM and Testarossa JIT compiler. We
present preliminary results on custom mi
crobenchmarks where CLR proves to be benefi
cial, and discuss SPECjbb2005 and
SPECjvm2008 results, where CLR does not offer
an improvement yet. The paper concludes with a
discussion of the limitations of the current imple
mentation and ideas for future development.

1Patent pending (IBM Canada Ltd)

2

2 Related Work
Cache misses have been thoroughly researched
[1]. There are three types: compulsory misses, ca
pacity misses and conflict misses. Conflict misses
can be reduced by changing the line replacement
policy, cache associativity, or the way in which
data is organized [4]. These are the misses that we
are trying to reduce in this paper. There is nothing
we can do about compulsory and conflict misses
for a fixed cache size. We now explore different
software and hardware approaches that can be
used to optimize cache performance.

2.1 Hardware Approaches
Cache parameters in terms of total size, line size,
and associativity can be changed to see how they
affect cache misses [2, 5]. This is typically done
by collecting different program traces, and then
running them through a cache simulator [6, 7].
Caches in embedded systems can be designed us
ing this technique, where another goal is also low
power consumption [8].

More sophisticated schemes of caches have
been suggested in hardware, such as a skewed
cache, which doesn't have a fixed associativity.
For example, it could have two lines in each set;
the first line is direct mapped, but the second line
is mapped using a hash function [9]. There has
also been work involving non-trivial line replace
ment policies [10].

Another related concept is using scratchpad
memory. Scratchpad memory [11] is a piece of
memory close to the CPU that acts similar to L1
cache memory. However, data in scratchpad
memory does not have to be present in main
memory. This makes scratchpad memory suitable
for allocation of short-lived objects [12]. Since
they die soon after creation, they will not be writ
ten to main memory as they would be if they were
allocated to the L1 cache. Objects that are longer-
lived but are accessed frequently can also benefit
from being allocated to scratchpad memory, a
process known as pretenuring [13].

2.2 Software Approaches
There has been work done with code/procedure
reordering to improve instruction cache perform
ance [14, 15]. The idea is to place frequently
used procedures next to each other so that they do
not map to the same part of the cache and conflict

with each other. Graph coloring algorithms can be
used to decide where exactly to place them. This
approach can also be used to organize arrays in
data caches, as opposed to just instruction caches
[16].

Software prefetching is a technique where the
compiler inserts extra prefetch intstructions in
compiled code [17]. A prefetch instruction brings
data to the cache similar to a load or a store, but it
does not do anything with it. This way, when the
data is needed later, it will already be in the cache.
Prefetching can also be done automatically in
hardware by looking at future memory requests.

In the area of scientific computing, where
many computations on large amounts of data are
performed, cache performance of specific fre
quently executed loops is important (e.g. matrix
multiplication). Various schemes to restructure
the loops to be more cache-friendly have been de
veloped [18, 19]. For example, tiling reduces the
volume of data worked with in each loop itera
tion, so that it can fit into the cache.

Work has been done to allocate certain ob
jects to specific portions of main memory. The
full heap can be partitioned into multiple heaps,
where each heap is used for some selected objects
[20, 21]. Alternatively, object layout can be op
timized during garbage collection. The goal is to
ensure that objects accessed within a short dura
tion of each other are laid out as close as possible
in the heap [22, 23]. These schemes improve ob
ject locality in memory, which in turn has the ef
fect of improving cache performance.

Another way to improve object locality and
reduce the overhead of object allocation is to use
a specific thread local heap (TLH) when allocat
ing objects from a specific thread [24]. This ap
proach primarily aims at eliminating the need for
synchronization at every allocation in the pres
ence of multiple threads (as would be the case if
there was one heap allocation area for all threads).
This can be done because a chunk of memory is
assigned for exclusive use by only one thread.

Our scheme differs from prior work in that it
uses the mapping/associativity of the cache
memory to influence memory allocation with the
goal of improving locality and reducing cache
misses. To our knowledge, there is no prior work
that mentions this approach of object allocation.

3

3 Cache Line Reservation

Figure 1: An Overview of CLR

A simple allocation scheme used conventionally
by JIT compilers is based on each thread allocat
ing objects using thread local heaps (TLHs). A
TLH is a contiguous region of memory of a size
controlled by the JIT. The TLH has two pointers

that are of interest to us: an allocation pointer, tl
hAlloc, and a pointer marking the end of the TLH,
tlhTop. When an object (or an array of primitives)
needs to be allocated, tlhAlloc is incremented by
the size of the object, and the object header and
fields are inserted in that space. If tlhAlloc is
about to overshoot tlhTop, a request for a new
TLH is made, and the object is allocated from the
new TLH.

In the new allocation scheme we present in
this paper, the idea is to divide each TLH into an
unreserved section and one (or more) reserved
sections. Selected allocations are performed only
from designated reserved sections whereas all oth
er allocations are done from the unreserved sec
tion. The size of the unreserved section and each
reserved section within a TLH depends on the size
and mapping of the cache on the computer that
the program is being executed on and the propor
tion of the cache that is to be reserved for the se
lected allocations. Each TLH should be conceptu
ally viewed as being partitioned into smaller
chunks, where each smaller chunk has a size rep
resented by chunkSize = (total size of the cache in
bytes)/A (where A is the associativity of the
cache). Each such chunk has the property that ac
cessing a given memory location within the chunk
would not evict any other memory location within
the same chunk from the cache. In other words,
each chunk can fit exactly within the cache and
different memory locations within the chunk are
mapped to different memory locations on the
cache. Reservation is done by selecting specific
memory locations within chunks such that those
memory locations always map to the same cache
line(s) on the computer. Figure 1 visually shows
the concept of CLR, when reserving a Java object.

A practical way to implement CLR with N
reserved sections would be to define the following
variables:

reservedSections
(the number of reserved sections)
sectionProportion[reservedSections]
(the proportion of each section in a chunk)
tlhAlloc[reservedSections+1]
(allocation pointers)
tlhTop[reservedSections+1]
(allocation section tops)
tlhHighestAllocIndex
(index of the highest tlhAlloc entry)
tlhStart
(start of the whole TLH)

4

tlhEnd
(end of the whole TLH)

When a new TLH is obtained, these variables are
initialized, as shown in Figure 2.

Figure 2: CLR pointer initialization

Allocations can be done by incrementing the cor
responding tlhAlloc pointer, depending on what
section we want to use. We have to keep track of
the tlhTop pointers as well, so that we do not
overshoot into another section. In cases where the
size of the object is too large for its section, it can
be allocated using the highest of the tlhAlloc
pointers (which is what tlhHighestAllocIndex is
used for). The number of reserved sections and
their proportion of the chunks can be a dynamic
ally changing parameter. Other modifications
might be needed, such as teaching the GC about
CLR when moving objects. In addition, other
levels of CLR could be implemented in L2 or L3
caches.

3.1 Criteria for selecting objects
The CLR allocation scheme's goal is to reduce
cache misses in correct conditions. To do that, we
have to identify what objects are eligible for CLR,
and assign them to a specific reserved section.
Here, we explore the possible scenarios where
CLR could offer a benefit, and determine how to
identify them so that we can (re)compile the alloc
ation code to use CLR.

Frequently instantiated types
If there are certain types of objects that are very
frequently allocated (per unit of time of execution
or relative compared to other objects), then these

objects are likely to be short lived. One extreme
would be allocating a lot of zero-lifetime objects.
From the cache perspective, without CLR, they
would take up the whole cache, evicting anything
that was there before. When longer lived objects
are accessed in the future, cache misses occur.
With CLR, zero-lifetime objects would only oc
cupy specific cache lines, so that they evict
mostly themselves out of the cache (which is not a
problem because they will die and will not be
needed in the future anyway). As a result, when
other long-lived objects are accessed, there will be
more cache hits.

Frequently executed allocation sites
If we have a section of code that allocates certain
objects, and this section gets executed often, then
these objects allocated from this site are likely to
be short-lived, even though the same object types
in general could not be. We could find this out by
profiling during runtime, or by some sort of static
analysis of code.

Objects that are unlikely to co-exist
If all of the objects that do not co-exist always oc
cupy the same part of the cache, then they would
evict each other out of the cache, instead of other
objects that will be needed during their lifetimes.

Objects accessed in infrequent bursts
Even if the objects are not short-lived, CLR could
help. If a large group of objects is periodically
read from or written to in isolation, then they
would evict all the lines from the cache when this
happens. If they occupy only a specific part of the
cache, then they would evict fewer of the other
objects from the cache.

Mostly written objects
Objects that are typically only written to (such as
log buffers), would benefit from an exclusive
cache line state. It is typically more expensive for
a cache nest to be moved from a non-exclusive to
an exclusive state. If these objects are all located
in certain cache lines, then whenever they are
written to, the cost of turning the cache nest to an
exclusive state has already been paid.

Objects in different threads
Objects allocated by (and potentially only used
by) a certain thread can be allocated such that
they are mapped to cache lines that are different
from those that would be utilized for allocations

5

done by any other thread. This is useful in scen
arios where multiple threads running on a differ
ent processor are primarily operating on their own
thread-local data.

3.2 Limitations of CLR
The CLR allocation scheme comes at a certain
cost. This cost will depend on how CLR is imple
mented, as well as how often reserved allocations
occur. Although CLR is not necessarily limited to
the Java programming language, from the per
spective of a JVM that uses THLs, some sources
of overhead are as follows.

More garbage collection
If reserved objects are being continuously alloc
ated, in order to satisfy the requirement of them
occupying only one part of the cache, there will
be a lot of unused space in the TLH when it
reaches the top. For example, if the first 25% of
the cache is reserved, and there is a section of
code that only allocates reserved objects, the TLH
will fill up 4 times as quickly. As a result, GC will
occur 4 times as often.

Fragmentation of the heap
After a GC, even though the space in the non-re
served areas will be reclaimed, now the free space
is heavily fragmented, which might make future
allocations (reserved or non-reserved) difficult.
This effect will be minimized by GC schemes that
compact the heap (move objects around to fill up
the holes), such as generational GC.

Reduced non-reserved cache capacity
When reserved sections are allocated, they pre
vent their cache lines for non-reserved objects.
This can actually increase cache misses.

More expensive allocation
Allocation of reserved objects is not as straight
forward as incrementing the tlhAlloc pointer in
the TLH any more. In addition to more execution
time, the size of the compiled methods that use re
served allocation will be bigger.

More frequent TLH requests
As the individual TLHs fill up more quickly, fresh
TLH requests will happen more often, and more
time will be spent in the JVM on memory man
agement instead of running useful code.

CLR-aware GC and VM
Since not all allocations happen through the JIT
compiled code, the allocations from the VM must
be compatible with the CLR infrastructure. Simil
arly, in GC schemes that move objects (compac
tion or generational GCs), the GC might have to
be modified such that the reserved objects are
moved so that they still map to the reserved re
gions.

Extra instrumentation and compilation time
In a fully-automatic JVM with a JIT that supports
CLR, extra instrumentation would have to be de
veloped to detect what objects to reserve. Then,
these methods would have to be recompiled
(which takes time). Alternatively, it might be de
cided that some objects should stop being re
served, which would trigger recompilation again.

The question is whether all these costs are justi
fied by the reduction in cache misses that CLR
can provide, and under what circumstances. This
is the topic of discussion of the rest of this paper.

4 Design & Implementation
The JVM we used is the IBM J9 along with the
Testarossa (TR) JIT compiler. A program written
in the Java is first compiled to Java bytecode.
Then the bytecode is traditionally interpreted by
the JVM.

Java objects are allocated when the following
bytecodes are encountered: new, newarray, and
anewarray (allocates an array of references). The
allocations can happen through the following
paths: from methods that the JIT compiled, from
the JVM when the JIT allocation fails (if the TLH
gets full or the object is too large for TLH alloca
tion), or from interpreted methods by the JVM.
We are interested in the JIT path.

The JIT compiler helps by compiling fre
quently executed methods to native instructions.
Since CLR focuses on frequently allocated and/or
frequently used objects, they are likely to be al
located from the compiled code. Therefore, we
have modified the JIT compiler so that it can
compile methods that allocate objects according
to the CLR scheme. All three prototypes that were
developed are a simplification of the CLR defini
tion outlines in Section 3.

6

4.1 “Weak” CLR – Prototype 1
In our first prototype, we allocate all objects so
that their beginning is in a specific N% of the L1
CPU cache. When the JIT compiles a new, newar
ray, or anewarray bytecode, instead of just incre
menting the tlhAlloc pointer, we check whether
that pointer is in the reserved N% of the cache. If
it is, then the allocation continues as before. If it
isn't, then the heapAlloc pointer is bumped so that
it maps to the beginning of L1 cache, and the
space in between is marked as used (so that the
GC does not get confused). We call this “weak”
allocation because although we guarantee that tl
hAlloc will be in the reserved section, this is just
the beginning of the object, and its end might ex
tend into the non-reserved section.

For example, we can select N to be 25, so
that we try to allocate all objects from the first
25% of the cache. Let us assume that we are using
an AMD Opteron (Shanghai) processor, which
has 64 KB of L1 data cache, and is 2-way set as
sociative with a 64-byte line. This cache has 1024
lines. The fact that it is 2-way set associative
means that there are effectively only 512 uniquely
addressable sets, with 2 lines in each set. In rela
tion to CLR, this means that we can think of the
TLH as being made up of 64 KB/2 = 32 KB
chunks, and we want to allocate objects in the last
25% of them. The location where a physical ad
dress maps to the cache is determined by its ad
dress's least significant bits. In this case, when
CLR is enabled, tlhAlloc is forced to have bits 13
and 14 set to 1. Bits 13 and 14 would determine
which quarter of the cache the address will be
mapped to (2^15 = 32 KB). This is done in the
compiled assembly code using bitwise arithmetic.
N, as well as the cache size and associativity are
all constants that can be changed in the prototype.

One might ask why we would allocate all ob
jects in this way. The idea is for this to be used
with generational GC that is unaware of CLR.
The generational GC allocates new objects in the
area of the heap known as the nursery. As the
nursery gets filled up by allocated objects, when it
reaches half of its capacity, a collection is made.
The GC copies all the live objects from one half
of the nursery to the other. As a result, the heap is
compacted, but it also means that all objects, if
they survive a GC, will be spread evenly across
the L1 cache. This makes sense in the context of
CLR because if they survive a GC, then they are

longer-lived objects anyway, and their place is not
in the reserved area of the cache.

The advantage of this prototype is its simpli
city: it does not require any additional pointers in
the TLH, and there is no modification outside the
JIT. If an object needs to get allocated from the
VM, this can be done as before, by incrementing
the tlhAlloc pointer. The disadvantage of this
scheme is that objects might occupy non-reserved
sections. Other limitations include having only
one reserved section and having no control over
what objects to reserve (the heap will fill up
quickly if the reserved section is small, because of
constant bumping of tlhAlloc).

4.2 “Strong” CLR – Prototype 2
We developed a second prototype that guarantees
that a reserved object will be in its entirety in the
reserved region. We call this “strong” reservation.
It comes at the expense of more overhead for al
location in compiled assembly code, but reserved
objects do not pollute the non-reserved sections.
This also means that we can safely have more
than one reserved section.

In addition to tlhAlloc, we add the tl
hReserved pointer. Then, non-reserved allocations
can be done by incrementing the tlhAlloc pointer,
and reserved allocations are done by incrementing
the tlhReserved pointer. tlhReserved is kept at
null if there are no reserved allocations. tlhAlloc
is always kept above tlhReserved, so that if ob
jects need to be allocated from the VM (not the
JIT), the conventional scheme of allocation will
work without much modification. (The tlhAlloc
can safely be incremented, because it will not
overshoot tlhReserved.) Figure 3 shows the main
steps that occur when a reserved object gets alloc
ated. Again, whenever a pointer is bumped inside
the TLH, to prevent having a hole of unallocated
space in the middle of the TLH, which confuses
the GC, this space is marked as used and will be
reclaimed at the next GC.

When the JIT is compiling a method that al
locates an object, it decides whether to generate
code for reserved or normal allocation; it decides
this based on the object name (or if it is an array,
based on the name of the method that contains it).
Even though Figure 3 might suggest that the over
head for reserved allocation is significant, most of
that control-flow is for checking limiting cases. In
most reserved allocations, what will end up hap
pening is that tlhReserved will simply get incre

7

mented (after some untaken conditional
branches), just as tlhAlloc is incremented in the
non-reserved, conventional case.

4.3 “Strong” CLR/non-CLR –
Prototype 3

The second prototype guaranteed that a reserved
object will be in a reserved section, but it did not
guarantee that the non-reserved object will not be
in a reserved section. In the third prototype, as an
extension to the second prototype, we allocate
non-reserved objects only to the non-reserved re
gions. Reserved allocations are done identically as
in prototype 2. Also like in the second prototype,
we can still allocate non-reserved objects in the
“weak” way. In that case, we only guarantee that
the beginning of the non-reserved object is in the
non-reserved section. The advantage of this proto
type is that it minimizes cache pollution.

5 Preliminary Results
We present a basic CLR proof of concept in C to
show that it works. Then, we do the same with a
custom benchmark in Java. Finally, we investigate
CLR in relation to SPECjvm2008 and SPECjb
b2005. Rather than publishing actual scores
(lower is better), we offer a comparative analysis
(CLR vs. no CLR). All tests were done on an
AMD Opteron (Shanghai) processor running Mi
crosoft® Windows® Server 2003. Its L1 cache is
64 KBytes, and is 2-way set associative, with a
64-byte line size. Although this processor has 8
cores, only 4 were used, to prevent non-uniform
memory access (NUMA) variations. The AMD
Code Analyst was used to obtain data from hard
ware counters. The miss rate is the number of
memory access instructions that caused an L1
cache miss, out of the total number of executed
instructions. The miss ratio is the number of
memory access instructions that caused an L1
cache miss, out of the total number of memory ac
cess instructions. The evicted rate is defined as
the number of evicted L1 cache lines divided by
the number of total executed instructions.

5.1 Proof of Concept
We have created a proof-of-concept C program
that mimics what prototype 2 would do on a cus
tom Java benchmark.

Figure 3: Processing a reserved allocation in
the strong CLR prototype

8

The following steps were performed in the
program to emulate non-CLR allocation:

 Allocate using malloc a continuous area of
memory (192 KB or 6 chunks), and assign it
an integer pointer.

 Read and write to every 16th integer in the first
chunk. This is so that we can bring in one
cache line with every access, because a single
cache line holds 16 integers (of 4 bytes each).

 Read and write to every 16th integer in the
second chunk.

 Read and write to every 16th integer in the
third chunk.

 Repeat this loop of accesses multiple times and
measure the time.

The second scenario is trying to mimic the CLR
scheme from prototype 2 where 25% of the
cache lines are reserved, and where the first array
has been reserved (but not the second one):
 Allocate 192 KB with malloc and assign it an

integer pointer.
 Read and write to every 16th integer in the first

25% of the first chunk.
 Read and write to every 16th integer in the first

25% of the second chunk.
 Read and write to every 16th integer in the first

25% of the third chunk.
 Read and write to every 16th integer in the first

25% of the fourth chunk.
 Read and write to every 16th integer in the fifth

chunk.
 Read and write to every 16th integer in the sixth

chunk.
 Repeat this loop of accesses multiple times and

measure the time.

If we think about the steady state of these loops,
then in the non-CLR case, all of these accesses
will be cache misses. There are three chunks be
ing accessed. The first two will completely fill up
the cache (because it is 2-way set associative),
and when the third one is accessed and brought
into the cache, all of these accesses will be
misses. The third chunk will evict the first chunk
out of the cache, and then when the first chunk is
accessed again, we will have misses again. This
cycle will repeat to give us only misses.

In the case of CLR, in the steady state of the
loop, the accesses from the first four chunks will
be misses, but 75% of accesses in chunks 5 and 6

will be hits. If we take into account the amount of
accessed space in the chunks (chunks 3, 4, 5 and 6
are only 25% filled with objects), this will mean
that half of total accesses will be hits, and the oth
er half misses.

Test Time (s) Miss rate Miss ratio

no CLR 5.97 (100%) 0.209 0.7368

CLR (25%) 3.72 (62%) 0.114 0.4232

Table 1: Proof-of-concept cache profile.

Table 1 shows the results of the tests. From
the results, we can see that CLR can offer a signi
ficant improvement in performance. Due to over
head, the miss ratio and the miss rate might not
have halved, but the results are close to this goal.

The C code was compiled using Microsoft's
Optimizing Compiler Version 14.00, with the /O2
option (maximize speed).

5.2 Custom Benchmarks
A microbenchmark similar to the one from the
proof of concept was developed in Java to test out
the Java prototype and confirm that CLR can
provide a benefit. This is what was set up in the
benchmark:

 A linked list class was created with nodes that
were 64 bytes each, the size of one cache line.
The nodes were padded with dummy data to
increase their size.

 A number of linked lists was created and 512
nodes (one chunk) were added to each of them.
Some of them were set up so that nodes were
allocated to the reserved areas, some of them
not.

 The linked lists were traversed in a specific or
der (going from the first to the last element). If
a reserved linked list was traversed followed
by a traversal of a non-reserved linked list, we
denote this as “RN”.

 Optionally, the data in the nodes (an int) would
be changed to create a write instruction (in ad
dition to the read).

 This traversal would be repeated many times in
a timed loop.

This benchmark gives us the flexibility to discov
er whether CLR works in the expected way in the
Java environment, according to the physical

9

cache structure. As before, we reserve 25% of
the cache, and prototype 2 was used (strong CLR
reservation). Table 2 summarizes the results.

read read/write

Traversal
order

no CLR CLR
(25%)

no CLR CLR
(25%)

R 0.91 2.16 0.92 3.17

RR 1.97 4.19 2.05 6.22

N 0.89 0.94 0.92 0.99

NN 2.13 2.14 2.28 2.28

RN 2.25 3.28 2.38 4.75

NR 2.23 3.28 2.36 4.75

NNR 6.45 4.86 10.55 6.48

NRN 6.48 4.83 10.66 6.81

RNN 6.45 4.88 10.56 6.81

RRN 6.47 5.34 10.55 7.83

RRNN 8.42 7.00 14.36 9.95

RNRN 8.53 6.91 14.50 9.88
Values shown represent execution time in seconds.

Table 2: Custom benchmark performance

From Table 2, you can see all the variants of the
benchmark that were performed. The results con
firmed what was expected. When we had only one
linked list, CLR slowed things down significantly.
(If we look at the R case, the test took 2 times
longer to run with CLR when only reading, and 3
times longer when both reading and writing.) We
would expect that the order of traversal does not
matter in steady state of the loops. This is ob
served from the results, as RN and NR, NRN and
RRN, as well as RRNN and RNRN cases have
very close scores. Next, it is confirmed that the
cache associativity is 2 because there is improve
ment only when we allocate 3 or more linked lists.
(The two last ones fill up the cache entirely, and
the third one evicts the first one.) The NNR
read/write benchmark mirrors the proof-of-
concept C program, with the results also being
very similar. (Execution times were 10.55 seconds
without CLR, and 6.48 seconds with CLR, which
is 61% of the non-CLR case, compared with 62%
in the proof-of-concept C program.) Profiling of
the NNR case (Table 3) shows that the perform

ance improvement does indeed come from a re
duction in cache misses.

Executed Instructions
(% of total ticks)

Miss
Rate

Miss
Ratio

no CLR 68943 (76.4%) 0.136 0.152

CLR (25%) 149884 (79.9%) 0.066 0.097

Table 3: Cache profile of the RNN read/write
run on the custom benchmark

The custom benchmark demonstrates that CLR
can provide a measurable benefit in terms of exe
cution time using the Java prototype that we have
created. The next step is to try to exploit oppor
tunities similar to this benchmark in official
benchmarks, such as SPECjvm2008 and SPECjb
b2005.

5.3 SPECjvm2008
SPECjvm2008 [25] is a suite of benchmarks that
was designed to measure performance of the Java
Runtime Environment (JRE). We have used pro
totype 1 so that all objects are allocated to the re
served areas, in the hope of identifying any im
provement that CLR can bring. Unfortunately,
there were no results where CLR provided a bene
fit. Reducing the size of the reserved region de
creased performance, because TLHs would fill up
more quickly.

Next, we reserves specific objects, using pro
totype 2, in an attempt to perform more targeted
reservations. We have reserved the following ob
jects: Strings, StringBuffers, StringBuilders, and
BigDecimals. The char[] array in String, String
Buffer, and StringBuilder instances was also al
located to a reserved section (instead of allocating
just the container objects). Once again, CLR only
hurt performance.

5.4 SPECjbb2005
SPECjbb2005 [25] is a benchmark for evaluating
server-side Java. Similar tests were performed as
in SPECjvm2008 with all three prototypes, but
performance improvement was not seen.

It is clear that a more intelligent way of se
lecting objects to be reserved is needed if CLR is
to yield an improvement in a real-life benchmark.
In an attempt to find CLR opportunities, we have
identified a method, populateXML, that gets

10

called often during SPECjbb2008. It goes through
a 2D char array (of size char[24][80]), and for
each row in the array, it creates a String object.
Every time populateXML is called, 24 String ob
jects are created. Each of these String constructors
has to create its own char[] array, of length 80. It
does that by allocating a new array and copying
the contents from the 2D array to the new array.
Therefore, every time populateXML allocates a
String, a new array has to be allocated and
brought into the cache. These Strings are not zero-
lifetime objects, but they do consistently die as
they are used to fill up a buffer that has a limited
capacity. Our diagnostic measurements indicate
that for one warehouse (one thread) in SPECjb
b2005, 2% of the time is spent on the String alloc
ation, 7% on writing to the new char array in the
String constructor and 2% on reading the contents
of the 2D array.

Score Miss
Rate

Miss
Ratio

Evicted
Rate

no CLR 100% 0.0101 0.0238 0.0218

CLR 25% 85% 0.0098 0.0242 0.0214
Measured with 4 warehouses for 4 minutes, aver
age of 3 runs.

Table 4: Cache profiles of SPECjbb2005 when
reserving Strings in populateXML

Table 4 shows what happened when String ob
jects from the method populateXML and their re
spective char arrays were allocated to the reserved
section (using prototype 2). Compared with the
“no CLR” run, the score with CLR was worse, but
the cache performance didn't seem to improve
much (if any). Although the miss rate and the
evicted rate have decreased, it was only slight,
and the miss ratio (cache misses divided by the
number of memory accesses) has gotten slightly
worse. We suspect that the reason for a similar
cache profile between the “CLR” and “no CLR”
runs is as follows. One char in Java is 2 bytes, so
an 80 character array is 160 bytes. Every time
populateXML is called, 24 of those character ar
rays are allocated, for a total of 3840 bytes. If
each cache line is 64 bytes, that means that every
time that populateXML is called, 60 lines worth
of reserved objects is allocated (and the whole
cache contains 1024 lines, with an associativity of
2). These objects will therefore evict 60 cache
lines. When CLR is disabled, these 60 lines will

be random. When CLR is enabled, these 60 lines
will be in the first 25% of the L1 cache. But they
will still produce cache misses, no matter where
they are. Before populateXML gets called again,
the previous reserved array has most probably
already been evicted, and then we have another
set of misses, no matter where they are. For CLR
to work in this case, it needs to evict its own re
served objects from the cache. This would be true
if populateXML were called more often, or, if the
array were bigger than 60 lines.

Score Miss
Rate

Miss
Ratio

Evicted
Rate

no CLR 100% 0.0093 0.0224 0.0351

CLR 25% 88% 0.0058 0.0157 0.0225
Measured with 4 warehouses for 4 minutes.
Table 5: Cache profiles of SPECjbb2005 when

reserving larger Strings in populateXML

When the prototype was tested with a bigger ar
ray, it was clear that the cache misses had de
creased, as Table 5 shows. Instead of being 24 by
80, the size of the 2D character array was artifi
cially changed to be 120 by 320. However, there
was still no improvement in the overall score. The
reason for this is a large GC overhead that is in
curred.

To try to investigate and minimize the GC
overhead, we decided to try different GC policies
(generational and conventional), as well as differ
ent sizes of the heap. Table 6 shows the results.
We can reach two conclusions. First, increasing
the heap size from 1.77 GB to 3.54 GB has the ef
fect of decreasing the GC overhead introduced by
CLR, so that the application thread has more time
to run. The reason for this is that a larger heap
will run out of memory less frequently than a
smaller heap, assuming a constant rate of alloca
tions. Second, generational GC suffers from less
overhead than optthruput GC. The reason for this
is that optthruput does not compact the heap. (It is
a simple GC policy where the dead objects are
simply reclaimed into the free space pool.) The
heap gets fragmented heavily, and new free space
requests become more difficult. However, even
with a large heap and generational GC, the reduc
tion in cache misses due to CLR was not enough
to yield a performance benefit.

To eliminate the overhead of GC, we shift
our focus from reserving objects that are fre

11

quently allocated, to objects that are frequently
accessed. If objects are found to be allocated only
once, and written to or read from many times,
then they will not cause the heap to overfill if they
are allocated to reserved sections. But, each time
they are accessed, they will have to be loaded in
the cache and evict other objects. If these re
served, frequently accessed objects are large
enough, they should evict themselves from the
cache, therefore not evicting as many other ob
jects. In Section 3.1, we have identified them un
der the “Objects accessed in infrequent bursts”
heading.

Proportion of time spent in:
GC, applicationHeap

Size optthruput generational

1.77 GB
no CLR 14% 83% 5.4% 91%

CLR 36% 60% 17% 80%

3.54 GB
no CLR 8.0% 89% 3.3% 93%

CLR 24% 72% 10% 87%

Performance gap (CLR vs. no CLR)

1.77 GB 68% 89%

3.54 GB 76% 94%
All tests with CLR showed a significant reduction
in the miss rate/ratio, similar to Table 5.

Table 6: Investigating the effect of different
GC policies and heap sizes on CLR

Unfortunately, at the time of writing, we do
not know of a suitable frequently accessed object
in SPECjvm2008 or SPECjbb2005. But, we have
tested the potential of this idea by introducing a
linked list to the populateXML method in
SPECjbb2005. Each time it allocates a String ob
ject in the normal benchmark, we make it traverse
a linked list. We used the same linked list as from
the previous custom benchmark, only with 256
nodes this time (25% of the L1 cache – to match
the size of the reserved section). So, instead of al
locating 24 Strings and their char arrays, popu
lateXML now traverses the linked list 24 times.
Table 7 shows that CLR does indeed yield a signi
ficant benefit (around 30%) in this specialized
benchmark. The challenge is to identify these ob
jects automatically. This improvement is only
seen with the optthruput GC policy. With genera

tional GC, objects are moved during a collection,
so any reserved objects get scattered randomly
across the cache. Having a CLR-aware GC policy
would solve this problem.

Score Miss
Rate

Miss
Ratio

Evicted
Rate

no CLR 100% 0.0369 0.0788 0.278

CLR 25% 130% 0.0196 0.0405 0.244
Measured with 4 warehouses for 4 minutes.

Table 7: Cache profiles and scores of SPECjb
b2005 where populateXML traverses a single

linked list instead of allocating Strings

6 Conclusions and Future
Work

This paper introduces a novel idea of cache line
reservation (CLR) for allocating objects. Selected
objects are allocated to a reserved section of L1
cache with the aim to reduce cache misses. A
proof of concept of CLR was presented in the
form of a C program.

Three prototypes of CLR were developed in
the J9 JVM and the Testarossa JIT compiler. They
can serve as starting points for further develop
ment. Some custom Java benchmarks do show the
potential benefits of CLR, but the current imple
mentation has limitations. The garbage collection
has significantly increased, as well as TLH re
quests. The results seen in custom benchmarks in
dicate that CLR should concentrate on reserving
long-lived objects that are allocated only once but
accessed often because this will eliminate the GC
overhead.

Future work should focus on trying to identi
fy objects suitable for reserved allocation, first
manually, and eventually automatically, during
runtime. In addition, new GC schemes could be
developed that would be CLR-aware and CLR-
friendly.

Traditionally, CPU caches were managed ex
clusively by the hardware. In the future, as the
sizes of caches increase, it will become worth
while for compilers to start using the internals of
the cache for advanced optimizations. Cache line
reservation is a simple idea that can offer benefits,
but making it work on a consistent basis will be a
challenge that is presented to the compiler com
munity.

12

Acknowledgements
This research was funded in part by the Natural
Sciences and Engineering Research Council.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks
or registered trademarks of International Business
Machines Corp., registered in many jurisdictions
worldwide. Other product and service names
might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on
the Web at “Copyright and trademark informa
tion” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks are trade
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product, or service names
may be trademarks or service marks of others.

About the Authors
Ivan Bilicki is pursuing an MEng with McGill
University in the Department of Electrical and
Computer Engineering. After working as a co-op
student with the IBM JIT compiler team in sum
mer 2008, he continued his research as an IBM
CAS (Centre for Advanced Studies) student. He
received his BEng in honours electrical engineer
ing from McGill University in 2007.

Vijay Sundaresan, Daryl Maier, and Nikola
Grčevski are currently working for the IBM Test
arossa JIT compiler optimizer team at the IBM
Toronto Lab. Their focus is improving the per
formance of the JIT compiler on various computer
architectures.

Željko Žilic is an associate professor in the
Department of Electrical and Computer Engineer
ing at McGill University. He is researching vari
ous aspects of system design, test, and verifica
tion. He has a MSc and a PhD in electrical and
computer engineering from the University of
Toronto.

References
[1] J.L. Hennessy and D.A. Patterson, Computer

Architecture, Fourth Edition: A Quantitative
Approach, Morgan Kaufmann, 2006.

[2] J. Kim and Y. Hsu, “Memory system behavi
or of Java programs: methodology and ana
lysis,” Proceedings of the 2000 ACM SIG
METRICS international conference on Meas
urement and modeling of computer systems,
Santa Clara, California, United States: ACM,
2000, pp. 264-274.

[3] H. Inoue, D. Stefanovic, and S. Forrest, “On
the prediction of Java object lifetimes,” Com
puters, IEEE Transactions on, vol. 55, 2006,
pp. 880-892.

[4] O. Temam, C. Fricker, and W. Jalby, “Cache
interference phenomena,” Proceedings of the
1994 ACM SIGMETRICS conference on
Measurement and modeling of computer sys
tems, Nashville, Tennessee, United States:
ACM, 1994, pp. 261-271.

[5] T. Sheu, Y. Shieh, and W. Lin, “The selec
tion of optimal cache lines for micropro
cessor-based controllers,” Proceedings of the
23rd annual workshop and symposium on
Microprogramming and microarchitecture,
Orlando, Florida, United States: IEEE Com
puter Society Press, 1990, pp. 183-192.

[6] P. Viana, A. Gordon-Ross, E. Keogh, E. Bar
ros, and F. Vahid, “Configurable cache sub
setting for fast cache tuning,” Proceedings of
the 43rd annual conference on Design auto
mation, San Francisco, CA, USA: ACM,
2006, pp. 695-700.

[7] A. Janapsatya, A. Ignjatović, and S. Para
meswaran, “Finding optimal L1 cache con
figuration for embedded systems,” Proceed
ings of the 2006 conference on Asia South
Pacific design automation, Yokohama, Ja
pan: IEEE Press, 2006, pp. 796-801.

[8] J.M. Velasco, D. Atienza, and K. Olcoz,
“Exploration of memory hierarchy configura
tions for efficient garbage collection on high-
performance embedded systems,” Proceed
ings of the 19th ACM Great Lakes symposi
um on VLSI, Boston Area, MA, USA: ACM,
2009, pp. 3-8.

[9] A. Seznec, “A case for two-way skewed-as
sociative caches,” Proceedings of the 20th
annual international symposium on Com
puter architecture, San Diego, California,
United States: ACM, 1993, pp. 169-178.

13

[10] R. Subramanian, Y. Smaragdakis, and G.H.
Loh, “Adaptive Caches: Effective Shaping of
Cache Behavior to Workloads,” Proceedings
of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, IEEE
Computer Society, 2006, pp. 385-396.

[11] M. Kandemir, J. Ramanujam, J. Irwin, N.
Vijaykrishnan, I. Kadayif, and A. Parikh,
“Dynamic management of scratch-pad
memory space,” Proceedings of the 38th con
ference on Design automation, Las Vegas,
Nevada, United States: ACM, 2001, pp. 690-
695.

[12] C. Lebsack and J. Chang, “Using scratchpad
to exploit object locality in Java,” Computer
Design: VLSI in Computers and Processors,
2005. ICCD 2005. Proceedings. 2005 IEEE
International Conference on, 2005, pp. 381-
386.

[13] K.F. Chong, C.Y. Ho, and A.S. Fong, “Pre
tenuring in Java by Object Lifetime and Ref
erence Density Using Scratch-Pad Memory,”
Parallel, Distributed and Network-Based
Processing, 2007. PDP '07. 15th EUROMIC
RO International Conference on, 2007, pp.
205-212.

[14] A.H. Hashemi, D.R. Kaeli, and B. Calder,
“Efficient procedure mapping using cache
line coloring,” Proceedings of the ACM SIG
PLAN 1997 conference on Programming lan
guage design and implementation, Las Ve
gas, Nevada, United States: ACM, 1997, pp.
171-182.

[15] J. Kalamatianos, A. Khalafi, D. Kaeli, and
W. Meleis, “Analysis of temporal-based pro
gram behavior for improved instruction cache
performance,” Computers, IEEE Transac
tions on, vol. 48, 1999, pp. 168-175.

[16] D. Genius, “Handling Cross Interferences by
Cyclic Cache Line Coloring,” Proceedings of
the 1998 International Conference on Paral
lel Architectures and Compilation Tech
niques, IEEE Computer Society, 1998, p.
112.

[17] D. Callahan, K. Kennedy, and A. Porterfield,
“Software prefetching,” Proceedings of the
fourth international conference on Architec
tural support for programming languages

and operating systems, Santa Clara, Califor
nia, United States: ACM, 1991, pp. 40-52.

[18] S. Coleman and K.S. McKinley, “Tile size
selection using cache organization and data
layout,” Proceedings of the ACM SIGPLAN
1995 conference on Programming language
design and implementation, La Jolla, Califor
nia, United States: ACM, 1995, pp. 279-290.

[19] G. Rivera and C. Tseng, “Data transforma
tions for eliminating conflict misses,” Pro
ceedings of the ACM SIGPLAN 1998 confer
ence on Programming language design and
implementation, Montreal, Quebec, Canada:
ACM, 1998, pp. 38-49.

[20] C. Lattner and V. Adve, “Automatic pool al
location: improving performance by con
trolling data structure layout in the heap,”
Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design
and implementation, Chicago, IL, USA:
ACM, 2005, pp. 129-142.

[21] M. Hirzel, J. Henkel, A. Diwan, and M.
Hind, “Understanding the connectivity of
heap objects,” Proceedings of the 3rd inter
national symposium on Memory manage
ment, Berlin, Germany: ACM, 2002, pp. 36-
49.

[22] T.M. Chilimbi and J.R. Larus, “Using gener
ational garbage collection to implement
cache-conscious data placement,” Proceed
ings of the 1st international symposium on
Memory management, Vancouver, British
Columbia, Canada: ACM, 1998, pp. 37-48.

[23] T.M. Chilimbi, M.D. Hill, and J.R. Larus,
“Cache-conscious structure layout,” Proceed
ings of the ACM SIGPLAN 1999 conference
on Programming language design and imple
mentation, Atlanta, Georgia, United States:
ACM, 1999, pp. 1-12.

[24] T. Domani, G. Goldshtein, E.K. Kolodner, E.
Lewis, E. Petrank, and D. Sheinwald,
“Thread-local heaps for Java,” Proceedings
of the 3rd international symposium on
Memory management, Berlin, Germany:
ACM, 2002, pp. 76-87.

[25] “SPEC - Standard Performance Evaluation
Corporation”, Internet:http://www.spec.org/,
[May 2009]

14

	1 Introduction
	2 Related Work
	2.1 Hardware Approaches
	2.2 Software Approaches

	3 Cache Line Reservation
	3.1 Criteria for selecting objects
	3.2 Limitations of CLR

	4 Design & Implementation
	4.1 “Weak” CLR – Prototype 1
	4.2 “Strong” CLR – Prototype 2
	4.3 “Strong” CLR/non-CLR – Prototype 3

	5 Preliminary Results
	5.1 Proof of Concept
	5.2 Custom Benchmarks
	5.3 SPECjvm2008
	5.4 SPECjbb2005

	6 Conclusions and Future Work

