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Applications of Algebraic Soft-Decision
Decoding of Reed–Solomon Codes
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Abstract—Efficient soft-decision decoding of Reed–Solomon
(RS) codes is made possible by the Koetter–Vardy (KV) algo-
rithm which consists of a front-end to the interpolation-based
Guruswami–Sudan (GS) list decoding algorithm. This paper
approaches the soft-decision KV algorithm from the point of view
of a communications systems designer who wants to know what
benefits the algorithm can give, and how the extra complexity in-
troduced by soft decoding can be managed at the systems level. We
show how to reduce the computational complexity and memory
requirements of the soft-decision front-end. Applications to wire-
less communications over Rayleigh fading channels and magnetic
recording channels are proposed. For a high-rate RS(255,239)
code, 2–3 dB of soft-decision gain is possible over a Rayleigh
fading channel using 16-quadrature amplitude modulation. For
shorter codes and at lower rates, the gain can be as large as 9 dB.
To lower the complexity of decoding on the systems level, the rede-
coding architecture is explored, which uses only the appropriate
amount of complexity to decode each packet. An error-detection
criterion based on the properties of the KV decoder is proposed
for the redecoding architecture. Queueing analysis verifies the
practicality of the redecoding architecture by showing that only a
modestly sized RAM buffer is required.

Index Terms—List decoding, Reed–Solomon (RS) codes, soft-
decision decoding (SDD).

I. INTRODUCTION

REED–SOLOMON (RS) codes are found in many digital
communications and recording systems. They are pow-

erful error-correcting codes whose symbols are chosen from a
Galois field (GF), GF . Their nonbinary nature makes them
particularly suitable to correct error bursts, say, produced by an
inner decoder of a concatenated code. However, the traditional
algebraic decoders are not able to use soft reliability informa-
tion that is readily available from the output of maximum a pos-
teriori (MAP) or turbo decoders. The recent introduction of an
efficient algebraic soft-decision decoding (SDD) algorithm due
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to Koetter and Vardy [1], [2], based on the list decoding algo-
rithm of Guruswami and Sudan [3], [4], has sparked a renewed
interest in soft-decision decoders.

This paper approaches the soft-decision Koetter–Vardy (KV)
algorithm from the point of view of a communications systems
designer who wants to know what benefits the algorithm can
give, and how the extra complexity introduced by soft decoding
can be managed at the systems level. Details on efficient im-
plementations of the list decoding algorithm itself are given in
[5]–[11]. Section II is a brief review of the algebraic SDD al-
gorithm. In Section III, we show how the complexity of con-
verting the soft information into algebraic conditions needed by
the decoder can be reduced, and also how the memory require-
ments for this information can be lowered to a reasonable level.
Section IV gives simulation results for proposed applications in
wireless communications and magnetic recoding. Section V ex-
amines a systems-level architecture designed to minimize the
average complexity of decoding by only using soft information
when it is needed. Conclusions are offered in Section VI.

II. ALGEBRAIC SOFT-DECISION DECODING

RS codes are nonbinary linear block codes over GF of
length and dimension with minimum distance

, denoted as RS . A symbol message is represented
by the coefficients of a degree message polynomial ,
and a length RS codeword is formed by evaluating

at the nonzero elements of GF

(1)

for some fixed ordering of the field elements . This eval-
uation map view of RS codes leads to the Guruswami–Sudan
(GS) list decoding algorithm [3], [4], which can decode beyond
the traditional error-correction bound of half the minimum dis-
tance. The KV algorithm [1], [2] is a soft-decision extension to
the GS algorithm, which encodes soft information into algebraic
conditions used to control an interpolation in the GS algorithm.
The transmitted symbols are elements of the finite field GF

. At the output of a memoryless channel,
we can tabulate the a posteriori probabilities (APPs) for each
of the possible transmitted symbols, given the observation
received corresponding to symbol position as

sent received (2)

The values of can be written as the elements of a
matrix called the reliability matrix, which represents
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the full soft information available from the channel. In practice,
APPs are readily available from the output of MAP or turbo
decoders.

The GS algorithm decodes by finding a minimal bivariate
polynomial that passes through the received data. The KV algo-
rithm computes weights (or multiplicities) proportional to the
soft information. These weights, stored in a multiplicity matrix,
are used to control a biased interpolation in the GS algorithm.

Definition 1: The -weighted degree of a bi-
variate polynomial GF is

, where .
If , then . Given soft infor-

mation in the form of a reliability matrix, , the KV
algorithm is as follows.

1) Compute a integer multiplicity matrix , where
the th entry is denoted as , from .

2) Find the bivariate interpolation polynomial of min-
imal -weighted degree that, for each , passes
through the point with multiplicity at least for
every nonzero .

3) Given the interpolation polynomial , identify all the
factors of of the form with .
Produce a list of the codewords that correspond to these
factors.

4) Choose the most likely output codeword by using the
symbol probabilities from the reliability matrix or by
using the Hamming distance from the hard-decision word
(which can be derived from the reliability matrix). The
output list usually contains only a single codeword, and
therefore, this step is trivial, in practice.

The number of linear constraints, or cost of interpolation with
multiplicity matrix is [2]

(3)

We briefly summarize some important facts from [2]. The score
of a vector with respect to a multiplicity matrix is the inner
product

(4)

where , and is a matrix formed
from the vector , by setting , if , and 0,
otherwise. The score represents how closely the matrices and

correspond. Define

(5)

where

(6)

which is the number of monomials whose th weighted de-
gree is at most . Then, if weighted interpolation is applied to

a multiplicity matrix to produce an interpolation polynomial
, the factorization of will contain a factor corre-

sponding to a codeword if

(7)

Another important result from [2] is an algorithm, Algorithm
A, for generating a multiplicity matrix from a reliability ma-
trix . The algorithm is optimal in the sense that it maximizes
the score, subject to a constraint on the sum of the entries of ,

. This gives the KV algorithm a tunable
complexity parameter to tradeoff performance with decoding
complexity.

III. A REDUCED-COMPLEXITY SOFT-DECISION FRONT-END

In the previous section, we described how soft information, in
the form of a reliability matrix , can be incorporated into an al-
gebraic interpolation-based decoder by representing that infor-
mation in a matrix of integer multiplicities, the multiplicity ma-
trix . Koetter and Vardy’s solution to the problem of finding
a matrix subject to a constraint on the sum of the entries
in is Algorithm A. In this section, we explore an alternative
method of calculating a multiplicity matrix.

There are several implementation challenges in the soft-de-
cision front-end. The first, independent of the actual algorithm
used to compute , is the size of the matrices involved. Both
and are matrices (where in this paper, but for
extended RS codes, ). For example, if , then the
reliability matrix contains 64 k entries. If the entries
are quantized to, say, 8 bits each, then this matrix requires
64 k bytes of storage. Then the multiplicity matrix also requires
64 k entries, with the number of bits per entry depending on the
choice of (for example, by setting the parameter in Algo-
rithm A). Considering the specifics of Algorithm A, we require a
scratch matrix , which further increases the memory require-
ments. Providing this much storage on-chip in a very large-scale
integration (VLSI) implementation can be challenging.

The other problem is the time complexity of Algorithm A.
The algorithm requires passes through a matrix. We
would like to avoid zero columns in the multiplicity matrix, so
a necessary (but not sufficient) condition is . Therefore,
the number of memory accesses is at least .
For example, if is large, say 256, then memory accesses
will be required. Storing, transferring, and processing this much
information can quickly become a bottleneck, and this is just to
decode a single codeword.

A. A Reduced-Complexity Method for Finding a Multiplicity
Matrix

We will approach the problem by first tackling the time com-
plexity of Algorithm A. The solution will then expose properties
of the matrices from which further insight and optimizations can
be derived. Intuitively, a multiplicity matrix should be chosen
proportional to the reliability matrix , and this is exactly what
Algorithm A guarantees as . What if is small and fi-
nite? It has been shown [2] that for every real number ,
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there is a multiplicity matrix generated by Algorithm A with
parameter such that

(8)

This suggests a way of generating multiplicity matrices by
simply scaling the reliability matrix by a real number and
truncating to get an integer matrix (which fits our intuition).
However, this method is not exactly equivalent to Algorithm A.
For reliability matrices that are quantized to a finite precision,
the converse of (8) is not true; that is, there are some matrices
that can be generated by Algorithm A that cannot be generated
by any choice of in (8). An example of this is seen when
there are two or more values in that are exactly equal. Note
that for a Gaussian channel with infinite-precision quantization,
two equal entries in will occur with zero probability and
the two algorithms are equivalent. Algorithm 1 is a “one-pass”
algorithm, that in practice, although not strictly equivalent to
Algorithm A, always produces a valid multiplicity matrix.

Algorithm 1: Reduced complexity “one-pass” algorithm for
calculating from subject to complexity coefficient

for to do

for to do

end for

end for

This algorithm has a time complexity of , since it re-
quires only a single pass through the reliability matrix. The per-
formance/complexity tradeoff is now controlled by the com-
plexity coefficient .

B. Reducing the Size of the Multiplicity Matrix

Now we will tackle the space complexity of the multiplicity
matrix. Although the matrix has entries, in
practice, we find that multiplicity matrices are quite sparse. To
illustrate this, we ran an experiment that measures the density
of nonzero elements in a multiplicity matrix for an RS(255,239)
code. The multiplicity matrix for this code will have 65 280
entries. We would expect the most dense matrices to result from
an unreliable channel with a very low . This is because as
the channel noise decreases, we have more reliable information
about a smaller number of likely symbols. When the noise is
small enough, SDD reduces to hard-decision decoding (HDD)
with only one nonzero entry per column of . We also expect
to see the density increase as the value of the complexity co-
efficient increases. Simulations show that even for
and dB, the multiplicity matrix is only 5% dense.
At more practical operating points, such as
6.0 dB, the density is about 0.5%. Clearly, storing the full ma-
trix is a waste of resources.

We now will quantify just how dense a multiplicity matrix can
get. Since the entries of the reliability matrix are probabilities,

the maximum possible entry in is 1.0. Therefore, the max-
imum possible entry in is

(9)

.
Lemma 1: Consider a reliability matrix and a

multiplicity matrix , where is a nonnegative real
number. The sum of the entries in any given column of is
less than or equal to .

Proof: The sum of the entries in any given column of
is . But since the are
probabilities, , and therefore, .

Corollary 2: The maximum number of nonzero entries
in any given column of a multiplicity matrix is

.
Proof: Since the entries are nonnegative integers, the

maximum number of nonzero occurs when all the nonzero
entries in a column are . This means that the maximum
number of nonzero entries in a column is , up to
the maximum number of symbols in the alphabet, .

Corollary 3: The maximum number of nonzero entries in a
multiplicity matrix is .

Proof: The result follows from Corollary 2 and the fact that
there are columns in .

The maximum possible density for a multiplicity matrix is
therefore

(10)

We will see in the next section that the values of we will
choose, and hence, are low, usually between 4 and 16. In
light of the low-density matrices that result, a reduced data
structure called a compressed multiplicity matrix can be
stored instead of . The matrix consists of columns, but only

rows. Column labels are implicit, but a label has to be
stored for each row. Therefore, the number of bits of storage
required for are

(11)

and the compression ratio is

(12)

At a certain point, there is a tradeoff between the smaller
number of entries and the extra label bits. For the range of
that we will be interested in, we can achieve compression ratios
of at least six, as shown in Table I. It should be noted that simu-
lations show, in practice, only a small number of nonzero entries
in each column, usually two, suffice to achieve essentially all the
soft-decision gain. Therefore, in practice, the compression ratio
can be improved by an additional factor of two to eight.
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TABLE I
SIZE OF THE COMPRESSED MULTIPLICITY MATRIX IN BITS N , AND

THE COMPRESSION RATIO �, FOR TYPICAL VALUES OF THE MAXIMUM

MULTIPLICITY m FOR AN RS(255; k) CODE

C. Interpolation Cost of a Multiplicity Matrix

We now turn to investigate the cost of interpolation for a mul-
tiplicity matrix . The maximum entry in a column of is

, and the sum of all the entries in that column must be at
most . How does the distribution of multiplicities in the
column affect the cost of interpolation? For a given symbol po-
sition, the most reliable possible scenario gives a corresponding
column in with a single entry of . As the reliability of
a position decreases, the maximum multiplicity in the column
will begin to decrease and other nonzero entries might arise, as
long as the sum of the column entries does not exceed .
We show in the following theorem that the largest possible in-
terpolation cost for a given column arises when there is a single
entry of value .

Theorem 4: Consider a reliability matrix and a
multiplicity matrix , where is a nonnegative

real number. The cost of the interpolation step for SDD with
multiplicity matrix is at most the cost of interpolation for
HDD with the GS algorithm with a fixed multiplicity .

Proof: We will use an exchange argument to show that
grouping multiplicities in one entry always produces a
higher cost than distributing them amongst several en-
tries. Consider a column of

with at least one nonzero entry, and pick two entries
and in such that and .

Construct a length- column vector whose th entry is
, if , if , and otherwise, for
. The difference in the cost of columns and is

. But , therefore the difference is less
than zero, which means that the cost is always increased. It
follows that the maximum cost in a column occurs when all
the multiplicities are in the same row. The maximum cost in a
column occurs when there is a single entry of value , and
the maximum cost due to an -column multiplicity matrix is

, which is exactly the cost of GS hard
decoding with fixed multiplicity .

D. Reducing the Size of the Reliability Matrix

Since the multiplicity matrix is usually quite sparse, it makes
little sense to store a full reliability matrix, as most of its en-
tries will never result in a corresponding nonzero multiplicity.
Corollary 2 places a strict limit on the maximum number of en-
tries in a column of a reliability matrix that will ever be useful.
Therefore, it is not necessary to provide a full reliability matrix,
but just a compressed version with only the most
likely symbols per column. One way of doing this is to exploit

Fig. 1. FER for an RS(15,11) code plotted with respect to �. The period of the
local fluctuation of the FER with � is 1.0.

the geometry of modulation schemes such as quadrature ampli-
tude modulation (QAM), where each constellation point maps
to a symbol from the finite field GF . The most likely symbols
will be those with the smallest Euclidean distance to the received
point. Storage in the reliability matrix has to be provided only
for those constellation points in a local neighborhood around the
received point. If a compressed reliability matrix is available,
the one-pass algorithm has to only consider
entries. If is small, then the number of computations is

.

E. Choosing the Complexity Coefficient

The frame-error rate (FER) of a KV decoder is not a mono-
tonic decreasing function of the value of the complexity coeffi-
cient (or the complexity parameter ), leading to “good” and
“bad” local choices of . In general, a large increase in (or
) will result in a lower FER; however, there is no guarantee

that small increases will lower the FER. In certain cases, the be-
havior of the FER is periodic. Fig. 1 shows the local variation of
the FER with for an RS(15,11) code. The maxima occur at in-
teger values of with a minimum somewhere between the two.
To explain this phenomenon, consider an interval between two
integer values , as illustrated in Fig. 1, where

. The maximum possible multiplicity is . At
, the only way a multiplicity would occur in is

if there was an entry , which is extremely unlikely.
As is increased, the probability of an entry of increases,
and then we begin to see the benefit of interpolation with higher
multiplicities. The FER begins to go down until a point where
the multiplicity matrix best models the reliability matrix. After
a certain point, because of the coarseness of the multiplicity ma-
trix, does not accurately model anymore and the FER be-
gins to rise. In this regime, entries in other than the largest
ones begin to rise, but the largest ones cannot become greater
than . Finally, when , the largest entries can
turn to and the FER begins to decrease again. Fig. 2
illustrates this behaviour for an RS(255,239) code.



1228 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 7, JULY 2006

Fig. 2. FER for an RS(255,239) code plotted with respect to �. The period of
the local fluctuation of the FER with � is 1.0.

IV. SIMULATION RESULTS

In this section, we explore the amount of soft-decision
gain that the KV algorithm provides on different channels.
In Section IV-A, the soft-decision gain achievable on ad-
ditive white Gaussian noise (AWGN) channels is studied.
Section IV-B gives results for an application over a magnetic
recording channel. Section IV-C considers an application to
wireless communications over Rayleigh fading channels. The
multiplicities are calculated by Algorithm 1. It has been shown
in [12] that there are multiplicity assignment schemes that give
gains over the algorithm in this paper of about 0.20 dB for long
RS codes (length 255), and 0.75 dB for RS codes of length 15
on AWGN channels.

A. AWGN Channels

In order to speed up the simulations, all of the simulations
are performed according to (7). Random data is generated, en-
coded, and transmitted over a channel. Then a reliability ma-
trix is calculated, and the one-pass algorithm is applied to get
a multiplicity matrix. The score is calculated from the multi-
plicity matrix and knowledge of the transmitted codeword, and
then the threshold of (7) is applied. If the threshold condition
is satisfied, then successful decoding is guaranteed. Since the
decoding could still be successful otherwise, these simulation
results might be slightly pessimistic. Simulations show that the
estimated performance matches the actual decoder performance
very closely. Hybrid simulations are possible where the full de-
coder is only employed on failure of the threshold condition.

Fig. 3 shows the performance of the KV algorithm for a very
common high-rate (255,239) RS code. We see that for very high
complexities, a maximum soft-decision gain of 0.47 dB can be
achieved. For reasonable complexities, say with , a
gain of 0.27 dB is achieved at an FER of .

B. Magnetic Recording Channels

To investigate the performance of the KV algorithm on mag-
netic recording, we examine a concatenation of a PR4 partial-re-

Fig. 3. Simulation of a (255,239) RS code with binary phase-shift keying
(BPSK) modulation over an AWGN channel.

Fig. 4. Simulation of an RS(15,7) code over a PR4 partial-response channel.
The decoder is a concatenation of a soft-output log-MAP algorithm and a KV
RS decoder with � = 16:99.

sponse channel and a (15,7) RS code. The log-MAP algorithm
was used as a soft-detection algorithm for the PR4 channel to
provide soft information to the KV algorithm. The complexity
coefficient was set to . From the simulation results in
Fig. 4, the soft-decision gain is 2 dB at an FER of . Recent
results for magnetic recording channels by other authors can be
found in [13]–[15].

C. Rayleigh Fading Channels

We also investigated the performance of the KV algorithm
over a Rayleigh fading channel with 16-QAM. Fig. 5 shows
the performance of a (15,11) RS code. Four-bit symbols from
GF(16) are mapped directly to 16-QAM constellation points.
The multiplicative fading factors are independent, simulating
the effect of an ideal interleaver. The reliability matrix is cal-
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Fig. 5. Simulation of a (15,11) RS code with 16-QAM over a Rayleigh fading
channel.

culated directly from the received soft information, assuming
perfect channel state information (CSI). We see that much larger
gains are realized on a fading channel. At an FER of , the
soft-decision gain for a (15,11) code is 5 dB for and
9 dB for .

A simulation setup for a (255,191) RS code is shown in Fig. 6.
Each eight-bit symbol of GF(256) is split into two four-bit sym-
bols, and two 16-QAM channel uses are needed to transmit the
symbol.

For 16-QAM, each constellation point can be mapped to an
element of GF(16), . Define this mapping by
the functions and , which map an integer index in the
range of 0–15 to the real-valued and coordinates of the
corresponding constellation point, respectively. The received
points are and corresponding to the
two 16-QAM channel uses. Assuming perfect CSI, we know
the fading factor and assume that the channel is varying
slowly enough such that it is the same for both and

. Then

(13)

where

(14)

(15)

where and are the integers whose binary represen-
tations are the most significant four bits and the least significant
four bits of the binary representation of , respectively.

The simulation results are plotted in Fig. 7. The soft-decision
gain is 2.4 dB for and 3.1 dB for at FER

. We note that the coding gain on a Rayleigh channel

is not constant, but increases as the SNR increases, since the
two curves diverge. The results given here for a high FER will
improve as the SNR increases.

V. SYSTEMS-LEVEL ARCHITECTURE

Section III showed ways to lower the implementation com-
plexity of the KV soft-decision front-end. In this section, the
complexity of SDD is considered from a systems level. The
basic idea is that SDD is only needed to correct a small frac-
tion of the received packets, and therefore, should only be used
when needed. The implications are that for software implemen-
tations, the average cost of decoding is reduced. For hardware
architectures, the speed requirements on the soft decoder are re-
laxed. This idea was presented for binary linear block codes in
[16]. A similar idea has recently been presented in [17].

A. Redecoding Architecture

Given a fixed-complexity soft-decision decoder, the idea is
to reduce overall system complexity by using the expensive
soft decoder as little as possible. Most of the time, a hard-de-
cision decoder is capable of correcting a received word. For ex-
ample, a hard-decision decoder for the RS(255,239) code trans-
mitted over an AWGN channel at dB, has an FER

. This means that 99.9% of all frames are decoded cor-
rectly. A soft-decision decoder can achieve an FER of ,
almost three orders of magnitude lower, but is really only needed
once every thousand frames.

To implement this idea, we propose the redecoding architec-
ture which only uses as much complexity as is necessary to cor-
rectly decode a codeword. Central to this scheme is an error-de-
tection test which can be applied to the output of a KV decoder.
A cyclic redundancy check (CRC) code can be used as recently
proposed in similar work by Xia in [17]. To avoid the loss of
rate in using a CRC, we propose an alternative error-detection
technique in Section V-C.

The -stage redecoding architecture does an initial first pass
using a low-complexity decoder which could be a hard-decision
decoder, or in general, a KV decoder with a small value of the
complexity coefficient . Then a test is applied to the output to
determine if particular acceptance criteria are met. If so, then
the output is judged to be “reliable” and we are done. If deemed
“unreliable,” another trial with a soft-decision decoder of higher
complexity is performed. Decoding can continue for an arbitrary
number of stages . If the test is able to pick out most of the er-
rors at every stage, then only a very small number of frames will
need to be passed all the way down to the later, more complex
stages. The average complexity of decoding is, therefore, much
lower than applying a high-complexity decoder to every frame,
and the error rate can approach the error rate achievable at the
higher complexity.

Define as the probability that the test at stage declares
a frame unreliable. By definition, . The average com-
plexity of decoding frames is, therefore

(16)
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Fig. 6. Simulation setup for decoding the RS(255,191) code over a Rayleigh fading channel with 16-QAM.

Fig. 7. Simulation of a (255,191) RS code with 16-QAM over a Rayleigh
fading channel.

where is the average complexity of decoding at stage . The
average cost per frame is, therefore

(17)

As the coefficients in front of the complexities are products
of probabilities, the higher complexities contribute only a small
amount to the overall complexity, as long as the error rates are
not too high.

The FER achievable by redecoding can be slightly higher than
without, because of the possibility that the test at each stage will
not detect an unreliable frame. Therefore, it is not desirable to
have too many stages of redecoding. The achievable FER is FER

FER , where FER is the FER of decoding
just with a decoder with , and is the error rate
due to missed unreliable frames in the redecoding stages. Note
that we only count decoding errors and not decoder failures in

as a failure is always detectable. Then, in order for a
small redecoding loss, we require that FER or

FER , where can be chosen arbitrarily small.

For example, one or two orders of magnitude ( or
) is a good rule of thumb. To determine , define

as the fraction of errors at stage that were missed by
the test. Then

(18)

B. Differential Interpolation

The interpolation polynomial does not have to be computed
from scratch at each stage, as the intermediate interpolation re-
sults from a stage can be used as the starting point for the next
stage. The full factorization algorithm still has to be run at each
stage. To use the intermediate results, the full set of scratch
polynomials has to be supplied to the next stage, along with a
copy of the previous multiplicity matrix . At each point,
if the multiplicity satisfied in the previous stage is and the
new multiplicity is , the new interpolation has to run for
an additional iterations, where is
the number of interpolation points. The number of scratch poly-
nomials needed is the total number that will be required in the
last stage. Therefore, this differential interpolation architecture
is only practical if the difference between the two multiplicity
matrices is not large, or in hardware implementations where the
scratch polynomials are updated in parallel.

C. An Acceptance Test for Detecting Errors

In order to implement the redecoding architecture, an appro-
priate acceptance test is needed. Error detection by CRC is pro-
posed in [17]. A drawback of using a CRC is the loss of rate.
In this section, we propose an acceptance test based only on the
properties of the decoder which does not require any external
code.

We propose a heuristic method for detecting decoder errors
that are not flagged as decoder failures. After transmitting the
codeword through a channel, the soft-decision front-end is ap-
plied to the corresponding reliability matrix to generate a mul-
tiplicity matrix with cost . Then, from (7), the KV de-
coding is guaranteed to be successful if the score of with re-
spect to is greater than a threshold .
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We do not have knowledge of the codeword at the decoder,
but we do have the decoded codeword , which is an estimate
of the actual codeword. Substituting in for , we have the
heuristic acceptance criterion , where is an ad-
justable threshold. The overall acceptance test including the de-
coder failure condition is given in Algorithm 2.

Algorithm 2: Acceptance test for a decoder output given
a multiplicity matrix

if the decoder declares a decoder failure then

declare UNRELIABLE

else if then

declare RELIABLE

else

declare UNRELIABLE

end if

The complexity of the acceptance test is the complexity
of calculating the inner product , since there are only
nonzero entries in . Note that, in general, can be calculated
as a function of .

Example 1: To determine the complexity and error perfor-
mance of a redecoding architecture for an RS(255,239) code,
the characteristics of the acceptance test need to be studied. A
receiver operating characteristic (ROC) [18] plots the miss rate

versus the false alarm rate. The miss rate is the fraction of
frames that contain errors but were not detected by the test. The
false alarm rate is the fraction of correctly decoded codewords
that were mistaken as unreliable by the test. The miss rate should
be small to keep down the residual error rate at each stage, and
the false alarm rate should be small to keep the amount of work
transferred to the next stage low. As the threshold is increased,
we would expect the miss rate to decrease, accompanied by a
rise in the false alarm rate. Fig. 8 is an ROC where the miss
rate versus the false alarm rate is plotted for an RS(255,239)
code decoded with a KV decoder with maximum multiplicity

. From the curve, the point corresponding to
has a miss rate of and a false alarm rate of less than
0.3%.

We would like to implement a KV decoder, so that the per-
formance is close to that of a decoder with . The
FER of this decoder is . The complexity of a KV de-
coder with is . We implemented this decoder in
software using the fast decoding algorithm described in [5]–[9].
The measured average decoding time on a 2-GHz Pentium 4
was 469 ms. For , the average decoding time was
2.73 ms. We note that this software is not highly optimized and
that a faster implementation is possible.

To achieve a low average complexity, consider a two-stage
redecoding architecture with an initial decoding with

, followed by a test, and then final decoding with .
The cost per frame of redecoding is

Fig. 8. ROC for Algorithm 2 for an RS(255,239) code transmitted over an
AWGN channel at E =N = 6:6 dB and decoded with a KV decoder with
� = 4:99.

where is the fraction of frames passed from the first decoder
to the second (which depends on the false alarm rate), and was
measured to be . Therefore, the average cost per
frame of redecoding is 4.21 ms, or about 1.54 times the cost
of decoding with the first decoder alone. However, the cost of
decoding without redecoding is 126 times as expensive. The
FER is

FER FER

where FER is the FER achievable by decoding with the second
decoder alone, and is the miss rate of the first decoder,
which was determined from the ROC to be . There-
fore, the overall FER is , which represents only
a very small redecoding loss. Therefore, relative to a decoder
with , we have achieved almost a 0.2-dB gain, ap-
proaching the performance of a decoder with very
closely. However, a decoder with and not using re-
decoding is 126 times as expensive.

D. Hardware Architectures for High-Speed Implementations

For high-speed implementations, the redecoding architecture
can be simplified to two stages comprising a hardware hard-de-
cision decoder and a soft-decision coprocessor, as shown in
Fig. 9. The acceptance test reduces to simply the Hamming dis-
tance between the received word and the decoded codeword.
The average decoding time of a packet is

(19)

where is the average decoding time for the hard decoder,
is the average time to perform the test, is the average

decoding time for the soft decoder, and is the rate that the ac-
ceptance test declares packets unreliable, and sends them to the
coprocessor. The decoder area required is the sum of the areas
of the hard and soft decoders. However, since the soft decoder
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Fig. 9. Hardware implementation of SDD based on the redecoding
architecture.

is only needed infrequently, the speed requirements are relaxed,
and a lower area may be required than if a soft decoder was
used at full speed. In [6]–[9], an implementation of the factor-
ization algorithm is explored that uses the Berlekamp–Massey
algorithm. Therefore, a Berlekamp–Massey algorithm can be
implemented in hardware and shared between the hard and soft
decoders to save area.

For high-speed, low-latency applications, such as in wireless
communications, a hardware coprocessor can be used; however,
for applications where latency is not as critical, such as magnetic
recording, the frames requiring soft decoding can be handled by
a software coprocessor.

E. Buffer Length

The redecoding architectures require a buffer at the input to
the soft-decision coprocessor to hold any packets that arrive
while it is busy processing another packet. In order for this ar-
chitecture to be practical, the buffer size required has to be rea-
sonably small. A straightforward queueing analysis can be used
to determine the buffer size required.

The system consists of a GEO/D/1/K queue which has space
to hold packets and a server (the soft coprocessor) which
processes packets from the queue. Since the server has space
for one packet, the total system capacity is packets. Arrivals
to the queue occur when the acceptance test determines that a
decoding trial with the hard-decision decoder is unreliable. The
discrete-time arrival process is a Bernoulli process with packets
arriving at the input to the queueing system at slot boundaries
(slots) at a rate of packets/s. The arrivals are considered to
arrive immediately before the end of a slot, and service begins at
the beginning of the next slot. This model is called late arrivals
with delayed access [19]. In general, the service time depends
on the cost of the multiplicity matrix corresponding to a packet,
and can be specified by a probability distribution. However, we
prefer a worst-case analysis, since Theorem 4 gives an upper
bound on the complexity of a multiplicity matrix for a given
value of . The service period, which can only begin on a slot
boundary, is given as slots, where is an integer.

If a packet arrives at the system and finds that it is full, then
it is rejected and a decoding failure is declared by the soft co-
processor. Therefore, the buffer only needs to be large enough
so that the failure rate of the coprocessor caused by rejected
packets does not dominate the natural FER of the coprocessor.
The buffer can be sized so that the rejection rate or blocking

Fig. 10. Blocking probability for the GEO/D/1/K queue for different values of
the arrival rate, service time, and queue length.

probability is several orders of magnitude lower than the FER,
say, or times.

The blocking probability for this queue is given by Takagi in
[19] as

(20)

where is the probability that the queue is empty immediately
after the completion of a service time. The complete probability
distribution can be found by solving the
system of equations

(21)

(22)

where is the probability of packets arriving in a period of
slots, defined by

(23)

Fig. 10 gives results of the analysis for buffers lengths of one,
two, and three . Also plotted are the results of sim-
ulations of the queueing system which correspond very closely
with the analytical model. A hard-decision decoder can be easily
implemented at 100 Mb/s (for example, see [20]). As shown in
[6] and [21], a software coprocessor can be implemented to de-
code at 1 Mb/s and a hardware coprocessor can be implemented
at 10 Mb/s, corresponding to and , respec-
tively. If the goal is to have a blocking probability of three orders
of magnitude lower than the FER, we see that in the most pes-
simistic case, where the arrival rate is and the coprocessor
is 100 times slower than the hard decoder, a queue of at most
three packets is required. At lower FERs and if the coprocessor
is only 10 times slower than the hard decoder, then a buffer as
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small as one packet will suffice. If the Hamming distance is used
to pick a word from the output list, then the multiplicity matrices
can be stored in the queue, otherwise, reliability matrices need
to be stored.

Example 2: Consider an RS(255, ) code. At one extreme,
three compressed reliability matrices with 16 entries per column
quantized to 8 bits would require 24 k bytes of storage. At the
other extreme, storing a single multiplicity matrix with four en-
tries per column would only require only 1.4 k bytes. It is, there-
fore, possible to implement the memory as on-chip SRAM.

VI. CONCLUSION

In this paper, we showed that the implementation complexity
of algebraic SDD can be brought down to practical levels
through system-level considerations. The strategy proposed is
to limit the amount of soft information supplied to a decoder,
and also to limit the use of the soft decoder to only when it
is necessary. We also showed that significant soft-decision
gains can be achieved using high-rate codes, even at moderate
complexities. Algebraic SDD seems promising when applied
to wireless communications over Rayleigh fading channels. A
complete solution combines the systems-level optimizations
with efficient decoder implementations. We anticipate efficient
practical implementations of KV decoders using the copro-
cessor approach.
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