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Abstract

High-performance reconfigurable computers (HPRCs)
consisting of CPUs with application-specific FPGA accel-
erators traditionally use a low-level hardware-description
language such as VHDL or Verilog to program the FP-
GAs. The complexity of hardware design methodologies
for FPGAs requires specialist engineering knowledge and
presents a significant barrier to entry for scientific users
with only a software background. Recently, a number of
High-Level Languages (HLLs) for programming FPGAs
have emerged that aim to lower this barrier and abstract
away hardware-dependent details. This paper presents
the results of a study on implementing hardware acceler-
ators using the Mitrion-C HLL. The implementation of two
floating-point scientific kernels: dense matrix-vector multi-
plication (DMVM) and the computation of spherical bound-
ary conditions in molecular dynamics (SB) are described.
We describe optimizations that are essential for taking ad-
vantage of both the features of the HLL and the underlying
HPRC hardware and libraries. Scaling of the algorithms to
multiple FPGAs is also investigated. With four FPGAs, 80
times speedup over an Itanium 2 CPU was achieved for the
DMVM, while a 26 times speedup was achieved for SB.

1. Introduction

High-Performance Reconfigurable Computers (HPRCs)
are an emerging architecture for the acceleration of floating-
point scientific applications because of their capability to
take advantage of both the coarse-grained parallelism of-
fered by traditional CPU-based multiprocessors and fine-
grained parallelism offered by reprogrammable devices
such as FPGAs. Generally, developers who are well-versed
in hardware design have been required to program FPGAs
using low-level hardware description languages (HDLs)
such as VHDL or Verilog. This constitutes a significant

barrier to entry for scientists with a software-only back-
ground to program FPGAs. Several commercial high-level
languages (HLLs) for programming FPGAs have been pro-
posed to overcome some of the hardware-dependent limita-
tions associated with FPGA-based implementations such as
Handel-C [2], Impulse C [3] and Mitrion-C [4].

This paper presents the results from a study on imple-
menting scientific applications on an SGI Altix 350 with
RASC RC100 FPGA accelerators. The FPGAs are pro-
grammed using the Mitrion-C HLL. The features provided
by Mitrion-C and the RASC RC100 hardware are described
in Section 2 and 3, respectively. Two kernels are imple-
mented in Mitrion-C. In Section 4, the DMVM and SB
kernels are implemented on FPGAs using the features de-
scribed in Sections 2 and 3. We also describe various op-
timization techniques to improve the performance of these
algorithms and investigate their execution in parallel using
multiple FPGAs. The performance comparison between the
FPGA implementations and the software implementation is
provided in Section 5. Section 6 presents some advantages
and limitations of the features described in this study and
Section 7 offers conclusions.

2. Mitrion-C High-Level Language

Mitrion-C is a single-assignment, dataflow oriented, par-
allel HLL with C-like syntax. Hardware considerations
such as timing are not exposed to the programmer who fo-
cuses on expressing the dataflow of the algorithm. Paral-
lelism is expressed using explicit language constructs and
can be exploited in the form of vectorization and/or pipelin-
ing. Two array data types are offered: lists of elements ac-
cessible sequentially, and vectors in which all elements can
be addressed at once, or in any order. The resulting archi-
tecture is determined by the selection of data type (list or
vector) and the parallel operator applied to it. A parallel
foreach construct indicates a data-parallel loop. Combin-
ing the vector data type with the foreach loop creates ex-
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Figure 1. Mitrion-C design flow.

plicit parallel structures with multiple processing elements
(PEs). However, this design style rapidly consumes FPGA
resources. In contrast, applying a foreach loop to a list im-
plements a pipeline. Applications can use a combination
of both lists and vectors. Multi-dimensional collections are
also allowed (for example, lists of vectors, or vectors of vec-
tors of lists). This allows a tradeoff to be reached between
circuit area and execution time.

The design flow is described in Figure 1. The Mitrion
compiler generates Mitrion machine code which can be
used for simulation in the debugger/simulator. The sim-
ulator provides a graphical representation of the hardware
data flow graph. This graphical tool is key in identifying
program errors and finding design bottlenecks. The debug-
ger/simulator also provides breakpoint and watch functions
similar to the ones used in software debuggers.

The Mitrion processor configurator generates VHDL
from the Mitrion machine code and the pre-defined target
FPGA architecture. The generated processor, that runs at
a fixed frequency of 100 MHz, is wrapped in the SGI core
services which provide memory and communications inter-
faces to the RC100 and CPUs in the Altix 350. Synthesis
and place-and-route are performed by Synplify Pro and Xil-
inx ISE tools.

3. RASC RC100 FPGA System

Our SGI Altix 350 contains eight 1.5 GHz Intel Itanium
2 CPUs with 16GB of shared memory connected by a NU-
MAlink interconnection network. Two RASC RC100 ac-
celerators, each containing two Xilinx Virtex-4 LX200 FP-
GAs are connected to the Altix system through the NU-
MAlink and the TIO ASIC. Each of the four FPGAs has
five 8MB QDR SRAM DIMM memory banks, although the
core services currently provide access to 32MB per FPGA.
Each bank can be accessed by the FPGA at a rate of 128
bits per cycle at the Mitrion processor clock frequency of
100MHz, which results in a bandwidth of 1.6 GB/s. A
loader FPGA enables fast bitstream loading into the compu-
tational FPGAs. The overall view of a single RASC RC100
is given in Figure 2.

Figure 2. RASC RC100 hardware.

The FPGA external SRAM banks have limited memory
as shown in Figure 2. Therefore, if operating on large data
sets, the RASC RC100 provides a feature called stream-
ing [7]. Streaming reduces the overhead of data transfer
by overlapping data loading and unloading with algorithm
execution. As shown in Figure 3, the streaming feature re-
quires the designer to split the 32MB SRAM into two mem-
ory blocks; one for input memory (Bank A) and the other
for output memory (Bank B). These memory banks will be
segmented into two subblocks so that the implemented al-
gorithm can process data in Bank A1 and write the results
in Bank B0, while the next input data is being loaded into
Bank A0 and the computed results unloaded from Bank B1
to the host buffer. When all data in Bank A1 has been pro-
cessed, the FPGA will start executing on the loaded segment
(Bank A0), while the freed segment (Bank A1) will begin
loading the next input data set.

Another technique provided is an automatic scaling over
multiple FPGAs called wide-scaling. A single data set can
be automatically partitioned and sent to multiple FPGA run-
ning identical bitstreams. The results are re-assembled into
a single results data set automatically. In the cases where
different algorithm bitstreams are required for each FPGA,
or a non-uniform data partitioning is required, manual scal-
ing of the application by the programmer is needed. An
example of both techniques is given in Section 4.

4. Implemented Applications

In this paper, two computationally intensive algorithms
are implemented. First is the Dense Matrix-Vector Multi-
plication algorithm (DMVM), which is the dominant ker-
nel of many scientific applications. DMVM is a short, sim-
ple and very computationally intensive algorithm making it
ideal for hardware acceleration. The second algorithm is
a component of molecular dynamics simulations, specifi-
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Figure 3. Configuration for streaming large
data sets.

cally, the computation of the spherical harmonic boundary
conditions (SB). The SB algorithm was chosen because of
its inherent fine-grained parallelism. The following subsec-
tions describe the implementation of both algorithms using
Mitrion-C. Single-precision floating point is used instead of
fixed-point or custom-precision arithmetic to ensure that the
design methodology and results for hardware and software
are comparable.

4.1. Floating-Point Dense Matrix-Vector
Multiplication(DMVM)

The DMVM algorithm has a pair of nested for-loops.
The outer loop iterates over the rows of the matrix, while
the inner loop iterates over the columns of the selected
row, computing a dot-product between the current row and
column-vector for each iteration of the outer loop.

We implemented 2048 × 2048 matrix-matrix multi-
plication consisting of 2048 DMVM operations. The
first DMVM hardware implementation calculates multiple
scalar-scalar products within a dot-product. To fully ex-
ploit parallelism, the vector data type is used and then a
cascade addition is applied to the scalar-scalar products.
Due to the size of the test matrix (2048 × 2048), the lim-
ited number of floating point multipliers and the limited
memory bandwidth, a whole row cannot be computed at
once, therefore the matrix rows and column-vector are split
into subrows. The subrows of each row in the matrix and
the column-vector are stored as a length-512 lists of four-
element-vectors in two different memory banks. This sub-
row processing is similar to the techniques used in [9] and
[5]. Each subrow is chosen to contain four elements since
only four 32-bit single-precision floating point values can
be stored in each memory address of the external FPGA
SRAMs.

The foreach loop is used to do parallel multiplication of
the four elements in the matrix and column-vector subrows

Figure 4. One row dot-product PE.

and to compute the sum of their result as shown in Figure
4. After every subrow dot-product is computed, the accu-
mulation over 512 subrow dot-products is done using a for
loop to obtain one completed vector dot-product. To ex-
ecute the whole DMVM, a second foreach loop is used.
This loop reads the rows from the matrix and the column-
vector and computes the dot-products of the matrix rows
and the given column-vector as described previously. It fi-
nally writes the resulting values to memory. We store the
matrix in one 16 MB FPGA memory bank and the column-
vectors in the other 16 MB bank. Figure 5 shows the mem-
ory layout for one row of the matrix stored in RAM0 and
the column-vector in RAM1.

A second design was implemented to enhance the per-
formance using fine-grained optimization of the Mitrion-C
code. First, four subrow dot-product PEs are used in par-
allel instead of one PE as shown in Figure 5. Another op-
timization is done by replacing the cascaded addition with
a two level reduction tree in the subrow dot-product PE([9]
[5]). An additional two level reduction tree is implemented
to accumulate the outputs from the four PEs. These op-
timizations increased the number of scalar-scalar products
performed in parallel from 4 to 16, and decreased the num-
ber of iterations required in the sequential loop-dependent
accumulation from 512 (Figure 4) to 128 (Figure 5).

The DMVM design was first implemented on one FPGA
and then scaled to two and four FPGAs. The data is man-
ually partitioned into row blocks and processed by FPGAs,
each of which used identical bitstreams. Multiple CPUs are
used to simultaneously start the FPGA processing by using
Pthreads.

4.2. Spherical Boundary Conditions in
Molecular Dynamics (SB)

The spherical harmonic boundary condition simulates
solvating protein in water (used to study proteins in cellular
environment). The purpose of the algorithm is to calculate
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Figure 5. Optimized row dot-product PE.

the energy and force on each of the protein’s atoms solvated
in water. The force and energy are calculated in regards
to reference potentials, which correspond to boundary con-
ditions. The potentials are represented by two concentric
spheres. The energy for each atom i due to the boundary
conditions is [1]:

Es = ks

(∣∣∣→ri −→
r c

∣∣∣ − rs

)exp

, (1)

where ks is the force constant, measured in kcal/mol/A2,
associated with each sphere, and exp is the exponent defined
for both spheres. A default value of 2 was used for exp.

→
ri

is the current position of atom i.
→
r c is the center position.

The values ri and rc are measured in Angstroms. Moreover,
the force applied by the same potential is:

→
F s =

(
exps ks

(∣∣∣→ri −→
rc

∣∣∣ − rs

)exp−1
)

r̂i,c, (2)

where r̂i,c is a unit vector in the direction from atom i, to
the center of the sphere. The force and energy of an atom
located between the two spheres is calculated using the in-
ner sphere’s potential. If, however, the atom is outside the
outer sphere, its force and energy are calculated with ref-
erence to that sphere’s potential. The software version, de-
rived from the source code presented in [8], uses one di-
mensional arrays, as an input, to store the positions (

→
ri) of

the individual atoms in the protein structure. Each array
element in Figure 6(a) contains the x, y and z coordinates
of an atom. The algorithm iterates sequentially through the
set of atom. It calculates the distance from the atom to the
center point and uses this information to determine which
sphere to use in the energy and force calculations. Next,
the energy and force equations are applied. The program fi-
nally writes the output to a one dimensional array. The first
three 32-bits of each row in the array refer to the force’s
x, y and z components, while the last 32-bit stores the en-
ergy as shown in Figure 6(b). The source of parallelism in

(a) Input memory (b) Output memory

Figure 6. SB memory structure.

this algorithm comes from the fact that the force and energy
calculations of each atom are completely independent from
other atoms. Therefore, a pipelined architecture is selected
and implemented using a list data type that is processed by
a Mitrion-C foreach loop. To process a single atom, the

value of
(∣∣∣→ri −→

r s

∣∣∣ − rs

)
is first evaluated and then the en-

ergy and force calculation (Equations 1, 2) are performed in
parallel.

To increase the parallelism, our Mitrion-C design em-
ploys a mixture of pipelining and vectorization over sev-
eral atoms. Due to limited FPGA resources, only four
atom pipelines can be implemented in parallel as shown
in Figure 7. This limitation is a direct result of the in-
tensive force/energy computations which involve floating-
point square roots, division and a number of multiplications.
Streaming is used to accommodate data sets that are larger
than the SRAM banks. In this application, the RASC wide-
scaling is used to scale to two and four FPGAs using the
same bitstream on each and allowing the RASC libraries to
automatically perform the data partitioning.

5. Results

The applications were developed using gcc 4.1.0, RASC
Library 2.0 and Mitrion-C 1.1. Software versions of the
applications were developed in ANSI-C and run on a sin-
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Figure 7. SB design with four PEs.

Table 1. Summary of hardware resources.
Resource (total) DMVM SB

Flip Flops (178,176) 23% 37%
LUTs (200,448) 22% 38%

Multipliers 66% 33%
(96 18×18)

18kb Block RAMs (336) 9% 7%

gle 1.5 GHz Itanium 2 in the SGI Altix 350. The re-
sources consumed by the optimized hardware-implemented
DMVM and SB applications are shown in Table 1. The av-
erage time spent for the synthesis and place-and-route of
the DMVM and SB was 3 and 4 hours respectively. To test
the DMVM application, random single-precision floating
point 2048 × 2048 matrices were used. This is the maxi-
mum matrix size that can fit in the 16MB memory banks
of a single FPGA. The host program times the end-to-end
execution time of both the software and the hardware ver-
sions. The hardware time also includes sending and receiv-
ing data in addition to running the bitstream, to ensure a fair
SW/HW comparison. To determine the average speedup,
2048 matrix-vector multiplications were measured. Table
2 shows the speedup results for the non-optimized and op-
timized versions of the hardware implementations with re-
spect to the corresponding software implementation.

For the SB application, a single precision floating point
data-set of 32 MB was used, which amounts to 2,097,152
atom computations. This data was obtained from a Protein
Data Bank (PDB) file [6]. The speedup was calculated by
running the host program 30 times and taking the average
of the time readings. Table 2 shows the speedup results
obtained.

The two algorithms were scaled to two and then four FP-

Table 2. Speedup over 1.5 GHz Itanium 2 us-
ing a single FPGA.

DMVM SB

Software 0.900 s 1.607 s
Non-optimized 0.105 s -

Hardware (8× Speedup)
Optimized 0.042 s 0.158 s
Hardware (21× Speedup) (10× Speedup)

Table 3. Speedup over a 1.5 GHz Itanium 2 for
multiple FPGAs.

Number of FPGAs DMVM SB

1 0.042 s 0.158 s
(21× speedup) (10× speedup)

2 0.022 s 0.101 s
(41× speedup) (16× speedup)

4 0.011 s 0.061 s
(80× speedup) (26× speedup)

GAs. Manual partitioning was performed for the DMVM
application (1024 rows and 512 row blocks for two and four
FPGAs respectively). Pthreads were used to send the data,
execute the hardware implementation and receive the data.
The RASC wide-scaling was used to run the SB on multiple
FPGAs. The speedup results achieved with multiple FPGAs
are shown in Table 3.

6. Discussion

We note that even though Mitrion-C abstracts away most
hardware details, the designer needs to interact with the
hardware at certain points in the design process. The de-
signer must explicitly define the memory layout and pack
variables into the external SRAMs. An iterative design
process determined by the hardware constraints was often
necessary. After the place-and-route, it was often discov-
ered that the generated circuit did not fit on the FPGA, and
therefore the designer needed to change the Mitrion-C code
to make the circuit fit (such as changing vectors to lists).
For example, a new DMVM design with eight subrow dot-
product PEs only used approximately 35% of Flip-Flop and
41% of LUT resources. However, this design could not be
placed-and-routed to meet timing constraints after 9 hours.

Based on the results presented in Section 5, it was deter-
mined that different types of applications can be accelerated
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Figure 8. Speedup achieved when scaling
from one to four FPGAs.

significantly with HPRC by employing a mixture of pipelin-
ing and vectorization techniques. In this study, we deter-
mined that a higher order of vectorization provides explicit
parallelism at the cost of dramatically increasing the silicon
space consumed. Therefore, we recommend that applica-
tions should be initially implemented using only pipelining
and then have designers check the amount of hardware re-
sources used. If more resources are available, PEs can be
duplicated until available resources are used. This can eas-
ily be done by replacing list data types with vectors or by
reshaping the original data to a combination of vectors and
lists.

RASC streaming and wide-scaling features were also
evaluated. it was determined that streaming is a suitable
solution for applications with input buffer bigger than the
available FPGA external memory. The two implemented
algorithms were also successfully scaled to multiple FP-
GAs using both automatic and manual partitioning. Man-
ual partitioning was implemented for the DMVM algorithm
because the RASC wide-scaling does not generate the cor-
rect row boundaries for arbitrary matrix sizes. On the other
hand, in the SB algorithm, wide-scaling was used simply
by indicating the number of desired FPGAs in the host pro-
gram.

Figure 8 plots the speedup versus the number of FPGAs
for one, two and four FPGAs. The speedup of the DMVM
was doubled when doubling the number of FPGAs used. On
the other hand, the speedup of the SB increased by a factor
of only 1.6× when doubling the number of FPGAs. This is
due to the fact that SB is a streaming algorithm which reads
new data every clock cycle and is bound by the NUMAlink
bandwidth from the shared memory to the FPGA SRAMs.
However, the DMVM does a single block transfer to the
SRAMs and is compute-bound. We expect further upgrades
of the RASC software and Mitrion processor to increase the
available memory bandwidth and improve the performance

of streaming applications.
To enhance the bandwidth of the DMVM implementa-

tion, we tried storing the matrix in the two FPGA exter-
nal memory RAM banks while storing the column-vector in
FPGA internal block RAMs. This approach was unsuccess-
ful, as the system ran out of block RAM resources when
attempting to synthesize the design, even though our ini-
tial estimation showed that there were enough internal block
RAMs to store the vector.

7. Conclusion

This paper showed how the high-level design flow using
Mitrion-C and the SGI RASC platform effectively enables
the scientific community to overcome the hardware bar-
rier imposed by traditional low-level methodologies. Two
computationally intensive algorithms were implemented in
the SGI RC100 using Mitrion-C. The development was
for the most part free of hardware design considerations
and focused on the data flow of the algorithms. Both fine
and coarse grained optimization techniques, provided by
Mitrion-C and RASC respectively, were used. The DMVM
algorithm achieved a 21 times speedup with one FPGA and
80 times with four FPGAs. Moreover, the SB algorithm
achieved 10 times speedup with one FPGA and 26 times
with four FPGAs.
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