
IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 4, APRIL 2007 1525

Hardware Acceleration for Finite-Element
Electromagnetics: Efficient Sparse Matrix
Floating-Point Computations With FPGAs

Yousef El-Kurdi, Dennis Giannacopoulos, and Warren J. Gross

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada

Custom hardware acceleration of electromagnetics computation leverages favorable industry trends, which indicate reconfigurable
hardware devices such as field-programmable gate arrays (FPGAs) may soon outperform general-purpose CPUs. We present a new
striping method for efficient sparse matrix-vector multiplication implemented in a deeply pipelined FPGA design. The effectiveness of
the new method is illustrated for a representative set of finite-element matrices computed on our highly scalable and fully pipelined
FPGA-based implementation.

Index Terms—Conjugate gradient (CG) method, field-programmable gate array (FPGA), finite element (FE), hardware acceleration,
parallel computing, sparse matrix striping.

I. INTRODUCTION

FUELED by continual CPU performance improvements,
finite-element (FE) practitioners perpetually strive to sim-

ulate increasingly complex electromagnetic systems. Solution
via serial processing on current personal computers can yield
impractical run-times due to the large number of degrees of
freedom involved. Various approaches, such as parallel pro-
cessing, hold promise for overcoming this barrier. Relatively
lower cost alternatives recently gaining attention include so-
lution acceleration via implementation in custom hardware
such as FPGAs [1]. However, to realize the full potential of
such approaches, the underlying algorithms must be inherently
parallelizable.

Sparse matrix-vector multiplication (SMVM) is a kernel for
many iterative numerical techniques, such as the conjugate gra-
dient (CG) method, used to solve large, sparse linear systems
arising in FE formulations. In fact, SMVM can be a dominant
cost associated with obtaining FE solutions, which if imple-
mented in custom hardware may lead to significant run-time
reductions. However, sparse matrix storage schemes effective
for software-based implementations are not “regular” enough
to allow for efficient parallel manipulation in FPGA-based de-
signs. To overcome this, various so-called striping algorithms
have been proposed.

The purpose of this contribution is to introduce a new striping
scheme for FE matrices that improves the parallel speed-up of
our FPGA-based fully pipelinable SMVM accelerator (SMVM
pipeline). The design comprises a pipeline of eight processing
elements (PEs). Each PE contains a cascade of deeply pipelined
floating-point arithmetic units (FPUs). To increase processor ef-
ficiency and maintain the peak floating-point performance of the
SMVM pipeline, the sparse matrix should be represented in the
least number of stripes possible.

Digital Object Identifier 10.1109/TMAG.2007.892459

The matrix-vector multiplication operation is defined by
, where is the system’s matrix and is usually square with

dimension , while and are dense vectors with di-
mensions . The system’s matrix resulting from FE
applications is large and sparse which causes typical CPU im-
plementations of SMVM to suffer from low hardware utilization
in addition to memory access bottlenecks. On the other hand,
FPGAs have shown to produce higher hardware sustained per-
formance for SMVM computation [2]–[4]. In addition, FPGA
reconfigurable systems offer larger memory bandwidth making
them more suitable for large FE computations.

II. PREVIOUS WORK

Sparse matrix striping in general tries to meet either one
of two major objectives; first, to produce the least number of
stripes that cover the sparse matrix, and second, to obtain an
efficient utilization of the parallelism features of array proces-
sors. Different forms of striping schemes have been previously
developed in [5]–[7]. These schemes are used to compute
SMVM on 1-D linear array processors. In this paper, we will
present these striping schemes and compare their effectiveness
in utilizing the computational capacity of a fully pipelined
SMVM implementation to the efficiency of our proposed
striping scheme, pipelinable stripes. We will also show that
the pipelinable stripes scheme obtains higher computational
throughput when used with the SMVM pipeline.

III. SMVM PIPELINE

The SMVM pipeline is a linear array processor network
shown in Fig. 1. The SMVM pipeline is constructed from iden-
tical PEs each containing a cascade of deeply pipelined FPUs
that consist of a multiplier and an adder. The links between PEs
are constructed from FIFO queues.

The SMVM pipeline performs the overall SMVM computa-
tion in parallel by streaming the sparse matrix data along with
the and vectors through the processor array network. The
matrix elements are grouped into specially ordered stripes and
fed to each PE from the top, while the and vectors are

0018-9464/$25.00 © 2007 IEEE

1526 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 4, APRIL 2007

Fig. 1. SMVM pipeline is a fully pipelined 1-D linear array processor network.

Fig. 2. Typical sparsity pattern for FE matrices [9].

fed into the pipeline horizontally from the same side. Each PE
therefore, simultaneously computes a partial summation of

(1)

where is the partially accumulated summation from a
prior computation.

IV. PIPELINABLE STRIPES

Striping is particularly suitable for FE matrices due to their
special sparsity patterns. Melhem [8] establishes that FE ma-
trices, when using specific mesh numbering techniques, can be
covered by a number of stripes independent of the size of the
problem. In other words, the number of stripes the FE matrices
can have is bounded by a constant that is independent of the di-
mension of the matrix . Since each PE is required to process a
stripe, this implies that the computational resources needed by
the SMVM pipeline does not indefinitely increase as the size
of the FE matrix increases. For large FE matrices therefore,
the SMVM pipeline scales well in terms of computational and
memory resource requirements. Fig. 2 shows the typical FE ma-
trix sparsity pattern for two example matrices.

A. Increasing-Order Stripes

To ensure correct operation of the SMVM pipeline, the stripe
elements have to be ordered in an increasing order with respect
to both row and column indices. Increasing-order stripes can
fall into four distinct categories which are increasing order (IO),
strictly increasing order (SIO), strict-columns increasing order
(SCIO), and strict-rows increasing order (SRIO). To formulate
these categories, we start by defining a stripe as an ordered
set of elements taken from the sparse matrix A as follows:

where

TABLE I
STRIPE CATEGORIES

Fig. 3. Stripe formations. Pipelinable (SRIO) stripes generate the optimal
number of stripes required for fully pipelinable hardware implementations.
(a) Straight-diagonal stripes (seven SIO stripes). (b) Jagged-diagonal stripes
(four SIO stripes). (c) Staircase stripes (three IO stripes). (d) Pipelinable stripes
(three SRIO stripes).

Table I outlines the different striping categories.
Fig. 3 shows a basic example of the four increasing-order

stripe formations. The pipelinable stripes belong to the SRIO
striping category which is expected to produce a lower number
of stripes than the straight-diagonal [5] or the jagged-diagonal
striping formations [6]. This is due to the fact that the condi-
tion required for forming SRIO is less restrictive than the con-
dition required for forming jagged-diagonals or straight-diago-
nals. Therefore, each SRIO stripe can contain on average more
elements than the jagged-diagonal or straight-diagonal stripe
which reduces the overall SRIO stripe count.

In contrast, staircase striping may produce a lower number
of stripes; however, they prevent the use of pipelined FPUs.
This is because the IO or SCIO stripe may contain more than
one element from the same row which creates a feedback line
around the FPUs in the PE impeding the overall computational
throughput of the SMVM pipeline. Amongst the previously
mentioned striping formations, the pipelinable stripe formation

EL-KURDI et al.: HARDWARE ACCELERATION FOR FINITE-ELEMENT ELECTROMAGNETICS 1527

generates the optimal number of stripes suitable for fully
pipelined, parallel, and efficient hardware implementations.

B. Stripe Ordering

Every two consecutive PEs in the pipeline must receive
stripes ordered in a higher to lower relationship, so as to reduce
the required SMVM pipeline queue sizes. Also ordered stripes
do not cross which avoids data conflicts and improves the
concurrency and parallelism of computations. The higher order
relationship is defined as follows.

Definition 1: Given stripes and is said to be higher
than , if .

C. SMVM Pipeline Queue Sizes

In order to ensure correct SMVM pipeline operation, it is
necessary to determine the minimum queue sizes required for a
given striping formation. To facilitate this, we start by defining
the largest horizontal separation (LHS) value between two or-
dered stripes as follows.

Definition 2: Given stripes and , if , then
the largest horizontal separation (LHS) is computed by

LHS

The minimum X-queue depth between any two PEs is
determined by

LHS when

where is a small integer constant reflecting the latency re-
sponse of the queue status signals. As for the queues on the
stream, only small -queues are necessary to facilitate the im-
plementation of deeply pipelined FPUs.

D. Pipelinable Stripes Algorithm

We present two basic algorithms that produce SRIO stripes.
The first algorithm is called the bottom-up striping (BUS) algo-
rithm which forms stripes by taking the element with the min-
imum column index that satisfies the SRIO property, shown
in Table I, from each row starting from the bottom row and
moving up toward the top row. The second algorithm is called
the top-down striping (TDS) algorithm which forms stripes by
taking the element with the maximum column index that satis-
fies the SRIO property from each row starting from the top row
and moving toward the bottom row. Fig. 4(a) and (b) demon-
states the behavior of both the BUS and TDS algorithms.

In order to ensure correct operation of the SMVM pipeline
implemented with limited queue sizes, the BUS and TDS algo-
rithms can easily be adapted to generate banded stripes. Banded
striping can ensure an upper bound on LHS between every two
adjacent stripes thus limiting the X-queue size requirement
between the corresponding PEs. This can be done by dissecting
the matrix along cut-lines. Since we are dealing with FE ma-
trices, which have mostly diagonal sparsity structure, diagonal
cut-lines are more appropriate. Fig. 4(c) and (d) demonstates
a graphical representation of the banded-BUS (BBUS) and
banded-TDS (BTDS) algorithms. The stripes generated by our
algorithms are ordered.

Fig. 4. BUS, TDS, BBUS, and BTDS stripe formations. Even though BUS
and TDS stripes may differ, the number of stripes formed by both algorithms
are identical. (a) BUS algorithm. (b) TDS algorithm. (c) BBUS algorithm.
(d) BTDS algorithm.

The BBUS and BTDS algorithms are generalized versions of
the BUS and TDS algorithms. For example, the banded versions
can produce striping similar to the nonbanded versions if the
band size is chosen to be greater than . Also, the banded
bottom-up algorithm typically produces more stripes than the
nonbanded one. But, since the band size used is large enough
(current FPGA chips provide abundant internal SRAM memory
to form long queues), the increase in the number of stripes when
the banded algorithms are used will not be significant.

V. PERFORMANCE ANALYSIS

We can define an utilization factor for a given
matrix. The utilization factor indicates how much of the peak
SMVM pipeline performance can be achieved. Given that
the striping scheme is either SIO or SRIO, is computed as
follows:

(2)

where is the stripe density which is found by

total number of nonzeros
total number of stripes

(3)

In other words, describes the average number of nonzero ele-
ments per stripe. We can see from (3) and (2) that the utilization
increases with increasing stripe density which is achieved by re-
ducing the number of stripes representing the matrix.

VI. RESULTS

The SMVM pipeline prototype is implemented with eight
PEs and placed on one of the four Stratix FPGAs of the TM4
reconfigurable system [10]. The fully functional eight-PE pro-
totype utilized only 30% of the logical resources and 40% of the
internal memory resources (queues). The size of the FE matrix
supported by the SMVM pipeline is only limited by the available

1528 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 4, APRIL 2007

Fig. 5. Utilization results of the three striping schemes. Pipelinable stripes pro-
duce the highest utilization factors.

external memory resources for each FPGA in the TM4. This
scalability advantage is the primary result of the stream-through
design approach of the SMVM pipeline.

The SMVM pipeline peak performance is 1.76 Giga-FLOPS,
and its maximum sustained performance is 86% of the peak per-
formance (1.51 Giga-FLOPS), for our set of test FE matrices. In
comparison with software implementations, Pentium 4 and Ita-
nium 2 platforms obtained higher peak performance of 3.0 and
3.6 Giga-FLOPS respectively; however, their actual sustained
performance was 14% (0.42 Giga-FLOPS) and 33% (1.18 Giga-
FLOPS) of peak, which is lower than the SMVM pipeline’s sus-
tained performance [4]. In addition, the TM4 can more than
quadruple the overall peak and sustained performance of the
SMVM pipeline, when the four Stratix FPGAs are used for
SMVM computation using our matrix partitioning scheme de-
scribed below. The current SMVM pipeline performs the stan-
dard IEEE single-precision floating-point computations; how-
ever, if double-precision is required, the FPUs can be replaced
with ones supporting double-precision arithmetic. Further de-
tails on the hardware implementation including the implica-
tions of limited external memory bandwidth on computational
throughput and performance comparison with other computing
platforms are provided in [2].

Fig. 5 shows the increased utilization factors as a result
of using our pipelinable striping scheme over other striping
schemes. This gain in utilization results in higher sustained
computational performance. As expected, the utilization graphs
of an extensive set of test matrices [9] striped using the three
striping schemes indicate that the utilization as a result of SRIO
striping is always equal to or higher than the jagged-diagonal
utilization which, in turn is higher than the straight-diagonal
utilization. This is due to the fact that the SRIO striping pro-
duced a lower stripe count than in the jagged-diagonal and the
straight-diagonal schemes.

The number of PEs that can be implemented in the SMVM
pipeline is not limited by the number of stripes the matrix can
form; in fact, further scaling of the number of PEs can be ob-
tained by horizontally partitioning the matrix and processing
each partition in parallel by an independent SMVM pipeline.
The partitioning scheme is especially favorable for FPGA re-
configurable systems that contain more than one FPGA chip

TABLE II
MATRIX PARTITIONING EFFECT ON UTILIZATION

such as the TM4. Unlike CPU-based implementations, commu-
nication overhead is not a limiting factor to the scalability of the
SMVM pipeline. By virtue of the local interconnects between
the PEs in the SMVM pipeline, scalability is only limited by
the available FPGA resources. Table II shows the partitioning
effect on utilization factors for two selected matrices that had
low initial utilization results. The utilization due to partitioning
can either increase or remain the same if the number of rows
partitioned is large compared to the maximum LHS in the par-
tition. This is due to the fact that the number of stripes within
each partition will either be less than or equal to the number of
stripes for the unpartitioned matrix.

VII. CONCLUSION

The highly scalable SMVM pipeline architecture which can
obtain high-performance results for SMVM computation of
very large sparse FE matrices was demonstrated. We developed
our own pipelinable striping scheme, improving the overall
utilization of our hardware design. In addition to providing an
efficient and scalable utilization of the logical resources of the
FPGA, the stream-through architecture inherently facilitates an
efficient iterative implementation of the SMVM computation
as required by iterative solvers such as the CG method.

REFERENCES

[1] H. Kawaguchi, K. Takahara, and D. Yamauchi, “Design study of ultra-
high-speed microwave simulator engine,” IEEE Trans. Magn., vol. 38,
no. 2, pp. 689–692, Mar. 2002.

[2] Y. El-Kurdi, W. J. Gross, and D. Giannacopoulos, “Sparse matrix
vector multiplication for finite element method matrices on FPGAs,” in
Proc. IEEE Symp. Field Programmable Custom Computing Machines,
2006, pp. 293–294.

[3] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
FPGAs,” in Proc. 2005 ACM/SIGDA 13th Int. Symp. on Field-Pro-
grammable Gate Arrays, 2005, pp. 63–74.

[4] M. DeLorimier and A. DeHon, “Floating-point sparse matrix-vector
multiply for FPGAs,” in Proc. 2005 ACM/SIGDA 13th Int. Symp. Field-
Programmable Gate Arrays, 2005, pp. 75–85.

[5] S. Y. Kung, VLSI Array Processors, ser. Information and System Sci-
ence, T. Kailath, Ed. Englewood Cliffs, NJ: Prentice Hall, 1988.

[6] R. Melhem, “Parallel solution of linear systems with striped sparse ma-
trices,” Parallel Comput., vol. 6, no. 2, pp. 165–184, Feb. 1988.

[7] L. S. Heath, S. V. Pemmaraju, and C. J. Ribbens, “Processor-efficient
sparse matrix-vector multiplication,” Compute. Math. Appl., vol. 48,
pp. 589–608, 2004.

[8] R. Melhem, “Determination of stripe structure for finite element ma-
trices,” SIAM J. Numer. Anal., vol. 24, no. 6, pp. 1419–1433, Dec. 1987.

[9] Matrix Market, Jun. 2004 [Online]. Available: http://math.nist.gov/Ma-
trixMarket/

[10] The Transmogrifier-4 (TM4) Project, 2005 [Online]. Available: http://
www.eecg.utoronto.ca/~tm4/

Manuscript received May 1, 2006 (e-mail: dennis.giannacopoulos@mcgill.
ca).

